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Abstract

The idea of almost convergent sequence was introduced by G. G. Lorentz [8]. In this paper, some new generalized
sequence spaces on Aλ-almost null and Aλ-almost convergent sequences by Orlicz function are introduced and ex-
tended them to the paranormed sequence spaces. Some inclusion relation has also been established between the new
spaces. In addition, the α-, β- and γ-duals of these spaces, and the characterization of (Aλ(f)(∆,M, q) : ν) and
(ν : Aλ(f)(∆,M, q)) of infinite matrices are also given.
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1 Introduction

Throughout this paper, the set of all complex sequences will be denoted by ω. The notations ℓ∞, c and c0 and
ℓp (1 ≤ p < ∞) are used for the sequences spaces of all bounded, convergent, null and absolutely p-summable sequences,
respectively.

Furthermore, we denote ℓ1, bs and cs for sequence spaces of all absolutely convergent series, bounded series, and
convergent series respectively.

A K-space on any sequence space E with linear topology is defined as a map qr : E → C, where C denote the set
of complex field and N = {0, 1, 2, ...} such that qr(x) = xr is continuous ∀ r ∈ N. A complete linear metric K-space
is called an FK -space. An FK-space is called a BK -space whose topology is normable. The spaces ℓ∞, c and c0 are
BK-spaces endowed with the sup-norm as ∥x∥∞ = supr∈N |xr|. (for details cf. [6, 9]).

The shift operator D on w is defined by (Dx)n = xn+1 ∀ n ∈ N . A Banach limit F is defined as a non negative
linear functional on ℓ∞ such that F (Dx) = F (x) and F (e) = 1. A sequence (xr) is said to be almost convergent to
the generalized limit ξ if all Banach limits of x are equal to ξ, and is denoted by f − limxr = ξ. Lorentz [8] proved

the criterion for almost convergence, that is, f − limxr = ξ iff limk→∞
∑k

r=0
xn+r

k+1 = ξ uniformly in n.
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The notations f0 and f are used to define the spaces of all almost null & almost convergent sequences as follows:

f0 =

{
x = (xr) ∈ w : lim

k→∞

1

k + 1

k∑
r=0

xn+r = 0 uniformly in n

}

f =

{
x = (xr) ∈ w : lim

k→∞

1

k + 1

k∑
r=0

xn+r = l uniformly in n

}

Definition 1.1 (Matrix Transformation). [4] Let U and V be two given sequence spaces and A = (anr) is an
infinite matrix of real entries. Then the function A : U → V defined a matrix transformation between two sequence
spaces, U and V as

(Ax)n =
∑
r

anrxr (1.1)

provided the series on the right hand side of (1.1) is convergent for each n ∈ N. We call Ax as A-transformation of
sequence x. By (U : V ), we shall denote the collection of all infinite matrices from U into V .

Here, and in what follows, the summation without limits runs from 0 to ∞.

Further the notion
UA = {x = (xr) ∈ w : Ax ∈ U}. (1.2)

is called the matrix domain A in a sequence space U , which itself is a sequence space.

In this work we continue to study the spaces of difference sequence and also the concept of all almost null & all
almost convergent sequences by using the matrix transformations Aλ, where λ = (λr) is strictly increasing sequence.

For two arbitrary sequence spaces U and V . Define the set

S(U, V ) = {a = (ar) ∈ w : xa = (xrar) ∈ V ∀ x ∈ U}

is called the multiplier space of the spaces U and V . The α−, β− and γ−duals of subset U ⊂ ω, are defined as

Uα = S(U, l1), Uβ = S(U, cs), Uγ = S(U, bs)

2 Aλ-almost null and Aλ-almost convergent sequence spaces

Throughout this paper, let λ = (λr) is a strictly increasing sequence of positive reals tending to infinity, that is,
0 < λ0 < λ1 < λ2 < ...... and limr→∞ λr = ∞.
We introduce the matrix Aλ = {anr(λ)} by

anr(λ) =

{
λr−2λr−1+λr−2

λn−λn−1
, 0 ≤ r ≤ n

0, r > n
(2.1)

for all r, n ∈ N.
Take (∆xr) ∈ w and n ≥ 1. Then (2.1) gives by a short calculation that

∆xn − (Aλ∆x)n =
1

λn − λn−1

n∑
r=0

(λr − 2λr−1 + λr−2)(∆xn −∆xr)

