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Abstract

In this work, we investigate the inverse problem for differential pencils with spectral boundary conditions having jump
conditions on (0, 1). Taking the Weyl function technique, we prove a uniqueness theorem from the interior spectral
data.
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1 Introduction

Consider the boundary value problem L = L(p, q, h0, h1, H0, H1, α, β) defined by the differential pencil

y′′(x) + (ρ2 − 2ρp(x)− q(x))y(x) = 0, x ∈ (0, 1), (1.1)

subject to boundary conditions

U(y) := y′(0)− (h1ρ+ h0)y(0) = 0, V (y) := y′(1) + (H1ρ+H0)y(1) = 0, (1.2)

and jump conditions

y

(
1

2
+ 0, ρ

)
= αy

(
1

2
− 0, ρ

)
, y′

(
1

2
+ 0, ρ

)
= α−1y′

(
1

2
− 0, ρ

)
+ βy

(
1

2
− 0, ρ

)
, (1.3)

and the boundary value problem L̃ := L(p̃, q̃, h̃0, h̃1, H̃0, H̃1, α, β) defined by the differential pencil

y′′(x) + (ρ2 − 2ρp̃(x)− q̃(x))y(x) = 0, x ∈ (0, 1), (1.4)

with boundary conditions

Ũ(y) := y′(0)− (h̃1ρ+ h̃0)y(0) = 0, Ṽ (y) := y′(1) + (H̃1ρ+ H̃0)y(1) = 0, (1.5)
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and jump conditions (1.3). The potentials p(x), q(x), p̃(x) and q̃(x) have complex values, and p, p̃ ∈ W 1
2 (0, 1) and

q, q̃ ∈ W 0
2 (0, 1). The parameters h0, h1, H0, H1, h̃0, h̃1, H̃0, H̃1, α and β have complex values and the parameter

ρ is spectral. Furthermore the coefficients h1, h̃1, H1, H̃1 ̸= ±i and α ̸= 0.

Inverse spectral problems have many applications in various branches of sciences such as mathematics, physics,
engineering, etc [10, 11, 18, 21]. Inverse problems for differential operators consist in reconstructing operators and
boundary conditions from their spectral data. Direct and inverse problems for differential equations without disconti-
nuity have been investigated in [3, 5, 7, 9, 22]. Discontinuous inverse problems for differential operators have also been
studied in some papers [8, 13, 15, 16]. Interior inverse problems have first been established by Mochizuki and Trooshin
[12] and the function q(x) for the Sturm-Liouville operator was determined by a set of values on eigenfunctions at
some internal points and some spectra. Later, Wang gave some uniqueness theorems for Sturm-Liouville equations by
the Mochizuki-Trooshin type theorem using properties of the eigenfunctions and eigenvalues and the Weyl function
technique [16, 17, 18, 19]. By using the method of spectral mappings, many researchers have also studied the inverse
problem for Sturm-Liouville equations from the Weyl function [7, 8, 21, 22]. As far as we know, interior inverse
problems for L taking the Weyl function have not been studied yet. Therefore, we consider the inverse problem for
discontinuous differential pencils with boundary conditions dependent on the spectrum on (0, 1). By extending the
Mochizuki-Trooshin type theorem and the result of Ref. [2], we show that the potentials p(x), q(x) and the boundary
conditions are uniquely established using one spectrum and a set of values of eigenfunctions in an interior point x = 1

2 .

This paper is organized as follows. In Sec. 2, we present some preliminaries for L. In Sec. 3, we establish the
main result of this article. The technique used has been based on the Mochizuki-Trooshin type theorem and the Weyl
function technique which is a combined method in the inverse problem theory.

