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Abstract

The aim of this paper is to introduce the notion of interval ap-Sequential Henstock integral (shortly, the ap-ISH).
Some interesting properties of ap-ISH are investigated.
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1 Introduction

It is well known that the Henstock integral generalises the Riemann integral, and more powerful and simpler than
the Lebesgue integral. This concept was introduced independently by R. Henstock and J. Kursweil in 1955 and 1957
respectively. It is also well known that Henstock integral which recovers a continuous function from its derivative is
equivalent to the Denjoy and Perron integrals and is easier and more reliable than the Wiener, Feynmann and Lebesgue
integrals (see, e.g. [1]-[12]). In 1967, Henstock [3] gave a Riemann definition of an integral which is equivalent to the
Burkill integral that recovers a real function from its approximate derivative. This he called approximate continuous
Henstock integral(br.ap-Henstock integral). Wu and Gong [12] established the concept of the Henstock (H) integrals
of interval valued functions and Fuzzy number-valued functions and obtain some basic properties of the integral.

In 2016, Hamid, Elmuiz and Shiema [2] introduced the idea of the ap-Henstock-Stieltjes integral of interval-valued
functions and Fuzzy number-valued functions which are extension of [12] and obtain a number of its interesting
properties.

Paxton [9] developed an alternative sequential definition of the Henstock integral which he denotes as the Sequential
Henstock (SH) integral; and then discussed the notion of the integral as generalizations of the Henstock(H) integral
and established its properties. The authors in [6] proved equivalence of Henstock and certain Sequential Henstock
integrals. They also proved dominated and bounded convergence theorems involving Sequential Henstock-Stieltjes
integral.

In this paper, we introduce the notion of ap-interval Sequential Henstock integral which is an extension of ap-
Henstock integral and discuss some of its’ basic properties.
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2 Preliminaries and new results

Let E be a measurable set and let c ∈ R. The density of E at x is defined by

dxE = lim
h→0+

µ(E
⋂
(x− h, x+ h))

2h
,

provided the limit exists. The point x is called a point of density of E if dxE = 1. The set Ed represents the set of
all points x ∈ E such that x is a point of density of E.

A function f : [a, b] → R is said to be approximate continuous at c ∈ [a, b] if there exists a measurable set E ∈ [a, b]
given that c ∈ Ed and f |E is continuous at c.

A sequence of approximate neighborhoods(or ap-nbd) of tin ∈ [a, b] is a measurable set Stin
⊆ [a, b] containing tin

as a sequence of points of density. For every tin ∈ E ⊆ [a, b], choose an ap-nbd Stin ⊆ [a, b] of tin . Then we say that
S = {Stin

: tin ∈ E} is a choice on E. A tagged interval (tin , [cin , din ]) is said to be subordinate to the choice S = Stin
if cin , din ∈ Stin

. Let Pn = {(tin , [cin , din ]) : 1 ≤ i ≤ m,m ∈ N} be a finite collection of non-overlapping tagged
intervals. If (tin , [cin , din ]) is subordinate to a choice S for each in(i = 1, ...,m), then we say that Pn is subordinate

to S. If Pn is subordinate to S and [a, b] =

n⋃
i=1

[cin , din ], then we say that Pn is a tagged partition of [a, b] that is

subordinate to S.

Let R denotes the set of real numbers, F (X) as an interval valued function, F−, the left endpoint, F+ as right
endpoint, {δn(x)}∞n=1, as set of gauge functions, Pn, as set of partitions of subintervals of a compact interval [a, b], X,
as non empty interval in R and d(X) = X+ −X−, as width of the interval X and ≪ as much more smaller (see [5]).

A gauge on [a, b] is a positive real-valued function δ : [a, b] → R+. This gauge is δ-fine if [ui−1, ui] ⊂ [ti − δ(ti), ti +
δ(ti)] while sequence of tagged partition Pn of [a,b] is a finite collection of ordered pairs Pn = {(u(i−1)n uin), tin}

mn
i=1

where [ui−1, ui] ∈ [a, b], u(i−1)n ≤ tin ≤ uin and a = u0 < ui1 <, ..., < umn
= b.

