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Abstract

We discuss some new results for Gronwall’s type inequality on time scales. An analysis of the behavior of the solutions
of some hyperbolic partial differential equations as applicable to our results is considered.
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1 Introduction

The Henstock-Kurzweil-Stieltjes integral is a generalized Riemann-Stieltjes integral with similar properties. In 1988,
Hilger [9] introduced the theory of time scales in his Ph.D. Thesis. The Henstock delta integral on time scales was
introduced by Peterson and Thompson [15] and Henstock-Kurzweil integrals on time scales was studied by Thompson
[16]. The approaches adapted to the time scale setting can be used to derive the majority of the properties of a time
scale integral (see [2, 3, 7, 9, 15, 16]).

In 2020, Khan et al.,[10] gives the derivation of dynamical integral inequalities based on two-dimensional time
scales theory. Gronwall type inequalities for interval-valued functions on time scales was given by Younus et al.,[17].
Bellman [4] discussed stability of solutions of linear differential equations, and similar result is obtained in Bellman
[5]: If the functions g(t) and u(t) are nonnegative for t ≥ 0, and if c ≥ 0, then the inequality

u(t) ≤ c+

∫ t

0

g(s)u(s)ds, t ≥ 0

implies that

u(t) ≤ c exp

(∫ t

0

g(s)ds

)
, for t ≥ 0.

Different applications of the result of Bellman [5] to the study of stability of the solution of linear and nonlinear
differential equations can be seen in Bellman [4]. Some other applications to existence and uniqueness theory of
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differential equations can be seen in Bihari [6], Langenhop [12], Nemyckii and Stepanov [14]. But none of these afore-
mentioned researchers has considered the application of Henstock-Kurzweil-Stieltjes-♢-double integral on nonlinear
integral inequalities of Gronwall type on time scales.

Gronwall-Bellman type inequalities are useful tools to obtain various estimates in the theory of differential equa-
tions, see [4]. There are several mathematical models to study the behavior of the real-life situations such as: static
or dynamic, linear or nonlinear, continuous or discrete, deterministic or probabilistic. Some of the applications
of Henstock-Kurzweil-Stieltjes integral for Gronwall-Bellman’s type lemma in finance are found in Kozlowski [11],
”Hedging the Black-Scholes call option”, and also in elementary stochastic calculus with finance in view by Mikosch
[13].

The aim of this paper is to obtain some results of Gronwall-Bellman’s type lemma when dealing with Henstock-
Kurzweil-Stieltjes-♢-double integrals on time scales.

2 Preliminaries

First, we recall some basic concepts used in this paper and also refer interested reader to ([7] , [15, 16]) for detailed
theory of time scales.

Definition 2.1. Let T be a time scale. A function f : T → R is continuous at a point s if there exists ε > 0 such
that |f(t)− f(s)| < ε, and for any δ > 0, there is |f − s| < δ.

Right-scattered at t ∈ T if σ(t) > t and left-scattered at t ∈ T if ρ(t) < t. It is right-dense at t ∈ T if t < supT and
σ(t) = t and left-dense at t ∈ T if t > inf T and ρ(t) = t.

The graininess function µ : T → [0,∞) is defined by µ(t) = σ(t)− t for all t ∈ T.
A mapping f : T → R is said to be rd-continuous if:

(i) f is continuous at each right-dense point of T
(ii) at each left-dense point t ∈ T, lims→t− g(s) = g(t−) exists.