2 Preliminaries

Consider φ(x, ρ) and ψ(x, ρ) as the solution of (1.1) under the initial conditions

φ(0, ρ) = ψ(1, ρ) = 1, φ′(0, ρ) = h1ρ+ h0, ψ
′(1, ρ) = −H1ρ−H0. (2.1)

For any fixed x, the functions φ(v)(x, ρ) and ψ(v)(x, ρ), v = 0, 1 are entire in ρ. From [1, 14, 20], we have the following
formulae for sufficiently large ρ,

φ(x, ρ) =
√
1 + h21 cos(κ0 − (ρx− P(x))) +O

(
1

ρ
exp(|ℑρ|x)

)
, x <

1

2
, (2.2)

φ(x, ρ) =
√
1 + h21

(
α+ cos(κ0 − (ρx− P(x))) + α− cos(κ0 − (ρ(1− x) + P(x)− P(1)))

)
+O

(
1

ρ
exp(|ℑρ|x)

)
, x >

1

2
, (2.3)

where P(x) =
∫ x

0
p(t)dt, κ0 = 1

2i ln
i−h1

i+h1
and α± = 1

2 (α± α−1).
Denote ∆(ρ) = −V (φ) = U(ψ), and is called the characteristic function of L. The roots of this entire function

coincide with the eigenvalues of L [6]. Now taking (2.3), we can get the asymptotic formula for the characteristic
function of the following form as large enough ρ,

∆(ρ) = ∆0(ρ) +O (exp (|ℑρ|)) , (2.4)

where

∆0(ρ) = ρ
√
(1 + h21)(1 +H2

1 )
(
α+ sin(ρ− P(1)− (κ0 + κ1)) + α− sin(κ0 − κ1)

)
,

in which κ1 = 1
2i ln

i−H1

i+H1
.

Here we recall the following lemma which helps us to give the eigenvalues.

Lemma 2.1. [23] Let {αi}pi=1 be the set of real numbers satisfying the inequalities α0 > α1 > ... > αp−1 > 0 and
{βi}pi=1 be the set of complex numbers. If βp ̸= 0 then the roots of the equation eα0λ+β1e

α1λ+...+βp−1e
αp−1λ+βp = 0

have the form λn = 2nπi
α0

+ h(n) for any n, where h(n) is a bounded sequence.
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Consider ρn as zeros of the characteristic function ∆(ρ). By the well known method in [6], it is trivial that
|∆0(ρ)| ≥ |∆(ρ)−∆0(ρ)|. So according to the Rouche theorem [4] and Lemma 2.1, we can see the following roots as
sufficiently large n,

ρn = nπ + κ1 + κ0 + P(1) +O(n−1). (2.5)

Set Gδ := {ρ; | ρ − ρn |≥ δ, ∀n}, for a fixed small δ > 0. By taking the known method [6], we hold the following
estimate for large enough ρ,

|∆(ρ)| ≥ Cδ|ρ| exp(|ℑρ|), (2.6)

where Cδ is a positive constant. Put the meromorphic function M(ρ) of the form

M(ρ) =
ψ(0, ρ)

∆(ρ)
, (2.7)

which is called the Weyl function of L. This function is a main tool to solve the inverse problem.

By virtue of Ref. [2], we have the following lemma which is important to prove the uniqueness theorem.

Lemma 2.2. Let M(ρ) be the Weyl function of the boundary value problem (1.1)-(1.3) and M̃(ρ) be the Weyl

function of the same boundary value problem with tilde. If M(ρ) = M̃(ρ), then p(x) = p̃(x) and q(x) = q̃(x) a.e. on

(0, 1), and h0 = h̃0, h1 = h̃1, H0 = H̃0 and H1 = H̃1. In other words, the Weyl function M(ρ) uniquely determines
the boundary conditions as well as the potentials p(x) and q(x) a.e. on (0, 1).

3 Main result

In this section, we state the uniqueness theorem and prove it by taking the Mochizuki-Trooshin type theorem and
the Weyl function technique. We note that ρn and yn(x, ρ) are the eigenvalues and the corresponding eigenfunctions
of the boundary value problem L, respectively.