Firstly, we recall the following concepts:

Definition 2.1 [9] A function f : [a, b] → R is Henstock integrable to α on [a, b] if there exists a number α ∈ R such
that for any ε > 0 there exists a function δ(x) > 0 such that

|S(f, P )− α| < ε.

whenever P = {(ui−1, ui), ti}ni=1 is a δ(x) − fine partitions on [a, b] and S(f, P ) =
∑n

i=1 f(ti)(ui − u(i−1)). We say

that α is a Henstock integral of f on [a, b] i.e α = H
∫ b

a
f . We use Hf [a, b] to denote the set of all Henstock integrable

functions defined on [a, b].

Definition 2.2 [2] (ap-Henstock integrable) A function f : [a, b] → R is ap-Henstock integrable on [a, b] if there exists
a vector α ∈ R such that for any ε > 0 there exists a choice S on [a, b] such that

|S(f, P )− α| < ε,

whenever P = {([ui−1, ui], ti)}ni=1 is a S(x) − fine partitions on [a, b]. We say that α is an ap-Henstock integral of

f on [a, b] i.e α = ap-H
∫ b

a
f . We use ap-Hf [a, b] to denote the set of all ap-Henstock integrable functions defined on

[a, b].

Definition 2.3 [9] A function f : [a, b] → R is Sequential Henstock integrable on [a, b] if there exists a number α ∈ R
such that for any ε > 0 there exists a sequence of positive gauge functions {δn(x)}∞n=1 such that

|S(f, Pn)− α| < ε,

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)− fine tagged partition on [a, b] and S(f, Pn) =

∑mn∈N
i=1 f(tin)(uin −

u(i−1)n). We say that α is a Sequential Henstock integral of f on [a, b] i.e α = SH
∫ b

a
f . We use SHf [a, b] to denote

the set of all Sequential Henstock integrable functions defined on [a, b].

Definition 2.4 [2] An interval valued function F : [a, b] → IR is Henstock integrable on [a, b] if there exists a number
I0 ∈ IR such that for any ε > 0 there exists a positive gauge function δ(x) > 0 on [a, b] such that

d(

n∈N∑
i=1

F (ti)(ui − ui−1), Io) < ε
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whenever δ(x) − fine is a tagged partitions P = {(ui−1, ui), ti}ni=1 on [a, b]. We say that I0 is the Henstock integral

of F on [a, b] with (IH)
∫ b

a
F = I0 and F ∈ IH[a, b]. We use IHF [a, b] to denote the set of all interval Henstock

integrable functions defined on [a, b].

Definition 2.5 [10, 12] Let IR = {I = [I−, I+] is the closed bounded interval on the real line R}. For X,Y ∈ IR, we
define
i. X ≤ Y if and only if X− ≤ Y − and X+ ≤ Y +,
ii. X + Y = Z if and only if Z− = X− + Y − and Z+ = X+ + Y +,
iii. X.Y = {x.y : x ∈ X, y ∈ Y }, where

(X.Y )− = min{X−Y −, X−Y +, X+Y −, X+Y +}

and
(X.Y )+ = max{X−.Y −, X−.Y +, X+.Y −, X+.Y +}.

Define d(X,Y ) = max(|X− − Y −|, |X+ − Y +|) as the distance between X and Y .

Here, we shall give the definition of interval Sequential Henstock integrals newly.

Definition 2.6 A function f : [a, b] → IR is interval Sequential Henstock integrable on [a, b] if there exist a number
I0 ∈ IR such that for any ε > 0 there exists a sequence of positive gauge functions {δn(x)}∞n=1 on [a,b] such that

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I0) < ε.

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)− fine Sequential Henstock partitions on [a, b]. We say that I0 is an

interval Sequential Henstock integral of f on [a, b] i.e I0 = (SH)
∫ b

a
f and f ∈ ISH[a, b]. We use ISHf [a, b] to denote

the set of all interval Sequential Henstock integrable functions defined on [a, b].

Now, we will define newly the ap-interval Sequential Henstock integral and then discuss some of the properties of
the integral.

Definition 2.7( ap-interval Sequential Henstock integral) A function f : [a, b] → IR is ap-interval Sequential Henstock
integrable on [a, b] if there exists a vector I0 ∈ IR such that for any ε > 0 there exists a sequence of positive choice
functions {Sn(x)}∞n=1 on [a,b] such that

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I0) < ε.

whenever Pn = {([u(i−1)n , uin ], tin)}
mn
i=1 is a Sn(x)− fine ap-interval Sequential Henstock partitions on [a, b]. We say

that I0 is a ap-interval Sequential Henstock integral of f on [a, b] i.e I0 = (ap-ISH)
∫ b

a
f and f ∈ ap-ISH[a, b]. We

use ap-ISHf [a, b] to denote the set of all ap-interval Sequential Henstock integrable functions defined on [a, b].