=
1

λn − λn−1

n−1∑
r=0

(λr − 2λr−1 + λr−2)(∆xn −∆xr)

=
1

λn − λn−1

n−1∑
r=0

(λr − 2λr−1 + λr−2)

n∑
i=r+1

(∆xi −∆xi−1)

=
1

λn − λn−1

n∑
i=1

(∆xi −∆xi−1)

i−1∑
r=0

(λr − 2λr−1 + λr−2)

=
1

λn − λn−1

n∑
i=1

(λi−1 − λi−2)(∆xi −∆xi−1)
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Thus for every (∆xr) ∈ w, we have

∆xn − (Aλ∆x)n = (Λ∆x)n ∀ n ∈ N (2.2)

where Λ∆x = (Λ∆x)n is as follows

(Λ∆x)n =

{
1

λn−λn−1

∑n
r=1(λr−1 − λr−2)(∆xr −∆xr−1), n ≥ 1

0, n = 0

Moreover we have the following result:

Theorem 2.1. Suppose f -lim∆xn = ξ for ∆xn ∈ w and ξ ∈ C. Then f -lim(Aλ∆x)n = ξ holds if and only if
Λ∆x ∈ f0.

Proof . First consider that f -lim∆xn = f -lim(Aλ∆x)n = ξ. Then, from equation (2.2), the equality

1

k + 1

k∑
r=0

[∆xn+r − (Aλ∆x)n+r] =
1

k + 1

k∑
r=0

(Λ∆x)n+r (2.3)

holds for all n, r ∈ N. Thus by passing k → ∞ uniformly in n, the left hand side of equation (2.3) approach to zero
which yields that

lim
k→∞

1

k + 1

k∑
r=0

(Λ∆x)n+r = 0, uniformly in n.

Therefore, Λ∆x ∈ f0.

On the contrary suppose that Λ∆x ∈ f0 and take f - lim
n→∞

∆xn = ξ.

By taking limit in the equality (2.3), we obtain

lim
k→∞

1

k + 1

k∑
r=0

[∆xn+r − (Aλ∆x)n+r] = 0

This yields that

lim
k→∞

1

k + 1

k∑
r=0

∆xn+r = lim
k→∞

1

k + 1

k∑
r=0

(Aλ∆x)n+r = ξ.

Hence the result □

We approach on the construction of new sequence spaces Aλ(f0)(∆,M) and Aλ(f)(∆,M) of all Aλ-almost null
& Aλ-almost convergent sequences by means of difference sequence and Orlicz function M, [3]. In [7], Lindenstrauss
and Tzafriri introduced a sequence space lM which consist of an Orlicz function M as follows,

ℓM =

{
x ∈ w :

∞∑
r=1

M
(
|xr|
ρ

)
< ∞, for some ρ > 0

}
The Orlicz sequence space ℓM under the norm

∥x∥ = inf

{
ρ > 0 :

∞∑
r=1

M
(
|xr|
ρ

)
≤ 1

}
is a Banach space which is called an Orlicz sequence space.

We define the spaces Aλ(f0)(∆,M) and Aλ(f)(∆,M), as the set of all Aλ-almost null & Aλ-almost convergent
sequences of complex numbers, respectively as follows:

Aλ(f0)(∆,M) =

{
(xr) ∈ w : lim

k→∞

1

k + 1

k∑
r=0

M
(
|Aλ∆x|n+r

ρ

)
= 0, uniformly inn, ρ > 0

}

Aλ(f)(∆,M) =

{
(xr) ∈ w : lim

k→∞

1

k + 1

k∑
r=0

M
(
|Aλ∆x|n+r

ρ

)
= l, uniformly inn, ρ > 0

}
.
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With notation of (1.2) the spaces Aλ(f0)(∆,M) and Aλ(f)(∆,M) can redefine as the matrix domain of triangle
Aλ in the spaces f0 and f , respectively.

Throughout the text, y = (yr) = (∆yr) will be used as the Aλ-transform of a sequence x = (xr) = (∆xr), that is,

(yr) = (Aλx)n =
1

λn − λn−1

n∑
r=0

M
(
λr − 2λr−1 + λr−2

ρ
∆xr

)
(2.4)

for all n ∈ N.

