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Abstract

In this paper, a numerical method is proposed for the numerical solution of a linear wave equation with initial and
boundary conditions by using the cubic B-spline method to determine the unknown boundary condition. We apply
the cubic B-spline for the spatial variable and the derivatives, which generate an ill-posed linear system of equations.
In this regard, to overcome, this drawback, we employ the Tikhonov regularization (TR) method for solving the

resulting linear system. It is proved that the proposed method has the order of convergence O
(
(∆t)2 + h2

)
. Also,

the conditional stability by using the Von-Neumann method is established under suitable assumptions. Finally, some
numerical experiments are reported to show the efficiency and capability of the proposed method for solving inverse
problems.

Keywords: Inverse wave problem, Existence and uniqueness, Stability analysis, Convergence analysis, Tikhonov
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1 Introduction

Inverse problems are encountered in many branches of engineering and science. In one particular branch, hyperbolic
and parabolic initial and boundary value problems in one dimension have been studied by several authors [1, 5, 2, 3, 9].
Mathematically, the inverse problems belong to a class of problems called the ill-posed problems, i.e. small errors in
the measured data can lead to large deviations in the estimated quantities. As a consequence, their solution does not
satisfy the general requirement of existence, uniqueness, and stability under small changes to the input data.

Lin and Gilbert [9], presented a numerical algorithm for solving an undetermined coefficient problem for an inverse
wave equation. The algorithm is based on an integral representation for the solution to the wave equation obtained
by using transmutation. The stability of the inverse problem of determining a function q(x) in a wave equation
∂2t u−∆u+ q(x)u = 0 presented in the bounded smooth domain in Rn from boundary observations [2]. Wu and Liu
[15], considered an inverse problem for a one-dimensional integro-differential hyperbolic system, which comes from a
simplified model of thermoelasticity. By using the fixed point theorem in suitable Sobolev spaces, the global in time
existence and uniqueness results of this inverse problem are obtained.

The theory of B-spline functions has attracted attention in the literature for the numerical solution of linear and
nonlinear boundary value problems in science and engineering. The B-spline scaling functions are used to find the
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approximate solution of the surface heat flux histories and temperature distribution in an inverse heat conduction
problem [4]. The numerical solution of certain partial differential equations can be obtained using B-spline functions
of various degrees. As examples, a combined finite difference and cubic B-spline approach was applied for the solution
of the heat and wave equation [7], a collocation of modified cubic B-spline basis functions over the finite elements was
developed in [11] for the solution of symmetric regularized long wave equations.

In this paper, we use the cubic B-spline method to solve a one-dimensional inverse problem, for a linear wave
equation with initial and boundary conditions, using measurement data containing noise, as follows:

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t < tM (1.1a)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ 1, (1.1b)

u(0, t) = q(t), u(1, t) = h(t), 0 ≤ t ≤ tM , (1.1c)

and the overspecified condition
u(a, t) = k(t), 0 < a < 1, 0 ≤ t ≤ tM , (1.1d)

where f(x) and g(x) are known smooth functions on [0, 1], h(t) and k(t) are known smooth functions on [0, tM ], where
tM represents the final time of interest for the time evolution of the problem, while q(t) is unknown which remains to
be determined from (1.1d). The measurements ensure that the inverse problem has a unique solution, but this solution
is unstable hence the problem is ill-posed. This instability is overcome using the TR method with the generalized
cross-validation (GCV) criterion for the choice of the regularization parameter. As well, the existence and uniqueness
of the solution are also derived.

The plan of this paper is as follows: In Section 2, we will study the existence and uniqueness of the solution. In
Section 3, we describe the properties of the cubic B-splines collocation method. In the following, in Section 4, we detail
our presented method for solving the inverse wave problem (1.1). The conditional stability based on the Von-Neumann
method is discussed in Sections 5. Some numerical examples are presented in Section 6 and finally concluding remarks
are given in Section 7.

2 Existence and uniqueness

In this Section, we consider the problem of existence and uniqueness of solution for the inverse wave problem (1.1).
Let us first consider the following initial and boundary value problem, in which all initial and boundary data are
known.

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t, (2.1a)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ 1, (2.1b)

u(0, t) = q(t), u(1, t) = p(t), 0 ≤ t. (2.1c)

Here, we adopt the method used in [6, Section 2.4]. Introducing new independent variables ζ, η by the substitution

ζ = x+ t, η = x− t, (2.2)

we transform the linear equation (2.1a) into the following equation:

(uζ)η = 0. (2.3)

Since (uζ)η = 0 it follows that uζ is independent of η, say, uζ = F ′(ζ), and then u = F (ζ) + G(η), so that in the
original variables we have

u = F (x+ t) +G(x− t). (2.4)

Impose the initial conditions (2.1b) and get

f(x) = F (x) +G(x), g(x) = F ′(x)−G′(x).

Solving these two linear equations, we obtain

u(x, t) =
1

2

[
f(x+ t) + f(x− t)

]
+

1

2

∫ x+t

x−t
g(s) ds. (2.5)
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We see from (2.5) that u(x, t) is determined uniquely by the values of the initial functions f and g in the interval
[x − t, x + t] of the x-axis whose endpoints are cut by the characteristics through the point (x, t), e.g. region (I) in
Figure 1a. For any f, g ∈ C2(R), formula (2.4) represents a solution u ∈ C(R2) of (2.1a) with initial data (2.1b).
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Figure 1: Wave Problem

After some calculations, one can see that any function u of the form (2.4) satisfies the following functional equation:

u(x, t)− u(x+ ζ, t+ ζ)− u(x− η, t+ η) + u(x+ ζ − η, t+ ζ + η) = 0. (2.6)

This means that, for any parallelogram AiBiCiDi in the xt-plane bounded by four characteristic lines, see Figure
1a, the following holds:

u(Ai) + u(Ci) = u(Bi) + u(Di). (2.7)

We use (2.7) to solve the initial and boundary value problem (2.1) in the strip

0 < x < 1, t > 0.