Example 2.8 Suppose the Dirichlet’s function f : [a, b] → IR is defined by

f(x) =

{
1, if x ∈ Q,

0, if x /∈ Q,

Suppose that we define our choice function

Sn(x) =

{ ε

2n
, if x ∈ Q

1, if x /∈ Q,

So, we have our

S(f, Pn) =

mn∈N∑
i=1

f(tin)(uin − u(i−1)n)

≤ d(
∑
i=Π

f(tin)(uin − u(i−1)n)) + d(
∑
i=τ

f(tin)(uin − u(i−1)n))

≤ ε

∞∑
i=1

ε

2n
= ε
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where ε is arbitrary. Hence the equality holds and

I0 =

∫ b

a

f = 0.

Remark 2.9. It is clear that if f is a real valued function, then our Definition 1.6 implies the definition of Sequential
Henstock integral introduced by [5]. We also have that Definition 1.7 extends all the other integrals mentioned in this
paper.

The following lemma is useful in the proof of one of our Theorems:

Lemma 2.10 . [2] Let f, g be Sequential Henstock (SH)integrable functions on [a, b], if f ≤ g is almost everywhere
on [a, b], then∫ b

a

f ≤
∫ b

a

g.

Remark 2.11. If f = f− = f+, then it is clear that Definition 1.8 implies the real-valued of the Sequential Henstock
integral.

Theorem 2.12 If f ∈ ap-ISH[a, b], then the integral is unique.

Proof . Suppose the integral value is not unique and let I1 = (ap-ISH)
∫ b

a
f and I2 = (ap-ISH)

∫ b

a
f with I1 ̸= I2.

Let ε > 0 be given then there exists a sequence of positive choice functions {S1
n(x)}∞n=1 and {S2

n(x)}∞n=1 such that for
each S1

n(x)-fine tagged partitions P 1
n of [a, b] and for each S2

n(x)-fine tagged partitions P 2
n of [a, b], we have

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I1) <
ε

2

and

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I2) <
ε

2

respectively. Define a positive choice function Sn(x) on [a, b] by Sn(x) = min{S1
n(x), S

2
n(x)}. Let Pn be any Sn(x)-fine

tagged partition of [a, b]. Then by triangular inequality, we have

d(I1, I2) = d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I1) + d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I2)

<
ε

2
+

ε

2
= ε.

Since for all ε > 0, there is a Sn(x) > 0 on [a,b] as above, then I1 = I2. □

Theorem 2.13 Let f ∈ ap-ISH[a, b] if and only if f−, f+ ∈ ap-SH[a,b] and

(ap-ISH)

∫ b

a

f = [(ap-SH)

∫ b

a

f−, (ap-SH)

∫ b

a

f+].

Proof . If f ∈ ap-ISH[a, b], from Definition 1.7 there is a unique interval number I0 = [I−0 , I+0 ] with the property
that for any ε > 0, there exists a sequence of positive choice functions {Sn(x)}∞n=1 on [a, b] such that

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I0) < ε.

whenever Pn is a Sn(x)-fine tagged partition of [a, b]. Observe that

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I0)
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= max(|[
mn∈N∑
i=1

f(tin)(uin − u(i−1)n)]
− − I−0 |, |[

mn∈N∑
i=1

f(tin)(uin − u(i−1)n)]
+ − I+0 )|) < ε

= max(|
mn∈N∑
i=1

f−(tin)(uin − u(i−1)n)− I−0 |, |
mn∈N∑
i=1

f+(tin)(uin − u(i−1)n)− I+0 )|).

Since uin − u(i−1)n ≥ 0, for 1 ≤ in ≤ mn, it follows that

|
mn∈N∑
i=1

f−(tin)(uin − u(i−1)n)− I−0 | < ε, |
mn∈N∑
i=1

f−(tin)(uin − u(i−1)n)− I+0 )| < ε.

for every Sn(x)-tagged partitions Pn = {(u(i−1)n , uin), tin}
mn
i=1. Thus, by Definition 1.7, we obtain f+, f− ∈ ap-SH[a, b]

and

I−0 = (ap-SH)

∫ b

a

f−

and

I+0 = (ap-SH)

∫ b

a

f+.

