Int. J. Nonlinear Anal. Appl. 13 (2022) 2, 307-314 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.25043.2896

On A_{λ} -almost null and A_{λ} -almost convergent Orlicz sequence spaces

Sukhdev Singh^{a,*}, Toseef Ahmed Malik^a

^aDepartment of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India

(Communicated by Ali Jabbari)

Abstract

The idea of almost convergent sequence was introduced by G. G. Lorentz [8]. In this paper, some new generalized sequence spaces on A_{λ} -almost null and A_{λ} -almost convergent sequences by Orlicz function are introduced and extended them to the paranormed sequence spaces. Some inclusion relation has also been established between the new spaces. In addition, the α -, β - and γ -duals of these spaces, and the characterization of $(A_{\lambda}(f)(\Delta, M, q) : \nu)$ and $(\nu : A_{\lambda}(f)(\Delta, M, q))$ of infinite matrices are also given.

Keywords: Almost convergence, paranormed spaces, α -, β - and γ -duals, matrix transformation 2020 MSC: Primary 40A05; Secondary 46A45

1 Introduction

Throughout this paper, the set of all complex sequences will be denoted by ω . The notations ℓ_{∞} , c and c_0 and ℓ_p $(1 \le p < \infty)$ are used for the sequences spaces of all bounded, convergent, null and absolutely *p*-summable sequences, respectively.

Furthermore, we denote ℓ_1 , bs and cs for sequence spaces of all absolutely convergent series, bounded series, and convergent series respectively.

A K-space on any sequence space E with linear topology is defined as a map $q_r : E \to \mathbb{C}$, where \mathbb{C} denote the set of complex field and $\mathbb{N} = \{0, 1, 2, ...\}$ such that $q_r(x) = x_r$ is continuous $\forall r \in \mathbb{N}$. A complete linear metric K-space is called an *FK*-space. An *FK*-space is called a *BK*-space whose topology is normable. The spaces ℓ_{∞} , c and c_0 are *BK*-spaces endowed with the sup-norm as $||x||_{\infty} = \sup_{r \in \mathbb{N}} |x_r|$. (for details cf. [6, 9]).

The shift operator D on w is defined by $(Dx)_n = x_{n+1} \quad \forall n \in \mathbb{N}$. A Banach limit F is defined as a non negative linear functional on ℓ_{∞} such that F(Dx) = F(x) and F(e) = 1. A sequence (x_r) is said to be almost convergent to the generalized limit ξ if all Banach limits of x are equal to ξ , and is denoted by $f - \lim x_r = \xi$. Lorentz [8] proved the criterion for almost convergence, that is, $f - \lim x_r = \xi$ iff $\lim_{k \to \infty} \sum_{r=0}^k \frac{x_{n+r}}{k+1} = \xi$ uniformly in n.

^{*}Corresponding author

Email addresses: singh.sukhdev01@gmail.com (Sukhdev Singh), tsfmlk5@gmail.com (Toseef Ahmed Malik)

The notations f_0 and f are used to define the spaces of all almost null & almost convergent sequences as follows:

$$f_0 = \left\{ x = (x_r) \in w : \lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^k x_{n+r} = 0 \text{ uniformly in } n \right\}$$
$$f = \left\{ x = (x_r) \in w : \lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^k x_{n+r} = l \text{ uniformly in } n \right\}$$

Definition 1.1 (Matrix Transformation). [4] Let U and V be two given sequence spaces and $A = (a_{nr})$ is an infinite matrix of real entries. Then the function $A: U \to V$ defined a matrix transformation between two sequence spaces, U and V as

$$(Ax)_n = \sum_r a_{nr} x_r \tag{1.1}$$

provided the series on the right hand side of (1.1) is convergent for each $n \in \mathbb{N}$. We call Ax as A-transformation of sequence x. By (U:V), we shall denote the collection of all infinite matrices from U into V.

Here, and in what follows, the summation without limits runs from 0 to ∞ .