We divide the strip into several regions by the characteristics through the corners and through that points of inter-
sections of the characteristics with the boundaries, etc. as shown in Figure 1a.

In region (I) the solution u is determined by (2.5) from the initial data alone. In a point A1 = (x, t) in region (II)
we form a parallelogram A1B1C1D1 in such a way that B1 lies on the line x = 1 and C1, D1 lie in region (I), so that
u(B1), u(C1), and u(D1) are known, and thus we get

u(A1) = −u(C1) + u(B1) + u(D1).

Similarly, we get u(x, t) successively in all points of the regions (II), (III), . . . . If we want the solution of (2.1) to be
of class C2 in the closure of the strip, the data f , g, p, and q have to fit together in the corners so that u and its first
and second derivatives come out to be the same when computed either from f and g or from p and q. We clearly need
the following compatibility conditions:

q(0) = f(0), q′(0) = g(0), q′′(0) = f ′′(0), (2.8)

p(1) = f(1), p′(1) = g(1), p′′(1) = f ′′(1). (2.9)

Now, consider the inverse problem (1.1) with overspecified condition (1.1d). Take tF = tM + a, and suppose that p(t)
and k(t) are sufficiently smooth functions defined in 0 ≤ t ≤ tF . Problem (1.1) may be divided into two separate
problems:
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a direct problem:

utt(x, t) = uxx(x, t), a < x < 1, 0 < t < tF , (2.10a)

u(x, 0) = f(x), ut(x, 0) = g(x), a ≤ x ≤ 1, (2.10b)

u(a, t) = k(t), u(1, t) = p(t), 0 ≤ t ≤ tF , (2.10c)

and an inverse problem:

utt(x, t) = uxx(x, t), 0 < x < a, 0 < t < tM , (2.11a)

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ a, (2.11b)

u(0, t) = q(t), u(a, t) = k(t), 0 ≤ t ≤ tM . (2.11c)

Using the above argument, we obtain the solution of the direct problem (2.10) in the strip

a ≤ x ≤ 1, 0 < t < tF .

For any point Ai = (t, x) in the strip 0 ≤ x ≤ a, 0 < t < tM , we can draw a parallelogram AiBiCiDi, as it is shown
in Figure 1b, such that the two adjacent vertices Bi and Di lie on the boundary {t = 0} ∪ {x = a} on which the
initial data (u = f(x)) and the boundary data (u(a, t) = k(t)) are known, and the non-adjacent vertex Ci lie in the
strip a ≤ x ≤ 1, 0 ≤ t ≤ tF in which u(x, t), the solution of direct problem (2.10), is known. Therefore, u(Ai) can be
obtained from the following equality:

u(Ai) = u(Bi) + u(Di)− u(Ci).

We can summarize the above discussion in the following statement.

Theorem 2.1. Let 0 < a < 1 and tM > 0. Suppose that f(x) and g(x) are sufficiently smooth functions on [0, 1],
and that p(t), k(t) are sufficiently smooth functions on [0, tF ], where tF = tM + a, such that f , g, p, and k satisfy the
consistency conditions

k(a) = f(a), k′(a) = g(a), k′′(a) = f ′′(a),

p(1) = f(1), p′(1) = g(1), p′′(1) = f ′′(1).

Then the inverse wave equation

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t < tM ,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ 1,

u(0, t) = q(t), u(1, t) = p(t), 0 ≤ t ≤ tM ,

u(a, t) = k(t), 0 < a < 1, 0 ≤ t ≤ tM .

has a unique solution (u, q).

3 Cubic B-spline functions

In this Section, we describe the uniform cubic B-spline on the finite interval [0, 1]. For this purpose, we divide
the interval [0, 1] into N -subintervals by the set of N + 1 nodal points xm, 0 ≤ m ≤ N . This gives a partition
π : 0 = x0 < x1 < · · · < xN−1 < xN = 1 of [0, 1], where ∆xm = xm − xm−1, ∀ 1 ≤ m ≤ N . The cubic B-splines are
constructed for the partition

Π : x−2 < x−1 < x0 = 0 < x1 < · · · < xN = 1 < xN+1 < xN+2,

by using four fictitious nodes x−2, x−1, xN+1, xN+2. If we assume that ∆xm = h, ∀ − 1 ≤ m ≤ N + 2, then the
uniform cubic B-splines are defined by (see, [12])

Bm(x) =
∆4Fx(xm−2)

h3
,

where

Fx(xm) = (xm − x)3+ =

{
(xm − x)3, x < xm,

0, x ≥ xm,
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and ∆4Fx(xm) is the fourth forward difference with equally spaced nodes of third degree polynomial Fx(xm). After
some simplification, we get

Bm(x) =
1

h3



(x− xm−2)
3, xm−2 ≤ x ≤ xm−1,

h3 + 3h2(x− xm−1) + 3h(x− xm−1)
2 − 3(x− xm−1)

3, xm−1 ≤ x ≤ xm,

h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, xm ≤ x ≤ xm+1,

(xm+2 − x)3, xm+1 ≤ x ≤ xm+2,

0, otherwise.

(3.1)

It can be easily see that the functions in {B−1, B0, . . . , BN , BN+1} are linearly independent on [0, 1]. By using splines
defined in (3.1), the values of Bm(x) and its derivatives at the nodes xm’s are given in Table 1.