Conversely, let f− ∈ ap-SH[a, b]. Then there exist a unique β1 ∈ R with the property that given ε > 0 then there
exists a {S1

n(x)}∞n=1, such that

|
mn∈N∑
i=1

f−(tin)(uin − u(i−1)n)− β1| < ε,

whenever P 1
n is a S1

n(x)-fine tagged partition of [a, b].

Similarly, let f+ ∈ ap-SH[a, b]. Then there exist a unique β2 ∈ R with the property that given ε > 0 then there
exists a {S2

n(x)}∞n=1, such that

|
mn∈N∑
i=1

f+(tin)(uin − u(i−1)n)− β2)| < ε,

whenever P 2
n is a S2

n(x)-fine tagged partitions of [a, b]. We let Sn(x) = min(S1
n(x), S

2
n(x)) and I0 = [β1, β2], then if Pn

is a Sn(x)− fine tagged partition of [a, b], we have

d(

mn∈N∑
i=1

f(tin)(uin − u(i−1)n), I0) < ε.

Hence, f : [a, b] → IR is ap-Sequential Henstock integrable on [a, b]. This completes the proof. □

Example 2.14 Suppose that [a, b] = [0, 1]. Q is a set of rational numbers in [0, 1] and f ∈ ap-ISH[a, b] such that

f(x) =

{
[0, 1], if x ∈ Q,

[1, 2], if x /∈ [0, 1]\Q,

Then

(ap-ISH[a, b]

∫ 1

0

f = [(ap-ISH[a, b])

∫ b

a

f−] + (ap-ISH[a, b]

∫ b

a

f+) = [1, 2].

Theorem 2.15 If f, g ∈ ap-ISH[a, b] and β, γ ∈ R. Then βf + γg ∈ ap-ISH[a, b] and

(ap-ISH)

∫ b

a

(βf + γg) = β(ap-ISH)

∫ b

a

f + γ(ap-ISH)

∫ b

a

g.
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Proof . If f, g ∈ ap-ISH[a, b], then f−, f+, [g−, g+ ∈ ap-SH[a, b] by Theorem 2.13. Hence, we have γf−+ξg−, γf−+
ξg+, γf+ + ξg−, γf+ + ξg+ ∈ ap-SH[a, b].

Case 1. If γ > 0 and ξ > 0, then

(ap-SH)

∫ b

a

(γf + ξg)− = (ap-SH)

∫ b

a

(γf− + ξg−)

= γ(ap-SH)

∫ b

a

f− + ξ(ap-SH)

∫ b

a

g−

= γ((ap-ISH)

∫ b

a

f)− + ξ((ap-ISH)

∫ b

a

g)−

= (γ(ap-ISH)

∫ b

a

f + ξ(ap-ISH)

∫ b

a

g)−.

Case 2. If γ < 0 and ξ > 0, then

(ap-SH)

∫ b

a

(γf + ξg)− = (ap-SH)

∫ b

a

(γf+ + ξg+)

= γ(ap-SH)

∫ b

a

f+ + ξ(ap-SH)

∫ b

a

g+

= γ((ap-ISH)

∫ b

a

f)+ + ξ((ap-ISH)

∫ b

a

g)+

= (γ(ap-ISH)

∫ b

a

f + ξ(ap-ISH)

∫ b

a

g)−.

3) If γ > 0 and ξ < 0 (or γ < 0 and ξ > 0), then

(ap-SH)

∫ b

a

(γf + ξg)− = (ap-SH)

∫ b

a

(γf− + ξg+)

= γ(ap-SH)

∫ b

a

f− + ξ(ap-SH)

∫ b

a

g+

= γ((ap-ISH)

∫ b

a

f)− + ξ((ap-ISH)

∫ b

a

g)+

= (γ(ap-ISH)

∫ b

a

f + ξ(ap-ISH)

∫ b

a

)−.

Similarly, for four cases above, we have

(ap-ISH)

∫ b

a

(γf + ξg)+ = (γ(ap-ISH)

∫ b

a

f + ξ(ap-ISH)

∫ b

a

g)+.

Hence, by Theorem 2.13, γf + ξg ∈ ap-ISH[a, b] and

(ap-SH)

∫ b

a

(γf + ξg) = γ(ap-ISH)

∫ b

a

f + ξ(ap-ISH)

∫ b

a

g.