Further the notion

$$U_A = \{ x = (x_r) \in w : Ax \in U \}.$$
(1.2)

is called the matrix domain A in a sequence space U, which itself is a sequence space.

In this work we continue to study the spaces of difference sequence and also the concept of all almost null & all almost convergent sequences by using the matrix transformations A_{λ} , where $\lambda = (\lambda_r)$ is strictly increasing sequence.

For two arbitrary sequence spaces U and V. Define the set

$$S(U, V) = \{a = (a_r) \in w : xa = (x_r a_r) \in V \ \forall x \in U\}$$

is called the multiplier space of the spaces U and V. The $\alpha -$, $\beta -$ and $\gamma -$ duals of subset $U \subset \omega$, are defined as

$$U^{\alpha} = S(U, l_1), \quad U^{\beta} = S(U, cs), \quad U^{\gamma} = S(U, bs)$$

2 A_{λ} -almost null and A_{λ} -almost convergent sequence spaces

Throughout this paper, let $\lambda = (\lambda_r)$ is a strictly increasing sequence of positive reals tending to infinity, that is, $0 < \lambda_0 < \lambda_1 < \lambda_2 < \dots$ and $\lim_{r \to \infty} \lambda_r = \infty$. We introduce the matrix $A_{\lambda} = \{a_{nr}(\lambda)\}$ by

$$a_{nr}(\lambda) = \begin{cases} \frac{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}}{\lambda_n - \lambda_{n-1}}, & 0 \le r \le n\\ 0, & r > n \end{cases}$$
(2.1)

for all $r, n \in \mathbb{N}$.

Take $(\Delta x_r) \in w$ and $n \geq 1$. Then (2.1) gives by a short calculation that

$$\Delta x_n - (A_\lambda \Delta x)_n = \frac{1}{\lambda_n - \lambda_{n-1}} \sum_{r=0}^n (\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}) (\Delta x_n - \Delta x_r)$$

= $\frac{1}{\lambda_n - \lambda_{n-1}} \sum_{r=0}^{n-1} (\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}) (\Delta x_n - \Delta x_r)$
= $\frac{1}{\lambda_n - \lambda_{n-1}} \sum_{r=0}^{n-1} (\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}) \sum_{i=r+1}^n (\Delta x_i - \Delta x_{i-1})$
= $\frac{1}{\lambda_n - \lambda_{n-1}} \sum_{i=1}^n (\Delta x_i - \Delta x_{i-1}) \sum_{r=0}^{i-1} (\lambda_r - 2\lambda_{r-1} + \lambda_{r-2})$
= $\frac{1}{\lambda_n - \lambda_{n-1}} \sum_{i=1}^n (\lambda_{i-1} - \lambda_{i-2}) (\Delta x_i - \Delta x_{i-1})$

Thus for every $(\Delta x_r) \in w$, we have

$$\Delta x_n - (A_\lambda \Delta x)_n = (\Lambda \Delta x)_n \quad \forall \ n \in \mathbb{N}$$

$$(2.2)$$

where $\Lambda \Delta x = (\Lambda \Delta x)_n$ is as follows

$$(\Lambda \Delta x)_n = \begin{cases} \frac{1}{\lambda_n - \lambda_{n-1}} \sum_{r=1}^n (\lambda_{r-1} - \lambda_{r-2}) (\Delta x_r - \Delta x_{r-1}), & n \ge 1\\ 0, & n = 0 \end{cases}$$

Moreover we have the following result:

Theorem 2.1. Suppose $f - \lim \Delta x_n = \xi$ for $\Delta x_n \in w$ and $\xi \in \mathbb{C}$. Then $f - \lim (A_\lambda \Delta x)_n = \xi$ holds if and only if $\Lambda \Delta x \in f_0$.