Table 1: The values of Bm(x) and its derivatives at the nodes xm.

xi−2 xi−1 xi xi+1 xi+2

Bi(x) 0 1 4 1 0

B′
i(x) 0 3

h 0 −3
h 0

B′′
i (x) 0 6

h2
−12
h2

6
h2 0

4 Solution of the linear inverse wave equation (1.1)

In this Section, we first present our method based on the cubic B-spline functions for solving the linear inverse
wave equation (1.1). To apply the proposed method, expressing u(x, t) by using cubic B-spline functions. Let

Un(x) =

N+1∑
i=−1

cni Bi(x), (4.1)

be the approximate solution of the initial and boundary value problem (1.1) at the n-th time level, where cni is unknown
time dependent quantities to be determined.

It is required that approximate solutions (4.1), satisfies equations (1.1a)-(1.1d) at the point x = xm, 0 ≤ m ≤ N .
Setting equations (4.1) in (1.1a), it follows that

Utt(xm, tn) =

N+1∑
i=−1

cni B
′′
i (xm).

Using the cubic B-spline functions and their derivatives up to second order which are determined in Table 1, we obtain

Utt(xm, tn) =
6

h2

(
cnm−1 − 2cnm + cnm+1

)
. (4.2)

In (4.2), the time derivative is discretized in a forward finite difference fashion

Utt(xm, tn) =
Un+1(xm)− 2Un(xm) + Un−1(xm)

(∆t)2
, (4.3)

where ∆t is the time step. So due to the (4.2), we obtain

Un+1(xm) =
6(∆t)2

h2

(
cnm−1 − 2cnm + cnm+1

)
+ 2Un(xm)− Un−1(xm).

According to the cubic B-spline functions (Table 1), we have

cn+1
m−1 + 4cn+1

m + cn+1
m+1 =

6(∆t)2

h2

(
cnm−1 − 2cnm + cnm+1

)
+ 2

(
cnm−1 + 4cnm + cnm+1

)
−
(
cn−1
m−1 + 4cn−1

m + cn−1
m+1

)
= Xn

m, (4.4)
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where n = 0, 1, . . . and 0 ≤ m ≤ N . For when n = 0, the initial condition ut(x, 0) = g(x), with the central finite
difference method, is written the following:

Ut(xm, tn) =
Un+1(xm)− Un−1(xm)

2∆t
= g(xm).

Therefore,
Un−1(xm) = Un+1(xm)− 2∆tg(xm)

and according to the cubic B-spline functions, we have

cn−1
m−1 + 4cn−1

m + cn−1
m+1 = cn+1

m−1 + 4cn+1
m + cn+1

m+1 − 2∆tg(xm),

so the equation (4.4) turns to:

cn+1
m−1 + 4cn+1

m + cn+1
m+1 =

3(∆t)2

h2

(
cnm−1 − 2cnm + cnm+1

)
+

(
cnm−1 + 4cnm + cnm+1

)
+∆tg(xm). (4.5)

The system (4.4) consists of (N +1) equations in (N +3) unknown coefficients. Therefore, we still need two equations.
To this end, by imposing the boundary condition u(1, t) = h(t) and the overspecified condition (1.1d), we have

Un+1(xl) = cn+1
l−1 + 4cn+1

l + cn+1
l+1 = k(tn+1), xl = a, 1 ≤ l ≤ N − 1,

Un+1(xN ) = cn+1
N−1 + 4cn+1

N + cn+1
N+1 = p(tn+1).

Then a system of (N +3) linear equations in the (N +3) unknown coefficients is obtained. This system can be written
in the matrix vector form as follows:

AX = B, (4.6)

where

X =
[
cn+1
−1 , cn+1

0 , cn+1
1 , . . . , cn+1

N−1, c
n+1
N , cn+1

N+1

]T
,

B =
[
k(tn+1),Xn

0 ,Xn
1 , . . . ,Xn

N−1,Xn
N , p(tn+1)

]T
,

where for n = 0, with due attention to (4.5),

X 0
m =

3(∆t)2

h2

(
c0m−1 − 2c0m + c0m+1

)
+
(
c0m−1 + 4c0m + c0m+1

)
+∆tg(xm), 0 ≤ m ≤ N,

and A is an (N + 3)× (N + 3)-dimensional matrix given by

A =



0 0 0 1 4 1 . . . 0 0 0

1 4 1 0 0 0 . . . 0 0 0

0 1 4 1 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 . . . 1 4 1

0 0 0 0 0 0 . . . 1 4 1


,

where, A[1, l + 1] = 1, A[1, l + 2] = 4, A[1, l + 3] = 1.

In order to solve the system of linear equations (4.6), we need initial vector X0. This initial vector can be obtained
from the initial condition u(x, 0) = f(x), the boundary condition u(1, t) = h(t), and the overspecified condition (1.1d)
as the following expression

U0(xm) = c0m−1 + 4c0m + c0m+1 = f(xm), 0 ≤ m ≤ N,

U0(xl) = c0l−1 + 4c0l + c0l+1 = k(0), 1 ≤ l ≤ N − 1,

U0(xN ) = c0N−1 + 4c0N + c0N+1 = p(0).
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Then a system of (N + 3) linear equations in the (N + 3) unknown coefficients are obtained. This system can be
written in the matrix vector form as follows

AX0 = B∗, (4.7)

where

X0 =
[
c0−1, c

0
0, c

0
1, . . . , c

0
N−1, c

0
N , c

0
N+1

]T
,

and

B∗ =
[
k(0), f(x0), f(x1), . . . , f(xN−1), f(xN ), p(0)

]T
.

The solution of the linear systems (4.7) for vector X0 and (4.6) for vector X can be get by the TR method ([8, 14]).
Finally we can obtain

Un(x0) = U(x0, tn) = q(tn) = cn−1 + 4cn0 + cn1 , n = 1, 2, . . . ,

Un(xm) = U(xm, tn) = cnm−1 + 4cnm + cnm+1, n = 1, 2, . . . , m = 1, 2, . . . , N.