Theorem 3.1. If coefficients h0 and h1 of the first boundary condition are prescribed a priori and for each n,

ρn = ρ̃n, < yn, ỹn >x= 1
2
= 0.

Then p(x) = p̃(x) and q(x) = q̃(x) a.e. on (0, 1) and

H0 = H̃0, H1 = H̃1.

Proof . Consider y(x, ρ) as the solution of the equation (1.1) satisfying the initial conditions y(1, ρ) = 1 and
y′(1, ρ) = −H1ρ−H0 and also ỹ(x, ρ) as the solution to the equation (1.4) under the initial conditions ỹ(1, ρ) = 1 and

ỹ′(1, ρ) = −H̃1ρ− H̃0. Multiplying (1.1) by ỹ(x, ρ) and (1.4) by y(x, ρ), and subtracting, we infer that(
2ρP (x) +Q(x)

)
y(x, ρ)ỹ(x, ρ) = y′′(x, ρ)ỹ(x, ρ)− y(x, ρ)ỹ′′(x, ρ),

where P (x) = p(x)− p̃(x) and Q(x) = q(x)− q̃(x). Integrating the above relation on
(
1
2 , 1

)
, one gets∫ 1

1
2

(
2ρP (x) +Q(x)

)
y(x, ρ)ỹ(x, ρ)dx = (y′(x, ρ)ỹ(x, ρ)− y(x, ρ)ỹ′(x, ρ))|11

2
.

Taking the initial conditions at x = 1, we have∫ 1

1
2

(
2ρP (x) +Q(x)

)
y(x, ρ)ỹ(x, ρ)dx = (H̃1 −H1)ρ+ (H̃0 −H0)−G

(
1

2
, ρ

)
,

where

G(x, ρ) = y′(x, ρ)ỹ(x, ρ)− y(x, ρ)ỹ′(x, ρ).
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Therefore

G

(
1

2
, ρ

)
= (H̃1 −H1)ρ+ (H̃0 −H0)−

∫ 1

1
2

(
2ρP (x) +Q(x)

)
y(x, ρ)ỹ(x, ρ)dx. (3.1)

Using the hypothesis of the theorem, it is clear that G
(
1
2 , ρn

)
= 0. It is sufficient to show that G

(
1
2 , ρ

)
= 0 for

ρ ̸= ρn.
From [17], we hold for enough large ρ and x > 1

2 ,

y(x, ρ) =
√
1 +H2

1 cos(ρ(1− x) + P(x)− P(1)− κ1) +O

(
1

ρ
exp(|ℑρ|(1− x))

)
. (3.2)

Because
|cos(ρ(1− x))| ≤ exp(|ℑρ|(1− x)), |sin(ρ(1− x))| ≤ exp(|ℑρ|(1− x)),

the formula (3.2) results that

|y(x, ρ)ỹ(x, ρ)| ≤ C0 exp(2|ℑρ|(1− x)), x >
1

2
, (3.3)

for a constant C0 > 0. Therefore for enough large ρ,∣∣∣∣G(
1

2
, ρ

)∣∣∣∣ ≤ (C1|ρ|+ C2) exp(|ℑρ|), (3.4)

for constants C1, C2 > 0. Put the meromorphic function

ϕ(ρ) :=
G
(
1
2 , ρ

)
∆(ρ)

. (3.5)

Together with (2.6) and (3.4), this yields that ϕ(ρ) = O(1). From this and Liouville’s theorem [4], we give that
ϕ(ρ) = C for all ρ. To get that C = 0, we rewrite (3.5) as G

(
1
2 , ρ

)
= C∆(ρ). So

(H̃1 −H1)ρ+ (H̃0 −H0)−
∫ 1

1
2

(
2ρP (x) +Q(x)

)
y(x, ρ)ỹ(x, ρ)dx

= Cρ
√
(1 + h21)(1 +H2

1 )
(
α+ sin(ρ− P(1)− (κ0 + κ1)) + α− sin(κ0 − κ1)

)
+O (exp (|ℑρ|)) .