This completes the proof. □

Theorem 2.16 If f, g ∈ ap-ISH[a, b] and f(x) ≤ g(x) nearly everywhere on [a, b], then

(ap-ISH)

∫ b

a

f ≤ (ap-ISH)

∫ b

a

g.
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Proof . If f(x) ≤ g(x) nearly everywhere on [a, b] and f, g ∈ ap-ISH[a, b], then f−, f+, g−, g+ ∈ ap-SH[a, b] with
f− ≤ f+, and g− ≤ g+ nearly everywhere on [a, b]. By Lemma 2.5

(ap-SH)

∫ b

a

f−(x) ≤ (ap-SH)

∫ b

a

g−(x)

and

(ap-SH)

∫ b

a

f+ ≤ (ap-SH)

∫ b

a

g+(x).

Hence by Theorem 2.13, we have

(ap-ISH)

∫ b

a

f(x) ≤ (ap-ISH)

∫ b

a

g(x).

This completes the proof. □

Theorem 2.17 Let f, g ∈ ap-ISH[a, b] and d(f, g) is ap-Sequential Henstock (ap-SH) integrable on [a, b], then

d((ap-ISH)

∫ b

a

f, (ap-ISH)

∫ b

a

g) ≤ (ap-SH)

∫ b

a

d(f, g).

Proof . By metric definition, we have

d((ap-ISH)

∫ b

a

f, (ap-ISH)

∫ b

a

g)

= max(|((ap-SH)

∫ b

a

f)− − ((ap-SH)

∫ b

a

g)−|, |((ap-SH)

∫ b

a

f)+ − ((ap-SH)

∫ b

a

g)+|)

= max(|(ap-SH)

∫ b

a

(f− − g−)|, |(ap-SH)

∫ b

a

(f+ − g+)|)

≤ max((ap-SH)

∫ b

a

|(f− − g−)|, (ap-SH)

∫ b

a

|(f+ − g+)|)

≤ (ap-SH)

∫ b

a

max(|(f− − g−)|, |(f+ − g+)|)

≤ (ap-SH)

∫ b

a

d(f, g).

This completes the proof. □

From Theorem 2.13 and by Definition 1.8, we can easily obtain the following Theorem.

Theorem 2.18 Let f ∈ ap-ISH[a, c] and f ∈ ap-ISH[c, b], then f ∈ ap-ISH[a, b] and

(ap-ISH)

∫ b

a

f = (ap-ISH)

∫ c

a

f + (ap-ISH)

∫ b

c

f.

Proof . If f ∈ ap-ISH[a, c]) and f ∈ ap-ISH[c, b]) then by Theorem 2.2, f−, f+ ∈ SH[a, c]) and f−, f+ ∈ SH[c, b]).
Hence, f−, f+ ∈ SH[a, b]) and

(ap-SH)

∫ b

a

f− = (ap-SH)

∫ c

a

f− + (ap-SH)

∫ b

c

f−

= ((ap-ISH)

∫ c

a

f + (ap-ISH)

∫ b

c

f)−.



3102 Iluebe, Mogbademu

Similarly,

(ap-SH)

∫ b

a

f+ = (ap-SH)

∫ c

a

f+ + (ap-SH)

∫ b

c

f+

= ((ap-ISH)

∫ c

a

f + (ap-ISH)

∫ b

c

f)+.

Hence by Theorem 2.13, f ∈ ap-ISH[a, b] and

(ap-ISH)

∫ b

a

f = (ap-ISH)

∫ c

a

f + (ap-ISH)

∫ b

c

f.

□

3 Application of ap-ISH integral

Our newly introduced type of integral for interval-valued functions, may be useful in the further study of fuzzy-
valued functions, interval optimization and interval-valued differential equations (see [? 6, 11]).

Holzmann et al. [4], Lang [8][8] as well as Kramer and Wedner [7] have successfully applied the techniques of
interval analysis for approximate continuous functions to adaptive Gaussian quadrature (see [10]).

One other good application for consideration in the study of approximate Sequential Henstock integral is in the
theory of trigonometric series and trigonometric integrals. One of the principle questions concerning trigonometric
series is the question of recovering the coefficients of every convergent trigonometric series from its sum (see [4, 10]).
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