Theorem 4.1. The collocation approximation Un(x) for the solution un(x) of the inverse wave equation (1.1) satisfy
the following error estimate ∥∥∥un − Un

∥∥∥
∞

≤ γh2,

for sufficiently small h, where γ is a positive constant.

Proof . See [5]. □

Theorem 4.2. Let u(x, t) be the solution of the initial boundary value problem (1.1). Also, suppose that Un(x) is
the collocation approximation of the solution un(x) after the temporal discretization stage. Then the error estimate
of the totally discrete scheme is given by ∥∥∥un − Un

∥∥∥
∞

≤ κ
(
(∆t)2 + h2

)
,

where κ is some finite constant.

Proof . The time discretization process (4.3) that we use to discretize the system (1.1) in time variable is of the two
order convergence (see, [13]). So, according to the Theorem 4.1, we have∥∥∥un − Un

∥∥∥
∞

≤ κ
(
(∆t)2 + h2

)
,

where κ is some finite constant. □

5 Stability of the scheme

In this Section, we present the stability analysis for our proposed scheme. To this end, we state and prove the
following theorem based on the Von-Neumann method.

Theorem 5.1. The scheme (4.4) for solving inverse wave equation (1.1) is conditionally stable, if
(∆t)2

h2
<

1

6
.

Proof . By putting cnm = ξneimψh in equation (4.4), where ξ is the amplification factor for the scheme, ψ is the mode
number, h is the space length and i =

√
−1, and simplifying it, we have

ξ(cos θ + 2) =
6(∆t)2

h2
(cos θ − 1) + (cos θ + 2), (5.1)

where, θ = ψh. Dividing the both sides of the equation (5.1) by (cos θ + 2), we have

ξ =
−12(∆t)2

h2
sin2 θ2

cos θ + 2
+ 1,

so, ∣∣∣ξ∣∣∣= ∣∣∣1− 12(∆t)2

h2
sin2 θ2

cos θ + 2

∣∣∣.
If |ξ| ≤ 1 then the scheme (4.4) is stable. To do this, if

(∆t)2

h2
<

1

6
, then |ξ| ≤ 1, and the proof is complete. □
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6 Numerical experiments

In this Section, we are going to demonstrate numerically, some of results for the unknown boundary condition
in the inverse problem (1.1). The propose of this Section is to illustrate the applicability of the present method is
described in Section 4 for solving this inverse problem. As expected the inverse problems are ill-posed, therefore it is
necessary to investigate the stability of the present method by giving a test problem. The proposed method is written
in the MATLAB 7.14 (R2012a) and is tested on a personal computer with Intel(R) Core(TM)2 Duo CPU and 4GB
RAM. Numerical results are compared with the finite difference method (FDM) and the radial basis function (RBF)
method (Multiquadrics-RBF) [10].

Remark 6.1. In all examples, we take tM = 1, a = 0.01, h = 0.01, ∆t = 0.001, and compute the unknown boundary
condition u(0, t) for different values of time steps. Solutions u(x, t) are also computed for the different values of time
t = 0.1, 0.4, 0.7, 1 with space step length h = 0.01.

Example 6.2. In this example, we consider the following one-dimensional inverse problem, for estimating unknown
boundary condition q(t).

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t < 1,

u(x, 0) = x2, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(1, t) = 1 + t2, u(0.01, t) = (0.01)2 + t2, 0 ≤ t ≤ 1,

The exact solutions of this problem are

u(x, t) = x2 + t2, q(t) = t2, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

The numerical results of the unknown boundary condition u(0, t) is reported in Table 2. To clarify the accuracy of
the present method, the corresponding graphical illustration is presented in Figure 2. Also, the graphical illustration
corresponding to the difference between the exact and numerical solutions of u(x, t) is presented in Figure 3. The
obtained numerical solutions for u(x, t) are given in Tables 3 and 6, and the graphical illustrations corresponding to
these Tables are presented in Figure 4.

Table 2: The comparison among the exact and numerical solutions for u(0, t) = q(t) in Example 6.2.

t
B-spline FDM RBF

q(t) q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)|
0.1 0.010000 0.008665 1.334744e− 03 −0.023419 3.341870e− 02 0.020145 1.014451e− 02

0.2 0.040000 0.039309 6.910453e− 04 0.012355 2.764466e− 02 0.050173 1.017265e− 02

0.3 0.090000 0.089235 7.645219e− 04 0.067826 2.217416e− 02 0.100203 1.020269e− 02

0.4 0.160000 0.159209 7.910390e− 04 0.147471 1.252899e− 02 0.170188 1.018757e− 02

0.5 0.250000 0.249393 6.065713e− 04 0.255769 5.769081e− 03 0.260101 1.010145e− 02

0.6 0.360000 0.359306 6.937972e− 04 0.397198 3.719826e− 02 0.370105 1.010534e− 02

0.7 0.490000 0.489556 4.438077e− 04 0.576237 8.623678e− 02 0.500095 1.009509e− 02

0.8 0.640000 0.638335 1.665023e− 03 0.797363 1.573629e− 01 0.650133 1.013280e− 02

0.9 0.810000 0.809173 8.269771e− 04 1.065055 2.550547e− 01 0.820247 1.024718e− 02

1 1.000000 0.999627 3.734836e− 04 1.383791 3.837905e− 01 1.010284 1.028422e− 02

Execution time (second) 63.710959 655.363505 660.053746
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Figure 2: Difference between the exact and numerical solutions of u(0, t) (using cubic B-spline method)
at different time levels in Example 6.2.