Proof. First consider that $f - \lim \Delta x_n = f - \lim (A_\lambda \Delta x)_n = \xi$. Then, from equation (2.2), the equality

$$\frac{1}{k+1}\sum_{r=0}^{k} [\Delta x_{n+r} - (A_{\lambda}\Delta x)_{n+r}] = \frac{1}{k+1}\sum_{r=0}^{k} (\Lambda\Delta x)_{n+r}$$
(2.3)

holds for all $n, r \in \mathbb{N}$. Thus by passing $k \to \infty$ uniformly in n, the left hand side of equation (2.3) approach to zero which yields that

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^{k} (\Lambda \Delta x)_{n+r} = 0, \text{ uniformly in } n.$$

Therefore, $\Lambda \Delta x \in f_0$.

On the contrary suppose that $\Lambda \Delta x \in f_0$ and take $f - \lim_{n \to \infty} \Delta x_n = \xi$.

By taking limit in the equality (2.3), we obtain

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^{k} [\Delta x_{n+r} - (A_{\lambda} \Delta x)_{n+r}] = 0$$

This yields that

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^{k} \Delta x_{n+r} = \lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^{k} (A_{\lambda} \Delta x)_{n+r} = \xi.$$

Hence the result \Box

We approach on the construction of new sequence spaces $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ and $A_{\lambda}(f)(\Delta, \mathcal{M})$ of all A_{λ} -almost null & A_{λ} -almost convergent sequences by means of difference sequence and Orlicz function \mathcal{M} , [3]. In [7], Lindenstrauss and Tzafriri introduced a sequence space $l_{\mathcal{M}}$ which consist of an Orlicz function \mathcal{M} as follows,

$$\ell_{\mathcal{M}} = \left\{ x \in w : \sum_{r=1}^{\infty} \mathcal{M}\left(\frac{|x_r|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

The Orlicz sequence space $\ell_{\mathcal{M}}$ under the norm

$$\|x\| = \inf\left\{\rho > 0 : \sum_{r=1}^{\infty} \mathcal{M}\left(\frac{|x_r|}{\rho}\right) \le 1\right\}$$

is a Banach space which is called an Orlicz sequence space.

We define the spaces $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ and $A_{\lambda}(f)(\Delta, \mathcal{M})$, as the set of all A_{λ} -almost null & A_{λ} -almost convergent sequences of complex numbers, respectively as follows:

$$A_{\lambda}(f_0)(\Delta, \mathcal{M}) = \left\{ (x_r) \in w : \lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^k \mathcal{M}\left(\frac{|A_{\lambda}\Delta x|_{n+r}}{\rho}\right) = 0, \text{ uniformly in } n, \rho > 0 \right\}$$
$$A_{\lambda}(f)(\Delta, \mathcal{M}) = \left\{ (x_r) \in w : \lim_{k \to \infty} \frac{1}{k+1} \sum_{r=0}^k \mathcal{M}\left(\frac{|A_{\lambda}\Delta x|_{n+r}}{\rho}\right) = l, \text{ uniformly in } n, \rho > 0 \right\}$$

With notation of (1.2) the spaces $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ and $A_{\lambda}(f)(\Delta, \mathcal{M})$ can redefine as the matrix domain of triangle A_{λ} in the spaces f_0 and f, respectively.

Throughout the text, $y = (y_r) = (\Delta y_r)$ will be used as the A_{λ} -transform of a sequence $x = (x_r) = (\Delta x_r)$, that is,

$$(y_r) = (A_\lambda x)_n = \frac{1}{\lambda_n - \lambda_{n-1}} \sum_{r=0}^n \mathcal{M}\left(\frac{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}}{\rho} \Delta x_r\right)$$
(2.4)

for all $n \in \mathbb{N}$.