Let a, b ∈ T1, c, d ∈ T2, where a < d, c < d, and a rectangle R = [a, b)T1
× [c, d)T2

= {(t, s) : t ∈ [a, b), s ∈
[c, d), t ∈ T1, s ∈ T2}. Let g1, g2 : T1 × T2 → R be two non-decreasing functions on [a, b]T1 and [c, d]T2 , respectively.
Let F : T1 × T2 → R be bounded on R. Let P1 and P2 be two partitions of [a, b]T1 and [c, d]T2 such that P1 =
{t0, t1, ..., tn} ⊂ [a, b]T1

and P2 = {s0, s1, ..., sn} ⊂ [c, d]T2
. Let {ξ1, ξ2, ..., ξn} denote an arbitrary selection of points

from [a, b]T1
with ξi ∈ [ti−1, ti)T1

, i = 1, 2, ..., n. Similarly, let {ζ1, ζ2, ..., ζn} denote an arbitrary selection of points
from [c, d]T2

with ζj ∈ [sj−1, sj)T2
, j = 1, 2, ..., k.

Definition 2.2. [1] Let F : [a, b)T1 × [c, d)T2 → R be a bounded function on R and let g be a non-decreasing function
defined on [a, b)T1×[c, d)T2 with partitions P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i = 1, 2, ..., n
and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2

with tag points ζj ∈ [sj−1, sj ]T2
for j = 1, 2, ..., k. Then

S(P1, P2, F, g1, g2) =

n∑
i=1

k∑
j=1

F (ξi, ζj)(g1(ti)− g1(ti−1))(g2(sj)− g2(sj−1))

is defined as Henstock-Kurweil-Stieltjes-♢-double sum of F with respect to functions g1 and g2.

The Henstock-Kurweil-Stieltjes-♢-double sum of F with respect to functions g1 and g2 is denoted by S(P, F, g1, g2),
where P = P1 × P2.

Definition 2.3. Let F : [a, b)T1
× [c, d)T2

→ R be a bounded function on R = [a, b)T1
× [c, d)T2

: t ∈ [a, b)T1
, s ∈

[c, d)T1
. We say that F is Henstock-Kurzweil-Stieltjes-♢-double integrable with respect to non-decreasing functions

g1, g2 defined on [a, b)T1 × [c, d)T2 if there is a number L, a member of R such that for every ε > 0, there is a ♢-gauge
δ (or γ) such that

|S(P, F, g1, g2)− L| < ε

provided that P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i = 1, ..., n and P2 = {s0, s1, ..., sk} ⊂
[c, d]T2

with tag points ζj ∈ [sj−1, sj ]T2
, j = 1, 2, ..., k are δ-fine (or γ) partitions of [a, b)T1

× [c, d)T2
.
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We say that L is the Henstock-Kurzweil-Stieltjes-♢-double integral of F with respect to g1 and g2 defined on [a, b)T1
×

[c, d)T2
, and write ∫ ∫

R
F (s, t)♢g1(t)♢g2(s) = L.

Proposition 2.4. If F : [a, b)T1
× [c, d)T2

→ R is Henstock-Kurzweil-Stieltjes-♢-double integrable with respect to
monotone increasing functions g1 and g2 defined on [a, b)T1

and [c, d)T2
respectively, and

f(s, t) =

∫ ∫
R
F (s, t)♢g1(t)♢g2(s)

then f is rd-continuous and
f(s, t) = F (s, t) a.e. ∈ [a, b)T1

× [c, d)T2
.

Proof . See [1]. Similar proof for functions of single variable also appears in [8]. □

3 The Main Results

Throughout this paper, all the functions used are assumed to be real-valued. R denotes a rectangle and R is a set
of real numbers with R+ = [0,∞), I1 = [x0, A) and I2 = [y0, B) be given subsets of R.

Theorem 3.1. Let G,F : [a, b)T1 × [c, d)T2 → R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect to
monotone increasing functions g1 and g2 on [a, b)T1

and [c, d)T2
respectively. Let H(x, y) be monotone increasing

function in each of the variables for x0 ≤ x, y0 ≤ y. Suppose that

G(x, y) ≤ H(x, y) +

∫ x

x0

∫ y

y0

F (s, t)Gp(t, s)♢g1(t)♢g2(s) (3.1)

x0 ≤ x, y0 ≤ y, where p ≥ 0, p ̸= 1, is a constant. Then

G(x, y) ≤
[
Hq(x, y) + q

∫ x

x0

∫ y

y0

F (s, t)♢g1(t)♢g2(s)

]1
q

(3.2)

for x ∈ [x0, A), y ∈ [y0, B), where q = 1−p, A and B are chosen so that the expression between the interval is positive
in the subintervals [x0, A) and [y0, B).