Figure 3: Difference between the exact and numerical solutions of u(x, t) (using cubic B-spline method)
in Example 6.2.
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Table 3: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.1 for Example 6.2.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.020000 0.025980 5.980018e− 03 0.281876 2.618755e− 01 0.080882 6.088199e− 02

0.2 0.050000 0.052632 2.632262e− 03 0.514170 4.641700e− 01 0.115037 6.503706e− 02

0.3 0.100000 0.100167 1.668558e− 04 0.581775 4.817751e− 01 0.165037 6.503702e− 02

0.4 0.170000 0.171013 1.012523e− 03 0.652335 4.823352e− 01 0.235037 6.503708e− 02

0.5 0.260000 0.260831 8.305401e− 04 0.742344 4.823441e− 01 0.325037 6.503713e− 02

0.6 0.370000 0.370968 9.675648e− 04 0.852336 4.823359e− 01 0.435037 6.503721e− 02

0.7 0.500000 0.500289 2.888326e− 04 0.981821 4.818208e− 01 0.565037 6.503745e− 02

0.8 0.650000 0.652114 2.113812e− 03 1.115606 4.656059e− 01 0.715039 6.503879e− 02

0.9 0.820000 0.825945 5.944882e− 03 1.098631 2.786313e− 01 0.881830 6.182991e− 02

1 1.010000 1.009995 5.378808e− 06 − − 0.575730 2.557303e− 01

Table 4: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.4 for Example 6.2.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.170000 0.171559 1.558871e− 03 0.182022 1.202229e− 02 0.234580 6.457960e− 02

0.2 0.200000 0.201761 1.760764e− 03 0.083894 1.161062e− 01 0.329997 1.299973e− 01

0.3 0.250000 0.252231 2.231220e− 03 0.248293 1.707446e− 03 0.444678 1.946779e− 01

0.4 0.320000 0.323350 3.349613e− 03 0.609328 2.893275e− 01 0.575730 2.557303e− 01

0.5 0.410000 0.417517 7.516586e− 03 0.813802 4.038023e− 01 0.674546 2.645461e− 01

0.6 0.520000 0.523644 3.644327e− 03 0.822459 3.024589e− 01 0.776779 2.567790e− 01

0.7 0.650000 0.651987 1.987092e− 03 0.680976 3.097568e− 02 0.846297 1.962968e− 01

0.8 0.800000 0.801716 1.716448e− 03 0.718246 8.175390e− 02 0.931618 1.316177e− 01

0.9 0.970000 0.971273 1.273001e− 03 1.000972 3.097183e− 02 1.036196 6.619598e− 02

1 1.160000 1.159994 6.107287e− 06 − − 1.159997 3.231078e− 06

Table 5: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.7 for Example 6.2.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.500000 0.500824 8.238517e− 04 0.539812 3.981189e− 02 0.566255 6.625531e− 02

0.2 0.530000 0.535545 5.544546e− 03 0.453964 7.603589e− 02 0.663942 1.339421e− 01

0.3 0.580000 0.584956 4.955926e− 03 0.458463 1.215369e− 01 0.769286 1.892855e− 01

0.4 0.650000 0.653058 3.058458e− 03 0.202756 4.472444e− 01 0.845312 1.953122e− 01

0.5 0.740000 0.742334 2.333865e− 03 0.011933 7.280665e− 01 0.936058 1.960584e− 01

0.6 0.850000 0.853017 3.016800e− 03 0.396319 4.536810e− 01 1.045315 1.953154e− 01

0.7 0.980000 0.984549 4.548550e− 03 0.853315 1.266847e− 01 1.169795 1.897953e− 01

0.8 1.130000 1.135695 5.694983e− 03 1.047237 8.276316e− 02 1.265560 1.355603e− 01

0.9 1.300000 1.300890 8.900114e− 04 1.300612 6.118885e− 04 1.367871 6.787105e− 02

1 1.490000 1.489993 7.360499e− 06 − − 1.490049 4.892595e− 05
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Table 6: Comparison among the exact and numerical solutions for u(x, t) at times t = 1 for Example 6.2.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 1.010000 1.009840 1.597410e− 04 0.953249 5.675088e− 02 1.002341 7.659472e− 03

0.2 1.040000 1.040851 8.506884e− 04 0.624658 4.153418e− 01 1.037527 2.473141e− 03

0.3 1.090000 1.093820 3.820391e− 03 0.645609 4.443907e− 01 1.091218 1.218128e− 03

0.4 1.160000 1.164019 4.019215e− 03 0.727493 4.325075e− 01 1.163432 3.431617e− 03

0.5 1.250000 1.250346 3.463538e− 04 0.812071 4.379292e− 01 1.254169 4.169362e− 03

0.6 1.360000 1.363526 3.525692e− 03 0.887814 4.721858e− 01 1.363432 3.431632e− 03

0.7 1.490000 1.494238 4.237672e− 03 0.929387 5.606133e− 01 1.491218 1.218170e− 03

0.8 1.640000 1.641035 1.035010e− 03 1.033373 6.066271e− 01 1.637527 2.473020e− 03

0.9 1.810000 1.809836 1.642921e− 04 1.475618 3.343816e− 01 1.802347 7.653413e− 03

1 2.000000 1.999993 7.126144e− 06 − − 2.000056 5.554890e− 05
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Figure 4: The comparison between the exact solution (shown by continuous lines) and numerical solution of u(x, t)
(using cubic B-spline method) at different time levels in Example 6.2.

Example 6.3. In this example, we consider the following one-dimensional inverse problem, for estimating unknown
boundary condition q(t).