Theorem 2.2. The sequence space $A_{\lambda}(f)(\Delta, \mathcal{M})$ is a Banach- spaces under the norm defined as

$$\|x\|_{A_{\lambda}(f)(\Delta, \mathcal{M})} = \|A_{\lambda}x\|_{f(\Delta, \mathcal{M})} = \inf\left\{\rho > 0: \sup_{k,n\in\mathbb{N}}\tau_{nk}\mathcal{M}\left(\frac{|A_{\lambda}\Delta x|_{n+r}}{\rho}\right) \le 1\right\}.$$

where $\tau_{nk}\mathcal{M}\left(\frac{A_{\lambda}\Delta x}{\rho}\right) = \frac{1}{k+1}\sum_{r=0}^{k}\mathcal{M}\left(\frac{(A_{\lambda}\Delta x)_{n+r}}{\rho}\right).$

Proof. Let $\{x^s\}$ be any Cauchy sequence in $A_{\lambda}(f)(\Delta, \mathcal{M})$, where $x_k^s = (x_1^s, x_2^s, x_3^s, ...) \in A_{\lambda}(f)(\Delta, \mathcal{M})$ for all $s \in \mathbb{N}$. Let δ be fixed and q > 0, then \exists a positive integer n_0 such that

$$\left\|x^{s} - x^{t}\right\|_{A_{\lambda}(f)(\Delta, \mathcal{M})} < \frac{\epsilon}{\delta q}, \forall \ s, t \ge n_{0}$$

Thus by using norm definition, we have

$$\sup_{n,r\in\mathbb{N}}\sum_{r=0}^{k}\mathcal{M}\left(\frac{|A_{\lambda}(\Delta x^{s}-\Delta x^{t})|_{n+r}}{\|x^{s}-x^{t}\|_{A_{\lambda}(f)(\Delta, \mathcal{M})}(k+1)}\right) \leq 1, \forall s,t \geq n_{0} \text{ and } k \in \mathbb{N}$$
$$\sum_{r=0}^{k}\mathcal{M}\left(\frac{|A_{\lambda}(\Delta x^{s}-\Delta x^{t})|_{n+r}}{\|x^{s}-x^{t}\|_{A_{\lambda}(f)(\Delta, \mathcal{M})}(k+1)}\right) \leq 1, \forall n,r \in \mathbb{N} \text{ and } s,t \geq n_{0}, \ k \in \mathbb{N}$$

Choose q > 0 with $\mathcal{M}\left(\frac{\delta q}{2}\right) \ge 1$ so that

$$\sum_{r=0}^{k} \mathcal{M}\left(\frac{|A_{\lambda}(\Delta x^{s} - \Delta x^{t})|_{n+r}}{\|x^{s} - x^{t}\|_{A_{\lambda}(f)(\Delta, \mathcal{M})}(k+1)}\right) \leq \mathcal{M}\left(\frac{q\delta}{2}\right)$$

Since \mathcal{M} is non-decreasing and x_i^s is convergent in \mathbb{R} for each $i \in \mathbb{N}$. Let $\lim_{s\to\infty} x_i^s = x_i$ for each $i \in \mathbb{N}$. Using the continuity of Orlicz function \mathcal{M} and modulus, it yields that $(\Delta x^s - \Delta x) \in A_{\lambda}(f)(\Delta, \mathcal{M})$, it follows that $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$. \Box

Remark 2.3. Note that the absolute property on the sequence spaces $A_{\lambda}(f)(\Delta, \mathcal{M})$ and $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ is not true, i.e, $\|x\|_{A_{\lambda}(f)(\Delta, \mathcal{M})} \neq \||x|\|_{A_{\lambda}(f)(\Delta, \mathcal{M})}$ for at least one sequence in each of these spaces, and this means that the spaces $A_{\lambda}(f)(\Delta, \mathcal{M})$ and $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ are *BK*-spaces of non-absolute type.

Next, we discuss the following Theorem showing the isomorphism between the sequence spaces $A_{\lambda}(f)(\Delta, \mathcal{M}), A_{\lambda}(f_0)(\Delta, \mathcal{M})$ and f, f_0 respectively.

Theorem 2.4. The sequence space $A_{\lambda}(f)(\Delta, \mathcal{M})$ and $A_{\lambda}(f_0)(\Delta, \mathcal{M})$ of non-absolute type are linearly norm isomorphic to the spaces f and f_0 respectively.

Proof. We establish the result $A_{\lambda}(f)(\Delta, \mathcal{M}) \cong f$. The fact $A_{\lambda}(f_0)(\Delta, \mathcal{M}) \cong f_0$ can be proved in the similar lines.