Proof . Let x0 ≤ A and x ≤ B be fixed. For x0 ≤ x ≤ A, y0 ≤ y ≤ B we have

G(x, y) ≤ H(A,B) +

∫ x

x0

(∫ y

y0

F (s, t)Gp(s, t)♢g1(t)

)
♢g2(s). (3.3)

Let the first order partial derivatives of function Z(x, y) defined for x, y ∈ R with respect to x and y be denoted by
Zx(x, y) and Zy(x, y) respectively. Define a function J(x, y) by the right-hand side of (3.3). Then the function J(x, y)
is monotone increasing in each variable x, y, and J(x0, y) = H(A,B),

∂J

∂b
(x, y) =

∫ y

y0

F (x, t)Gp(x, t)♢g1(t) ≤
∫ y

y0

F (x, t)♢g1(t)J
p(x, y), (3.4)

since G(x, t) ≤ J(x, t). According to (3.4), the function Z(x, y) = Jq(x,y)
q satisfies

∂J

∂x
(x, y) = Jq−1(x, y)

∂J

∂x
(x, y) ≤

∫ y

y0

F (x, t)♢g1(t). (3.5)

Integrating (3.5) over s from x0 to x, and the change of variable gives

Z(x, y) ≤ 1

q
Jq(x0, y) +

∫ x

x0

∫ y

y0

F (s, t)♢g1(t)♢g2(s), (3.6)
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or

Jq(x, y) ≤≥ Hq(A,B) + q

∫ x

x0

∫ y

y0

F (s, t)♢g1(t)♢g2(s), (3.7)

where (≤, ≥) holds for (q > 0, q < 0) respectively. Considering both cases, this estimate implies

J(x, y) ≤
[
Hq(A,B) + q

∫ x

x0

∫ y

y0

F (s, t)♢g1(t)♢g2(s)

] 1
q

(3.8)

for x0 ≤ x ≤ A, y0 ≤ y ≤ B. Now, let x = A and y = B and changing notation, we have

G(x, y) ≤
[
Hq(x, y) + q

∫ y

x0

∫ y

y0

F (s, t)♢g1(t)♢g2(s)

]1
q

which ends the proof. □

We shall consider a special case of Theorem 3.1 as follows:

Corollary 3.2. Let G(x, y), H(x, y), F (x, y) be rd-continuous functions in a rectangle R = [a, b)T1
× [c, d)T2

for
x0 ≤ x, y0 ≤ y and let H(x) be monotone increasing in x, x0 ≤ x, y0 ≤ y, and K(y) be monotone increasing in
y, y0 ≤ y, functions g1 and g2 are non-decreasing functions respectively. Suppose that

G(x, y) ≤ H(x) +K(y) +

∫ x

0

∫ ∞

y

F (s, t)Gp(s, t)♢g1(t)♢g2(s), x0 ≤ x, y0 ≤ y, (3.9)

where p ≥ 0, p ̸= 1, is a constant. Then

G(x, y) ≤
[
(H(x) +K(y))q + q

∫ x

x0

∫ y

x

F (s, t)♢g1(t)♢g2(s)

]1
q

(3.10)

for x ∈ [x0, A), y ∈ [y0, B), where q = 1−p, A and B are chosen so that the expression between the interval is positive
in the subintervals [x0, A) and [y0, B).