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t < 1,

u(x, 0) = e−x, ut(x, 0) = −e−x, 0 ≤ x ≤ 1,

u(1, t) = e−t−1, u(0.01, t) = e−t−0.01, 0 ≤ t ≤ 1,

The exact solutions of this problem are

u(x, t) = e−t−x, q(t) = e−t, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

The numerical results of the unknown boundary condition u(0, t) is reported in Table 7. To clarify the accuracy of
the present method, the corresponding graphical illustration is presented in Figure 5. Also, the graphical illustration
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corresponding to the difference between the exact and numerical solutions of u(x, t) is presented in Figure 6. The
obtained numerical solutions for u(x, t) are given in Tables 8 and 11, and the graphical illustrations corresponding to
these Tables are presented in Figure 7.

Table 7: The comparison among the exact and numerical solutions for u(0, t) = q(t) in Example 6.3.

t
B-spline FDM RBF

q(t) q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)|
0.1 0.904837 0.904024 8.130902e− 04 0.871590 3.324791e− 02 0.895971 8.866572e− 03

0.2 0.818731 0.818521 2.099746e− 04 0.792640 2.609112e− 02 0.810719 8.011885e− 03

0.3 0.740818 0.740596 2.220373e− 04 0.720016 2.080263e− 02 0.733580 7.238487e− 03

0.4 0.670320 0.670182 1.381749e− 04 0.658110 1.220978e− 02 0.663781 6.538692e− 03

0.5 0.606531 0.606474 5.657870e− 05 0.611317 4.785912e− 03 0.600625 5.905503e− 03

0.6 0.548812 0.548658 1.531983e− 04 0.584027 3.521576e− 02 0.543479 5.332581e− 03

0.7 0.496585 0.496425 1.602629e− 04 0.580636 8.405034e− 02 0.491771 4.814183e− 03

0.8 0.449329 0.449061 2.682956e− 04 0.605534 1.562052e− 01 0.444984 4.345092e− 03

0.9 0.406570 0.406447 1.231597e− 04 0.663116 2.565463e− 01 0.402649 3.920544e− 03

1 0.367879 0.367951 7.145120e− 05 0.757774 3.898944e− 01 0.364173 3.706071e− 03

Execution time (second) 69.980792 652.772187 521.060564
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Figure 5: Difference between the exact and numerical solutions of u(0, t) (using cubic B-spline method)
at different time levels in Example 6.3.
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Figure 6: Difference between the exact and numerical solutions of u(x, t) (using cubic B-spline method)
in Example 6.3.

Table 8: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.1 for Example 6.3.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.818731 0.823112 4.381017e− 03 1.077677 2.589467e− 01 0.954919 1.361880e− 01

0.2 0.740818 0.743757 2.938683e− 03 1.201400 4.605820e− 01 0.891976 1.511582e− 01

0.3 0.670320 0.670515 1.950860e− 04 1.148475 4.781546e− 01 0.821467 1.511473e− 01

0.4 0.606531 0.607636 1.105114e− 03 1.085247 4.787167e− 01 0.757669 1.511387e− 01

0.5 0.548812 0.549713 9.017288e− 04 1.027540 4.787282e− 01 0.699943 1.511309e− 01

0.6 0.496585 0.497650 1.065000e− 03 0.975308 4.787225e− 01 0.647709 1.511240e− 01

0.7 0.449329 0.449918 5.886690e− 04 0.927542 4.782135e− 01 0.600447 1.511176e− 01

0.8 0.406570 0.408501 1.931524e− 03 0.868694 4.621240e− 01 0.557682 1.511123e− 01

0.9 0.367879 0.369052 1.172179e− 03 0.644449 2.765700e− 01 0.509446 1.415668e− 01

1 0.332871 0.332870 7.323592e− 07 − − 0.333104 2.330910e− 04

Table 9: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.4 for Example 6.3.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.606531 0.606883 3.527633e− 04 0.620143 1.361222e− 02 0.746847 1.403166e− 01

0.2 0.548812 0.549153 3.411326e− 04 0.620143 1.361222e− 02 0.837249 2.884375e− 01

0.3 0.496585 0.497542 9.565775e− 04 0.494452 2.133008e− 03 0.932793 4.362074e− 01

0.4 0.449329 0.453334 4.004753e− 03 0.736199 2.868705e− 01 1.029026 5.796970e− 01

Continued on next page
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Table 9 – Continued from previous page

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.5 0.406570 0.410554 3.984227e− 03 0.807468 4.008980e− 01 1.012243 6.056733e− 01

0.6 0.367879 0.368582 7.024805e− 04 0.668337 3.004574e− 01 0.953045 5.851659e− 01

0.7 0.332871 0.333424 5.532629e− 04 0.363895 3.102422e− 02 0.776488 4.436171e− 01

0.8 0.301194 0.301240 4.599823e− 05 0.220256 8.093847e− 02 0.596297 2.951024e− 01

0.9 0.272532 0.272734 2.019523e− 04 0.303362 3.082995e− 02 0.596297 2.951024e− 01

1 0.246597 0.246596 9.247281e− 07 − − 0.246799 2.022716e− 04

Table 10: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.7 for Example 6.3.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.449329 0.449792 4.633991e− 04 0.487433 3.810402e− 02 0.591922 1.425929e− 01

0.2 0.406570 0.407439 8.697706e− 04 0.330168 7.640202e− 02 0.697904 2.913347e− 01

0.3 0.367879 0.368407 5.271778e− 04 0.248213 1.196667e− 01 0.778275 4.103954e− 01

0.4 0.332871 0.332897 2.563786e− 05 −0.108870 4.417410e− 01 0.750983 4.181121e− 01

0.5 0.301194 0.300740 4.539631e− 04 −0.420574 7.217680e− 01 0.718803 4.176089e− 01

0.6 0.272532 0.272728 1.958297e− 04 −0.177906 4.504378e− 01 0.689172 4.166404e− 01