We show the existence of a linear bijection between the space $A_{\lambda}(f)(\Delta, \mathcal{M})$ and f. The mapping P from $A_{\lambda}(f)(\Delta, \mathcal{M})$ to f by $x \to y = Px = A_{\lambda}(f)(\Delta, \mathcal{M})x$ is linear (by equation (2.4)). Further, $Px = \theta$ implies $x = \theta$.

Let $y = (y_r) \in f$ and the sequence $x = (x_r)$ defined as

$$\Delta x_r = \sum_{j=r-1}^r (-1)^{r-j} \frac{1}{\mathcal{M}} \left(\frac{\lambda_j - \lambda_{j-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \rho \Delta y_r \right) \quad \forall \ r \in \mathbb{N}$$

$$(2.5)$$

Then,

$$\sum_{r=0}^{n+j} \frac{\lambda_r - 2\lambda_{r-1} + \lambda_{k-2}}{\lambda_{n+j} - \lambda_{n+j-1}} \Delta x_r = \sum_{r=0}^{n+j} \sum_{j=r-1}^r (-1)^{r-j} \frac{1}{\mathcal{M}} \left(\frac{\lambda_j - \lambda_{j-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \rho \Delta y_r \right)$$
$$= \sum_{r=0}^{n+j} \frac{1}{\mathcal{M}} \left(\frac{(\lambda_r - \lambda_{k-1})\Delta y_r - (\lambda_{r-1} - \lambda_{r-2})\Delta y_{r-1}}{\lambda_{n+j} - \lambda_{n+j-1}} \rho \right)$$
$$= \frac{1}{\mathcal{M}} \rho \Delta y_{n+j}$$

Since, \mathcal{M} is continuous and for some $\rho > 0$, then

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{j=0}^{k} \sum_{r=0}^{n+j} \mathcal{M}\left(\frac{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}}{\rho(\lambda_{n+j} - \lambda_{n+j-1})}\right) \Delta x_r = \lim_{k \to \infty} \frac{1}{k+1} \sum_{j=0}^{k} \Delta y_{n+j}$$

and

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{j=0}^{k} \mathcal{M}\left(\frac{|A_{\lambda} \Delta x_r|_{n+j}}{\rho}\right) = f - \lim y_k = l \text{ uniformly in } m$$

This shows that $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$ and consequently P is surjective. Hence, P is a linear bijection. Also, by Theorem (2.2), P preserves the norm and then $A_{\lambda}(f)(\Delta \mathcal{M}) \approx f$. \Box

Theorem 2.5. As the Orlicz function \mathcal{M} which satisfy Δ_2 -condition. Then (a) $A_{\lambda}(f)(\Delta) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$ (b) $A_{\lambda}(f_0)(\Delta) \subset A_{\lambda}(f_0)(\Delta, \mathcal{M})$

Proof. (a) Let $x \in A_{\lambda}(f)(\Delta)$. Then \exists some C > 0 such that $|A_{\lambda}\Delta x|_{n+r} \leq C, \forall n, r$. Thus, for some $\rho > 0$

$$\mathcal{M}\left(\frac{|A_{\lambda}\Delta x|_{n+r}}{\rho}\right) \leq \mathcal{M}\left(\frac{C}{\rho}\right) \leq K.\ell\mathcal{M}(C), \text{ by } \Delta_2 - \text{condition.}$$

Hence

$$\sup_{n,k\in\mathbb{N}}\tau_{nk}\mathcal{M}\left(\frac{|A_{\lambda}\Delta x|_{n+r}}{\rho}\right)<\infty$$

This proves that $A_{\lambda}(f)(\Delta) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$. Proof of (b) follows similarly. \Box

Theorem 2.6. The inclusion $A_{\lambda}(f_0)(\Delta, \mathcal{M}) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$ strictly holds.