Theorem 2.2. The sequence space Aλ(f)(∆,M) is a Banach- spaces under the norm defined as

∥x∥Aλ(f)(∆, M) = ∥Aλx∥f(∆, M) = inf

{
ρ > 0 : sup

k,n∈N
τnkM

( |Aλ∆x|n+r

ρ

)
≤ 1

}
.

where τnkM
(
Aλ∆x

ρ

)
=

1

k + 1

k∑
r=0

M
(

(Aλ∆x)n+r

ρ

)
.

Proof . Let {xs} be any Cauchy sequence in Aλ(f)(∆,M), where xs
k = (xs

1, x
s
2, x

s
3, ....) ∈ Aλ(f)(∆,M) for all s ∈ N.

Let δ be fixed and q > 0, then ∃ a positive integer n0 such that∥∥xs − xt
∥∥
Aλ(f)(∆, M)

<
ϵ

δq
,∀ s, t ≥ n0

Thus by using norm definition, we have

sup
n,r∈N

k∑
r=0

M

(
|Aλ(∆xs −∆xt)|n+r

∥xs − xt∥Aλ(f)(∆, M) (k + 1)

)
≤ 1,∀ s, t ≥ n0 and k ∈ N

k∑
r=0

M

(
|Aλ(∆xs −∆xt)|n+r

∥xs − xt∥Aλ(f)(∆, M) (k + 1)

)
≤ 1,∀ n, r ∈ N and s, t ≥ n0, k ∈ N

Choose q > 0 with M
(

δq
2

)
≥ 1 so that

k∑
r=0

M

(
|Aλ(∆xs −∆xt)|n+r

∥xs − xt∥Aλ(f)(∆, M) (k + 1)

)
≤ M

(
qδ

2

)
Since M is non-decreasing and xs

i is convergent in R for each i ∈ N. Let lims→∞ xs
i = xi for each i ∈ N. Using

the continuity of Orlicz function M and modulus, it yields that (∆xs − ∆x) ∈ Aλ(f)(∆,M), it follows that x ∈
Aλ(f)(∆,M). □

Remark 2.3. Note that the absolute property on the sequence spaces Aλ(f)(∆,M) and Aλ(f0)(∆,M) is not true,
i.e, ∥x∥Aλ(f)(∆,M) ̸= ∥ |x| ∥Aλ(f)(∆,M) for at least one sequence in each of these spaces, and this means that the spaces
Aλ(f)(∆,M) and Aλ(f0)(∆,M) are BK-spaces of non-absolute type.

Next, we discuss the following Theorem showing the isomorphism between the sequence spacesAλ(f)(∆,M), Aλ(f0)(∆,M)
and f , f0 respectively.

Theorem 2.4. The sequence space Aλ(f)(∆,M) and Aλ(f0)(∆,M) of non-absolute type are linearly norm isomor-
phic to the spaces f and f0 respectively.

Proof . We establish the result Aλ(f)(∆,M) ∼= f . The fact Aλ(f0)(∆,M) ∼= f0 can be proved in the similar lines.

We show the existence of a linear bijection between the space Aλ(f)(∆,M) and f . The mapping P from
Aλ(f)(∆,M) to f by x → y = Px = Aλ(f)(∆,M)x is linear (by equation (2.4)). Further, Px = θ implies x = θ.

Let y = (yr) ∈ f and the sequence x = (xr) defined as
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∆xr =

r∑
j=r−1

(−1)r−j 1

M

(
λj − λj−1

λr − 2λr−1 + λr−2
ρ∆yr

)
∀ r ∈ N (2.5)

Then,

n+j∑
r=0

λr − 2λr−1 + λk−2

λn+j − λn+j−1
∆xr =

n+j∑
r=0

r∑
j=r−1

(−1)r−j 1

M

(
λj − λj−1

λr − 2λr−1 + λr−2
ρ∆yr

)

=

n+j∑
r=0

1

M

(
(λr − λk−1)∆yr − (λr−1 − λr−2)∆yr−1

λn+j − λn+j−1
ρ

)
=

1

M
ρ∆yn+j

Since, M is continuous and for some ρ > 0, then

lim
k→∞

1

k + 1

k∑
j=0

n+j∑
r=0

M
(
λr − 2λr−1 + λr−2

ρ(λn+j − λn+j−1)

)
∆xr = lim

k→∞

1

k + 1

k∑
j=0

∆yn+j

and

lim
k→∞

1

k + 1

k∑
j=0

M
(
|Aλ∆xr|n+j

ρ

)
= f − lim yk = l uniformly in n.