0.7 0.246597 0.249164 2.567163e− 03 0.120732 1.258649e− 01 0.656659 4.100616e− 01

0.8 0.223130 0.225911 2.781171e− 03 0.141050 8.208022e− 02 0.519528 2.963979e− 01

0.9 0.201897 0.201331 5.659195e− 04 0.202575 6.781108e− 04 0.349113 1.472168e− 01

1 0.182684 0.182683 9.101218e− 07 − − 0.182863 1.796914e− 04

Table 11: Comparison among the exact and numerical solutions for u(x, t) at times t = 1 for Example 6.3.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.332871 0.332248 6.232355e− 04 0.280163 5.270840e− 02 0.299068 3.380291e− 02

0.2 0.301194 0.299808 1.386122e− 03 −0.110965 4.121595e− 01 0.268016 3.317801e− 02

0.3 0.272532 0.272292 2.402213e− 04 −0.169539 4.420708e− 01 0.239650 3.288184e− 02

0.4 0.246597 0.245878 7.189648e− 04 −0.184273 4.308696e− 01 0.213710 3.288696e− 02

0.5 0.223130 0.222476 6.544451e− 04 −0.212337 4.354675e− 01 0.189933 3.319691e− 02

0.6 0.201897 0.200903 9.939322e− 04 −0.265374 4.672701e− 01 0.168071 3.382540e− 02

0.7 0.182684 0.182831 1.477558e− 04 −0.372146 5.548299e− 01 0.147890 3.479351e− 02

0.8 0.165299 0.164808 4.907291e− 04 −0.436396 6.016945e− 01 0.129165 3.613355e− 02

0.9 0.149569 0.147191 2.377986e− 03 −0.182506 3.320751e− 01 0.111688 3.788021e− 02

1 0.135335 0.135334 8.531876e− 07 − − 0.135317 1.841884e− 05
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Figure 7: The comparison between the exact solution (shown by continuous lines) and numerical solution of u(x, t)
(using cubic B-spline method) at different time levels in Example 6.3.

Example 6.4. In this example, we consider the following one-dimensional inverse problem, for estimating unknown
boundary condition q(t).

utt(x, t) = uxx(x, t), 0 < x < 1, 0 < t < 1,

u(x, 0) = e−x + x2, ut(x, 0) = −e−x + x3, 0 ≤ x ≤ 1,

u(1, t) = e−1−t + t+ t3 + t2 + 1, u(0.01, t) = e−0.01−t + (0.01)3t+ (0.01)t3 + t2 + (0.01)2, 0 ≤ t ≤ 1,

The exact solutions of this problem are

u(x, t) = e−x−t + x3t+ xt3 + t2 + x2, q(t) = e−t + t2, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.

The numerical results of the unknown boundary condition u(0, t) is reported in Table 12. To clarify the accuracy of
the present method, the corresponding graphical illustration is presented in Figure 8. Also, the graphical illustration
corresponding to the difference between the exact and numerical solutions of u(x, t) is presented in Figure 9. The
obtained numerical solutions for u(x, t) are given in Tables 13 and 16, and the graphical illustrations corresponding
to these Tables are presented in Figure 10.
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Table 12: The comparison among the exact and numerical solutions for u(0, t) = q(t) in Example 6.4.

t
B-spline FDM RBF

q(t) q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)| q∗(t) |q(t)− q∗(t)|
0.1 0.914837 0.913971 8.660856e− 04 0.905848 8.989653e− 03 0.906065 8.771927e− 03

0.2 0.858731 0.857784 9.464724e− 04 0.862863 4.132155e− 03 0.850898 7.833081e− 03

0.3 0.830818 0.829813 1.005385e− 03 0.837482 6.663429e− 03 0.823968 6.850699e− 03

0.4 0.830320 0.829341 9.786953e− 04 0.833696 3.375686e− 03 0.824564 5.756086e− 03

0.5 0.856531 0.855589 9.415711e− 04 0.855497 1.033765e− 03 0.852049 4.481289e− 03

0.6 0.908812 0.907811 1.000581e− 03 0.906877 1.934758e− 03 0.905853 2.959027e− 03

0.7 0.986585 0.985672 9.132446e− 04 0.991827 5.242119e− 03 0.985463 1.122617e− 03

0.8 1.089329 1.088401 9.282853e− 04 1.114340 2.501131e− 02 1.090423 1.094077e− 03

0.9 1.216570 1.215638 9.317507e− 04 1.278407 6.183750e− 02 1.220326 3.756695e− 03

1 1.367879 1.366845 1.034832e− 03 1.488020 1.201404e− 01 1.374791 6.911522e− 03

Execution time (second) 65.668541 652.776792 644.512736
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Figure 8: Difference between the exact and numerical solutions of u(0, t) (using cubic B-spline method)
at different time levels in Example 6.4.
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Figure 9: Difference between the exact and numerical solutions of u(x, t) (using cubic B-spline method)
in Example 6.4.