Proof. Take $x = (x_r) \in A_{\lambda}(f_0)(\Delta, \mathcal{M})$. Then $A_{\lambda}\Delta x \in f_0(\mathcal{M})$. Since $f_0 \subset f$, we have $A_{\lambda}\Delta x \in f(\mathcal{M})$, and hence $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$. Therefore the inclusion $A_{\lambda}(f_0)(\Delta, \mathcal{M}) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$ is strict. Next take the sequence $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$ as defined by $x = (\Delta x_r) = 1 \quad \forall r \in \mathbb{N}$. Then

$$\lim_{k \to \infty} \frac{1}{k+1} \sum_{j=0}^{k} \mathcal{M}\left(\frac{|A_{\lambda} \Delta x|_{n+r}}{\rho}\right) = 1 \neq 0.$$

Thus $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$ but not in $A_{\lambda}(f_0)(\Delta, \mathcal{M})$. Hence, the inclusion $A_{\lambda}(f_0)(\Delta, \mathcal{M}) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$ is strict. \Box

Theorem 2.7. The inclusions $A_{\lambda}(c)(\Delta, \mathcal{M}) \subset A_{\lambda}(f)(\Delta, \mathcal{M}) \subset A_{\lambda}(l_{\infty})(\Delta, \mathcal{M})$ strictly hold.

Proof. Consider the sequence $x \in A_{\lambda}(c)(\Delta, \mathcal{M})$, then $A_{\lambda}\Delta x \in c(\mathcal{M})$. Since $c \subset f$, we have $A_{\lambda}\Delta x \in f(\mathcal{M})$, that is, $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$. Therefore, $A_{\lambda}(c)(\Delta, \mathcal{M}) \subset A_{\lambda}(f)(\Delta, \mathcal{M})$. Now, take $y = (y_r) \in A_{\lambda}(f)(\Delta, \mathcal{M})$. Then $A_{\lambda}\Delta y \in f(\mathcal{M})$ and $f \subset l_{\infty}$, we obtain $A_{\lambda}\Delta y \in l_{\infty}(\mathcal{M})$. Hence $A_{\lambda}(f)(\Delta, \mathcal{M}) \subset A_{\lambda}(l_{\infty})(\Delta, \mathcal{M})$ holds. \Box

3 Kothe-duals of the space $A_{\lambda}(f)(\Delta, \mathcal{M})$

In this section the Kothe duals (α -, β - and γ -duals) of the space $A_{\lambda}(f)(\Delta, \mathcal{M})$ have been determined and studied thoroughly.

Lemma 3.1. [12] $A = (a_{nr}) \in (f : \ell_1)$ if and only if

$$\sup_{K,N\in\mathcal{F}} \left| \sum_{n\in N} \sum_{r\in K} a_{nr} \right| < \infty$$
(3.1)

Theorem 3.2. The α -dual of $A_{\lambda}(f)(\Delta, \mathcal{M})$ is the set $a_1(\lambda)$, where

$$a_1(\lambda) = \left\{ a = (a_r) \in w : \sum_{r=0}^k \frac{1}{\mathcal{M}} \left(\frac{\lambda_r - \lambda_{r-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho |\Delta a_r| < \infty \right\}$$
(3.2)

Proof. Define the matrix $B = (b_{nr})$ with the aid of a sequence $a = (a_r)$ as follows

$$b_{nr} = \begin{cases} (-1)^{n-r} \frac{1}{\mathcal{M}} \left(\frac{\lambda_r - \lambda_{r-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho \Delta a_r, & n-1 \le r \le n \\ 0, & 0 \le r \le n-1 \text{ or } r > n \end{cases}$$
(3.3)

Then $x = (x_n) \in A_{\lambda}(f)(\Delta, \mathcal{M})$, we have

$$a_r x_r = a_r \sum_{j=r-1}^r (-1)^{r-j} \frac{1}{\mathcal{M}} \left(\frac{\lambda_j - \lambda_{j-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho y_r = (By)_r, \ \forall r \in \mathbb{N}.$$
(3.4)