This shows that x ∈ Aλ(f)(∆,M) and consequently P is surjective. Hence, P is a linear bijection. Also, by Theorem
(2.2), P preserves the norm and then Aλ(f)(∆M) ≈ f . □

Theorem 2.5. As the Orlicz function M which satisfy ∆2-condition. Then
(a) Aλ(f)(∆) ⊂ Aλ(f)(∆,M)
(b) Aλ(f0)(∆) ⊂ Aλ(f0)(∆,M)

Proof . (a) Let x ∈ Aλ(f)(∆). Then ∃ some C > 0 such that |Aλ∆x|n+r ≤ C, ∀ n, r. Thus, for some ρ > 0

M
(
|Aλ∆x|n+r

ρ

)
≤ M

(
C

ρ

)
≤ K.ℓM(C), by ∆2 − condition.

Hence

sup
n,k∈N

τnkM
(
|Aλ∆x|n+r

ρ

)
< ∞

This proves that Aλ(f)(∆) ⊂ Aλ(f)(∆,M). Proof of (b) follows similarly. □

Theorem 2.6. The inclusion Aλ(f0)(∆,M) ⊂ Aλ(f)(∆,M) strictly holds.

Proof . Take x = (xr) ∈ Aλ(f0)(∆,M). Then Aλ∆x ∈ f0(M). Since f0 ⊂ f , we have Aλ∆x ∈ f(M), and hence
x ∈ Aλ(f)(∆,M). Therefore the inclusion Aλ(f0)(∆,M) ⊂ Aλ(f)(∆,M) is strict.
Next take the sequence x ∈ Aλ(f)(∆,M) as defined by x = (∆xr) = 1 ∀r ∈ N. Then

lim
k→∞

1

k + 1

k∑
j=0

M
(
|Aλ∆x|n+r

ρ

)
= 1 ̸= 0.

Thus x ∈ Aλ(f)(∆,M) but not in Aλ(f0)(∆,M). Hence, the inclusion Aλ(f0)(∆,M) ⊂ Aλ(f)(∆,M) is strict. □

Theorem 2.7. The inclusions Aλ(c)(∆,M) ⊂ Aλ(f)(∆,M) ⊂ Aλ(l∞)(∆,M) strictly hold.

Proof . Consider the sequence x ∈ Aλ(c)(∆,M), then Aλ∆x ∈ c(M). Since c ⊂ f , we have Aλ∆x ∈ f(M),
that is, x ∈ Aλ(f)(∆,M). Therefore, Aλ(c)(∆,M) ⊂ Aλ(f)(∆,M). Now, take y = (yr) ∈ Aλ(f)(∆,M). Then
Aλ∆y ∈ f(M) and f ⊂ l∞, we obtain Aλ∆y ∈ l∞(M). Hence Aλ(f)(∆,M) ⊂ Aλ(l∞)(∆,M) holds. □
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3 Kothe-duals of the space Aλ(f)(∆,M)

In this section the Kothe duals (α-, β- and γ-duals) of the space Aλ(f)(∆,M) have been dteremined and studied
thoroughly.

Lemma 3.1. [12] A = (anr) ∈ (f : ℓ1) if and only if

sup
K,N∈F

∣∣∣∣∣∑
n∈N

∑
r∈K

anr

∣∣∣∣∣ < ∞ (3.1)

Theorem 3.2. The α-dual of Aλ(f)(∆,M) is the set a1(λ), where

a1(λ) =

{
a = (ar) ∈ w :

k∑
r=0

1

M

(
λr − λr−1

λr − 2λr−1 + λr−2

)
ρ|∆ar| < ∞

}
(3.2)

Proof . Define the matrix B = (bnr) with the aid of a sequence a = (ar) as follows

bnr =

{
(−1)n−r 1

M

(
λr−λr−1

λr−2λr−1+λr−2

)
ρ∆ar, n− 1 ≤ r ≤ n

0, 0 ≤ r ≤ n− 1 or r > n
(3.3)

Then x = (xn) ∈ Aλ(f)(∆,M), we have

arxr = ar

r∑
j=r−1

(−1)r−j 1

M

(
λj − λj−1

λr − 2λr−1 + λr−2

)
ρyr = (By)r, ∀r ∈ N. (3.4)