Table 13: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.1 for Example 6.4.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.838931 0.840156 1.225420e− 03 0.873342 3.441157e− 02 0.848038 9.107163e− 03

0.2 0.791818 0.791588 2.302895e− 04 0.866688 7.486999e− 02 0.808592 1.677383e− 02

0.3 0.773320 0.773359 3.861744e− 05 0.851866 7.854609e− 02 0.790091 1.677144e− 02

0.4 0.783331 0.783472 1.410608e− 04 0.861996 7.866501e− 02 0.800100 1.676979e− 02

0.5 0.821812 0.821952 1.407497e− 04 0.900478 7.866658e− 02 0.838581 1.676889e− 02

0.6 0.888785 0.888919 1.334666e− 04 0.967450 7.866465e− 02 0.905554 1.676869e− 02

0.7 0.984329 0.984438 1.090076e− 04 1.062909 7.857970e− 02 1.001098 1.676913e− 02

0.8 1.108570 1.108513 5.635559e− 05 1.184500 7.593073e− 02 1.125340 1.677008e− 02

0.9 1.261679 1.262461 7.812644e− 04 1.307083 4.540377e− 02 1.277182 1.550273e− 02

1 1.443871 1.443863 7.627782e− 06 − − 1.443911 3.955469e− 05

Table 14: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.4 for Example 6.4.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.783331 0.785713 2.382181e− 03 0.798268 1.493698e− 02 0.794257 1.092677e− 02

0.2 0.764812 0.766876 2.064653e− 03 0.750160 1.465174e− 02 0.793605 2.879333e− 02

0.3 0.776585 0.778378 1.792780e− 03 0.768238 8.347337e− 03 0.822263 4.567737e− 02

0.4 0.820529 0.821439 9.104828e− 04 0.862080 4.155134e− 02 0.884966 6.443663e− 02

Continued on next page
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Table 14 – Continued from previous page

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.5 0.898570 0.899019 4.489820e− 04 0.962535 6.396549e− 02 0.972430 7.386084e− 02

0.6 1.012679 1.013050 3.701450e− 04 1.061237 4.855784e− 02 1.084234 7.155453e− 02

0.7 1.164871 1.166479 1.608034e− 03 1.169318 4.446830e− 03 1.220897 5.602584e− 02

0.8 1.357194 1.359391 2.196918e− 03 1.343395 1.379966e− 02 1.395993 3.879876e− 02

0.9 1.591732 1.594924 3.191949e− 03 1.596546 4.814360e− 03 1.611969 2.023716e− 02

1 1.870597 1.870582 1.543023e− 05 − − 1.870584 1.270792e− 05

Table 15: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.7 for Example 6.4.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 0.984329 0.986298 1.968797e− 03 0.983863 4.663639e− 04 1.001641 1.731209e− 02

0.2 1.010770 1.013246 2.476368e− 03 0.993900 1.686954e− 02 1.049319 3.854954e− 02

0.3 1.069679 1.072586 2.906872e− 03 1.057700 1.197977e− 02 1.125281 5.560109e− 02

0.4 1.164871 1.168597 3.725425e− 03 1.104268 6.060310e− 02 1.224523 5.965171e− 02

0.5 1.300194 1.304409 4.214970e− 03 1.180883 1.193115e− 01 1.361178 6.098403e− 02

0.6 1.479532 1.484365 4.833615e− 03 1.398356 8.117605e− 02 1.539535 6.000302e− 02

0.7 1.706797 1.711342 4.545349e− 03 1.681135 2.566225e− 02 1.765689 5.889251e− 02

0.8 1.985930 1.990570 4.639779e− 03 1.970360 1.556982e− 02 2.034372 4.844204e− 02

0.9 2.320897 2.324994 4.097545e− 03 2.320349 5.472488e− 04 2.346340 2.544312e− 02

1 2.715684 2.715663 2.090602e− 05 − − 2.715655 2.854397e− 05

Table 16: Comparison among the exact and numerical solutions for u(x, t) at times t = 1 for Example 6.4.

B-spline FDM RBF

x u(x, t) u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)| u∗(x, t) |u(x, t)− u∗(x, t)|

0.1 1.443871 1.447118 3.247006e− 03 1.455208 1.133733e− 02 1.450647 6.776126e− 03

0.2 1.549194 1.553738 4.543321e− 03 1.479057 7.013733e− 02 1.563739 1.454526e− 02

0.3 1.689532 1.694760 5.227813e− 03 1.479057 7.013733e− 02 1.709959 2.042769e− 02

0.4 1.870597 1.876565 5.968326e− 03 1.790142 8.045527e− 02 1.894756 2.415942e− 02

0.5 2.098130 2.104406 6.275574e− 03 2.023378 7.475189e− 02 2.123606 2.547614e− 02

0.6 2.377897 2.384710 6.813883e− 03 2.312440 6.545664e− 02 2.402005 2.410857e− 02

0.7 2.715684 2.723082 7.398453e− 03 2.633767 8.191654e− 02 2.735465 1.978170e− 02

0.8 3.117299 3.124920 7.620664e− 03 3.017213 1.000861e− 01 3.129513 1.221368e− 02

0.9 3.588569 3.595498 6.929588e− 03 3.529901 5.866737e− 02 3.589720 1.151353e− 03

1 4.135335 4.135309 2.612864e− 05 − − 4.135291 4.427479e− 05
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Figure 10: The comparison between the exact solution (shown by continuous lines) and numerical solution of u(x, t)
(using cubic B-spline method) at different time levels in Example 6.4.

7 Conclusion

The cubic B-spline method has been employed to estimate unknown boundary condition for the inverse wave
problems (1.1). Since the coefficient matrix of the system obtained from interpolating is usually ill-posed, hence
to regularize the resultant ill-posed linear system of equations, we have applied the TR method to obtain a stable
numerical approximation to the solution. The stability and convergence analysis of the proposed method have been

discussed, and shown that the convergence rate of the proposed method is O
(
(∆t)2+h2

)
. Numerical comparisons have

been made between the implementations of the proposed method and finite difference method (FDM) and the radial
basis function (RBF) method. The results obtained are quite satisfactory and competent with the solutions available
in the literature. The obtained numerical solutions by the presented method is the most accurate in comparison with
FDM and RBF method and are in good agreement with the exact solutions. The strong point of the method is its easy
and simple computation with low-storage space and cost. Therefore, it follows that the proposed method is efficient
and powerful in solving the inverse wave equation.
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