That is

(H̃1 −H1) +
1

ρ
(H̃0 −H0)−

∫ 1

1
2

(
2P (x) +

1

ρ
Q(x)

)
y(x, ρ)ỹ(x, ρ)dx

= C
√
(1 + h21)(1 +H2

1 )
(
α+ sin(ρ− P(1)− (κ0 + κ1)) + α− sin(κ0 − κ1)

)
+O

(
1

ρ
exp (|ℑρ|)

)
.

According to the Riemann-Lebesgue Lemma, since the limit of the left side of the above equality exists for large
enough ρ, we can result that C = 0. So, it proves that G

(
1
2 , ρ

)
= 0 for all ρ.

To complete the proof, we should consider the supplementary problem L̂ := L(p1, q1, H0, H1, h0, h1, α, β) for the
differential pencil

y′′(x) + (ρ2 − 2ρp1(x)− q1(x))y(x) = 0, x ∈ (0, 1),

p1(x) = p(1− x), q1(x) = q(1− x), (3.6)
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with boundary conditions

Û(y) := y′(0)− (H1ρ+H0)y(0) = 0, V̂ (y) := y′(1) + (h1ρ+ h0)y(1) = 0, (3.7)

and jump conditions

y

(
1

2
+ 0, ρ

)
= α−1y

(
1

2
− 0, ρ

)
, y′

(
1

2
+ 0, ρ

)
= αy′

(
1

2
− 0, ρ

)
− βy

(
1

2
− 0, ρ

)
. (3.8)

By straightforward computations, we can show ŷ(x) := y(1− x) as the solution of the supplementary problem L̂.

We also take the problem
˜̂
L := L(p̃1, q̃1, H̃0, H̃1, h̃0, h̃1, α, β) for the differential pencil

y′′(x) + (ρ2 − 2ρp̃1(x)− q̃1(x))y(x) = 0, x ∈ (0, 1), (3.9)

with boundary conditions

˜̂
U(y) := y′(0)− (H̃1ρ+ H̃0)y(0) = 0,

˜̂
V (y) := y′(1) + (h̃1ρ+ h̃0)y(1) = 0, (3.10)

and jump conditions (3.8). By repeating the earlier argument to the supplementary problem L̂, we have∫ 1

1
2

(
2ρP (x) +Q(x)

)
ŷ(x, ρ)˜̂y(x, ρ)dx = (ŷ′(x, ρ)˜̂y(x, ρ)− ŷ(x, ρ)˜̂y′(x, ρ))|11

2
.

So∫ 1

1
2

(
2ρP (x) +Q(x)

)
ŷ(x, ρ)˜̂y(x, ρ)dx = Ĝ (1, ρ)− Ĝ

(
1

2
, ρ

)
,

where

Ĝ (x, ρ) := ŷ′(x, ρ)˜̂y(x, ρ)− ŷ(x, ρ)˜̂y′(x, ρ).
Because of Ĝ(x, ρ) = −G(1− x, ρ), we can obtain that Ĝ

(
1
2 , ρ

)
= −G

(
1
2 , ρ

)
= 0. Therefore

Ĝ (1, ρ) =

∫ 1

1
2

(
2ρP (x) +Q(x)

)
ŷ(x, ρ)˜̂y(x, ρ)dx. (3.11)

Moreover we will have Ĝ(1, ρn) = −G(0, ρn) = 0, from the hypothesis of the theorem. With the same argument in

the boundary value problem L, it proves that G(0, ρ) = −Ĝ(1, ρ) = 0 for all ρ.

Thus from this result, we will have M(ρ) = M̃(ρ). Together with Lemma 2.2, this equality gives that p(x) = p̃(x),

q(x) = q̃(x) a.e. on (0, 1), and H0 = H̃0, H1 = H̃1. The proof is completed. □
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