Theorem 3.3. Let G,F : [a, b)T1
× [c, d)T2

→ R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect to
monotone increasing functions g1 and g2 on [a, b)T1

and [c, d)T2
respectively. Let G(x, y), H(x, y) be rd-continuous

functions in a rectangle R = [a, b)T1
× [c, d)T2

for x0 ≤ x, y0 ≤ y and let H(x, y) be monotone increasing in each of
the variables for x, y. Suppose that

G(x, y) ≤ H(x, y) +

∫ ∞

x

∫ ∞

y

F (s, t)Gp(t, s)♢g1(t)♢g2(s), x ≥ 0, y ≥ 0, (3.11)

where p ≥ 0, p ̸= 1, is a constant and∫ ∞

x

∫ ∞

y

F (s, t)♢g1(t)♢g2(s) <∞, x ≥ 0, y ≥ 0,

Then

G(x, y) ≤
[
Hq(x, y) + q

∫ ∞

x

∫ ∞

y

F (s, t)♢g1(t)♢g2(s)

]1
q

(3.12)

for x ∈ [0, A), y ∈ [0, B), where q = 1− p, A and B are chosen so that the expression between the interval is positive
in the subintervals [0, A) and [0, B).

Proof . The proof of Theorem 3.3 is straightforward from the details of the proof of Theorem 3.1. Therefore, we omit
the proof. □



HKS-♢-double integral for Gronwall-Bellman’s type lemma on time scales 837

Theorem 3.4. Let G,F : [a, b)T1
× [c, d)T2

→ R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect to
monotone increasing functions g1 and g2 on [a, b)T1

and [c, d)T2
respectively. Let G(x, y), H(x, y) be rd-continuous

functions in a rectangle R = [a, b)T1 × [c, d)T2 for x0 ≤ x, y0 ≤ y and let H(x, y) be monotone increasing function in
x and monotone decreasing in y. Suppose that

G(x, y) ≤ H(x, y) +

∫ x

0

∫ ∞

y

F (s, t)Gp(t, s)♢g1(t)♢g2(s), x ≥ 0, y ≥ 0, (3.13)

where p ≥ 0, p ̸= 1, is a constant and∫ x

0

∫ ∞

y

F (s, t)♢g1(t)♢g2(s) <∞, x ≥ 0, y ≥ 0,

Then

G(x, y) ≤
[
Hq(x, y) + q

∫ ∞

x

∫ ∞

y

F (s, t)♢g1(t)♢g2(s)

]1
q

(3.14)

for x ∈ [0, A), y ∈ [0, B), where q = 1− p, A and B are chosen so that the expression between the interval is positive
in the subintervals [0, A) and [0, B).

Proof . The proof of Theorem 3.4 follows from the proof of Theorem 3.1. Thus, we omit the proof. □

We shall give the following theorems for the generalizations of the theorems stated earlier.

Theorem 3.5. Let G,F : [a, b)T1
× [c, d)T2

→ R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect
to monotone increasing functions g1 and g2 on [a, b)T1

and [c, d)T2
respectively. Let G(x, y), H(x, y),K(x, y) be rd-

continuous functions in a rectangle R = [a, b)T1
× [c, d)T2

for x0 ≤ x, y0 ≤ y and let H(x, y) be monotone increasing
in each of the variables for x0 ≤ x, y0 ≤ y. Suppose that

G(x, y) ≤ H(x, y) +

∫ x

x0

K(s, y)G(s, y)♢g2(s) +
∫ x

x0

∫ y

y0

F (s, t)Gp(s, t)♢g1(t)♢g2(s) (3.15)

for x0 ≤ x, y0 ≤ y, where p ≥ 0, p ̸= 1, is a constant. Then

G(x, y) ≤ exp

(∫ x

x0

K(θ, y)dθ

)

×
[
Hq(x, y) + q

∫ x

x0

∫ y

y0

F (s, t)exp

(∫ s

x0

K(θ, y)dθ

)
♢g1(t)♢g2(s)

]1
q

for x ∈ [x0, A), y ∈ [y0, B), where q = 1−p, A and B are chosen so that the expression between the interval is positive
in the subintervals [x0, A) and [y0, B).