Therefore, ax = (arxr) ∈ ℓ1 whenever x ∈ Aλ(f)(∆,M) iff By ∈ ℓ1 whenever y ∈ Aλ(f)(∆,M). This yields that
a ∈ {Aλ(f)}α iff B ∈ (f : ℓ1). By Lemma (3.1) this is possible iff

sup
K,N∈F

∣∣∣∣∣∑
n∈N

∑
r∈K

bnr

∣∣∣∣∣ < ∞ (3.5)

It follows that equation (3.5) holds iff
∑

r
1
M

(
λr−λr−1

λr−2λr−1+λr−2

)
ρ|ar| < ∞ which gives that {Aλ(f)(∆,M)}α = a1(λ).

□

Lemma 3.3. A = (anr) ∈ (f : l∞) iff

sup
n∈N

∑
r

|anr| < ∞. (3.6)

Theorem 3.4. The γ-dual of the space Aλ(f)(∆,M) is the set d1 ∩ d2, where

d1 =

{
a = (ar) ∈ w : sup

n∈N

n−1∑
r=0

∣∣∣∣ 1M∆

(
ρar

λr − 2λr−1 + λr−2

)
(λr − λr−1)

∣∣∣∣ < ∞

}

d2 =

{
a = (ar) ∈ w :

1

M

(
λn − λn−1

λn − 2λn−1 + λn−2
ρan

)
∈ ℓ∞

}
Proof . Take a = (ar) ∈ w and considering the equality obtained with (2.5) between the sequences x = (xr) and
y = (yr) that

n∑
r=0

arxr =

n∑
r=0

ar

 r∑
j=r−1

(−1)r−j 1

M

(
λj − λj−1

λr − 2λr−1 + λr−2

)
ρyj


=

n−1∑
r=0

1

M
∆

(
ar

λr − 2λr−1 + λr−2

)
(λr − λr−1)ρyr +

1

M

(
ρan(λn − λn−1)

λn − 2λn−1 + λn−2

)
yn

= (By)n, ∀n ∈ N, (3.7)
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where, B = (bnr) is defined as

bnr =


1
M∆

(
ar

λr−2λr−1+λr−2

)
ρ(λr − λr−1, 0 ≤ r ≤ n− 1

1
M

(
ρan(λn−λn−1)

λn−2λn−1−λn−2

)
, r = n

0, r > n

(3.8)

∀ r, n ∈ N. Thus from (3.7), ax = (arxr) ∈ bs whenever x = (xr) ∈ Aλ(f)(∆,M) iff By ∈ ℓ∞ whenever y ∈ f . Hence
by Lemma (3.3) that {Aλ(f)(∆,M)}γ = d1 ∩ d2. □

Lemma 3.5. [11] A = (anr) ∈ (f : c) iff equation (3.6) holds and there are βr, β ∈ C such that

lim
n→∞

anr = βr for all r ∈ N (3.9)

lim
n→∞

∑
r

anr = β (3.10)

and
lim

n→∞

∑
r

|∆(anr − βr)| = 0. (3.11)

Theorem 3.6. Define the sets d3, d4 and d5 as follows:

d3 =

{
a = (ar) ∈ w :

1

M

(
ρar

λr − 2λr−1 + λr−1
(λr − λr−1)

)
∈ c

}
,

d4 =

{
a = (ar) ∈ w : lim

n→∞

n−1∑
r=0

1

M
∆

(
ρar

λr − 2λr−1 + λr−2

)
(λr − λr−1) exists

}
,

d5 =

{
a = (ar) ∈ w :

{∣∣∣∣∆′
[
1

M
∆

(
ρar

λr − 2λr−1 + λr−2

)
(λr − λr−1)

]∣∣∣∣} ∈ cs

}
.

Then, {Aλ(f)(∆,M)}β = ∩5
i=1di.

Proof . Take any a = (ar) ∈ w. From equation (3.7) that ax = (arxr) ∈ cs whenever x = (xr) ∈ Aλ(f)(∆,M) iff
By ∈ c whenever y = (yr) ∈ f , that is (ar) ∈ {Aλ(f)(∆,M)}β iff B ∈ (f : c). Therefore, by Lemma (3.5), we have
{Aλ(f)(∆,M)}β = ∩5

i=1di. □
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