Therefore, $ax = (a_r x_r) \in \ell_1$ whenever $x \in A_{\lambda}(f)(\Delta, \mathcal{M})$ iff $By \in \ell_1$ whenever $y \in A_{\lambda}(f)(\Delta, \mathcal{M})$. This yields that $a \in \{A_{\lambda}(f)\}^{\alpha}$ iff $B \in (f : \ell_1)$. By Lemma (3.1) this is possible iff

$$\sup_{K,N\in\mathcal{F}} \left| \sum_{n\in N} \sum_{r\in K} b_{nr} \right| < \infty$$
(3.5)

It follows that equation (3.5) holds iff $\sum_{r} \frac{1}{\mathcal{M}} \left(\frac{\lambda_r - \lambda_{r-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho |a_r| < \infty$ which gives that $\{A_{\lambda}(f)(\Delta, \mathcal{M})\}^{\alpha} = a_1(\lambda)$.

Lemma 3.3. $A = (a_{nr}) \in (f : l_{\infty})$ iff

$$\sup_{n\in\mathbb{N}}\sum_{r}|a_{nr}|<\infty.$$
(3.6)

Theorem 3.4. The γ -dual of the space $A_{\lambda}(f)(\Delta, \mathcal{M})$ is the set $d_1 \cap d_2$, where

$$d_{1} = \left\{ a = (a_{r}) \in w : \sup_{n \in \mathbb{N}} \sum_{r=0}^{n-1} \left| \frac{1}{\mathcal{M}} \Delta \left(\frac{\rho a_{r}}{\lambda_{r} - 2\lambda_{r-1} + \lambda_{r-2}} \right) (\lambda_{r} - \lambda_{r-1}) \right| < \infty \right\}$$
$$d_{2} = \left\{ a = (a_{r}) \in w : \frac{1}{\mathcal{M}} \left(\frac{\lambda_{n} - \lambda_{n-1}}{\lambda_{n} - 2\lambda_{n-1} + \lambda_{n-2}} \rho a_{n} \right) \in \ell_{\infty} \right\}$$

Proof. Take $a = (a_r) \in w$ and considering the equality obtained with (2.5) between the sequences $x = (x_r)$ and $y = (y_r)$ that

$$\sum_{r=0}^{n} a_r x_r = \sum_{r=0}^{n} a_r \left[\sum_{j=r-1}^{r} (-1)^{r-j} \frac{1}{\mathcal{M}} \left(\frac{\lambda_j - \lambda_{j-1}}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho y_j \right]$$
$$= \sum_{r=0}^{n-1} \frac{1}{\mathcal{M}} \Delta \left(\frac{a_r}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) (\lambda_r - \lambda_{r-1}) \rho y_r + \frac{1}{\mathcal{M}} \left(\frac{\rho a_n (\lambda_n - \lambda_{n-1})}{\lambda_n - 2\lambda_{n-1} + \lambda_{n-2}} \right) y_n$$
$$= (By)n, \ \forall n \in \mathbb{N},$$
(3.7)

where, $B = (b_{nr})$ is defined as

$$b_{nr} = \begin{cases} \frac{1}{\mathcal{M}} \Delta \left(\frac{a_r}{\lambda_r - 2\lambda_{r-1} + \lambda_{r-2}} \right) \rho(\lambda_r - \lambda_{r-1}, & 0 \le r \le n-1 \\ \frac{1}{\mathcal{M}} \left(\frac{\rho a_n(\lambda_n - \lambda_{n-1})}{\lambda_n - 2\lambda_{n-1} - \lambda_{n-2}} \right), & r = n \\ 0, & r > n \end{cases}$$
(3.8)

 $\forall r, n \in \mathbb{N}$. Thus from (3.7), $ax = (a_r x_r) \in bs$ whenever $x = (x_r) \in A_{\lambda}(f)(\Delta, \mathcal{M})$ iff $By \in \ell_{\infty}$ whenever $y \in f$. Hence by Lemma (3.3) that $\{A_{\lambda}(f)(\Delta, \mathcal{M})\}^{\gamma} = d_1 \cap d_2$. \Box

Lemma 3.5. [11] $A = (a_{nr}) \in (f : c)$ iff equation (3.6) holds and there are $\beta_r, \beta \in \mathbb{C}$ such that

$$\lim_{n \to \infty} a_{nr} = \beta_r \text{ for all } r \in \mathbb{N}$$
(3.9)

$$\lim_{n \to \infty} \sum_{r} a_{nr} = \beta \tag{3.10}$$

and

$$\lim_{n \to \infty} \sum_{r} |\Delta(a_{nr} - \beta_r)| = 0.$$
(3.11)

Theorem 3.6. Define the sets d_3, d_4 and d_5 as follows:

$$d_{3} = \left\{ a = (a_{r}) \in w : \frac{1}{\mathcal{M}} \left(\frac{\rho a_{r}}{\lambda_{r} - 2\lambda_{r-1} + \lambda_{r-1}} (\lambda_{r} - \lambda_{r-1}) \right) \in c \right\},$$

$$d_{4} = \left\{ a = (a_{r}) \in w : \lim_{n \to \infty} \sum_{r=0}^{n-1} \frac{1}{\mathcal{M}} \Delta \left(\frac{\rho a_{r}}{\lambda_{r} - 2\lambda_{r-1} + \lambda_{r-2}} \right) (\lambda_{r} - \lambda_{r-1}) \text{ exists} \right\},$$

$$d_{5} = \left\{ a = (a_{r}) \in w : \left\{ \left| \Delta' \left[\frac{1}{\mathcal{M}} \Delta \left(\frac{\rho a_{r}}{\lambda_{r} - 2\lambda_{r-1} + \lambda_{r-2}} \right) (\lambda_{r} - \lambda_{r-1}) \right] \right| \right\} \in cs \right\}.$$

Then, $\{A_{\lambda}(f)(\Delta, \mathcal{M})\}^{\beta} = \bigcap_{i=1}^{5} d_{i}.$

Proof. Take any $a = (a_r) \in w$. From equation (3.7) that $ax = (a_rx_r) \in cs$ whenever $x = (x_r) \in A_{\lambda}(f)(\Delta, \mathcal{M})$ iff $By \in c$ whenever $y = (y_r) \in f$, that is $(a_r) \in \{A_{\lambda}(f)(\Delta, \mathcal{M})\}^{\beta}$ iff $B \in (f : c)$. Therefore, by Lemma (3.5), we have $\{A_{\lambda}(f)(\Delta, \mathcal{M})\}^{\beta} = \bigcap_{i=1}^{5} d_i$. \Box

References

- B. Altay, On the spaces of p-summable difference sequences of order m, (1 ≤ p < ∞), Stud. Sci. Math. Hung. 43 (2006), no. 4, 387–402.
- [2] B. Altay, F. Basar, The matrix domain and the fine spectrum of the difference operator Δ on the sequence space l_p , (0 , Commun. Math. Anal. 2 (2007), no. 2, 1–11.
- [3] F. Basar and B. Altay, On the spaces of the sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), no. 1, 136–147.
- [4] R. Colak and M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J. 26 (1997), no. 3, 483–492.
- [5] R. Colak, M. Et and E. Malkowsky, Some topics of sequence spaces, Lectures Notes in Mathematics, Firat Univ. Press, Turkey, 2004.
- [6] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), no. 2, 169–176.
- [7] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. Soc. 10 (1971), 345–355.
- [8] G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.
- [9] M. Mursaleen and A.K. Noman, On the spaces of λ-Convergent and bounded sequences, Thai. J. Math. 8 (2010), no. 2, 311–329.

- [10] H. Polat and F. Basar, Some Euler spaces of difference sequences of order m, Acta. Math. Sci. 27B (2007), no. 2, 254–266.
- [11] J.A. Siddiqi, Infinite matrices summing every almost periodic sequences, Pac. J. Math. 39 (1971), no. 1, 235–251.
- [12] M. Stieglitz and H. Tietz, Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154 (1977), no. 1, 1–16.