Proof . Let a function Z(x, y) be defined by

Z(x, y) ≤ H(x, y) +

∫ x

x0

∫ y

y0

F (s, t)Gp(s, t)♢g1(t)♢g2(s). (3.16)

Then Z(x, y) is monotonic increasing in each variables x, y, and we restated (3.15) as

G(x, y) ≤ Z(x, y) +

∫ x

x0

K(s, y)G(s, y)♢g2(s). (3.17)

Let us further define a function J(x, y) by

J(x, y) =

∫ x

x0

K(s, y)G(s, y)♢g2(s).

Then J(x0, y) = 0, we have
∂J

∂x
(x, y) ≤ K(x, y)Z(x, y) +K(x, y)J(x, y), (3.18)
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since G(x, y) ≤ Z(x, y) + J(x, y). The inequality (3.18) implies that[
∂J

∂s
(s, y)− (s, y)J(s, y)

]
exp

(∫ x

s

K(θ, y)dθ

)
≤ K(s, y)Z(s, y)exp

(∫ x

s

K(θ, y)dθ

)
for x0 ≤ s, or

∂

∂s

[
J(s, y)exp

(∫ x

s

K(θ, y)dθ

)]
≤ K(s, y)Z(s, y)exp

(∫ x

s

K(θ, y)dθ

)
.

Now integrating over s from x0 to x, we have

J(x, y) ≤
∫ x

x0

K(s, y)Z(s, y)exp

(∫ x

s

K(θ, y)dθ

)
♢g2(s),

which implies that

J(x, y) ≤ Z(x, y)

∫ x

x0

K(s, y)exp

(∫ x

s

K(θ, y)dθ

)
♢g2(s), (3.19)

since J(x0, y) = 0. From (3.17) and (3.19), we have

G(x, y) ≤ Z(x, y)exp

(∫ x

x0

K(θ, y)dθ

)
. (3.20)

By using the definition of Z(x, y) and (3.20), we get the estimate

Z(x, y) ≤ H(x, y) +

∫ x

x0

∫ y

y0

F (s, t)exp

(
p

∫ s

x0

K(θ, y)dθ

)
Zp(s, t)♢g1(t)♢g2(s).

Now by Theorem 3.1, we have

Z(x, y) ≤
[
Hq(x, y) + q

∫ x

x0

∫ y

y0

F (s, t)exp

(
p

∫ s

x0

K(θ, y)dθ

)
Zp(s, t)♢g1(t)♢g2(s)

]1
q
. (3.21)

for x ∈ [x0, A), y ∈ [y0, B), where q = 1−p, A and B are chosen so that the expression between the interval is positive
in the subintervals [x0, A) and [y0, B). By using (3.20) and (3.21), we have the desired inequality

G(x, y) ≤ exp

(∫ x

x0

K(θ, y)dθ

)

×
[
Hq(x, y) + q

∫ x

x0

∫ y

y0

F (s, t)exp

(∫ s

x0

K(θ, y)dθ

)
♢g1(t)♢g2(s)

]1
q
.

That ends the proof. □

Theorem 3.6. Let G,F : [a, b)T1 × [c, d)T2 → R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect
to monotone increasing functions g1 and g2 on [a, b)T1 and [c, d)T2 respectively. Let G(x, y), H(x, y),K(x, y) be rd-
continuous functions in a rectangle R = [a, b)T1

× [c, d)T2
for x0 ≤ x, y0 ≤ y and let H(x, y) be monotone decreasing

in each of the variables for x, y. Suppose that

G(x, y) ≤ H(x, y) +

∫ ∞

x

K(s, y)G(s, y)♢g2(s) +
∫ ∞

x

∫ ∞

y

F (s, t)Gp(s, t)♢g1(t)♢g2(s)

for x0 ≤ x, y0 ≤ y, where p ≥ 0, p ̸= 1, is a constant, and∫ ∞

x

K(s, y)♢g2(s) <∞,

∫ ∞

x

∫ ∞

y

F (s, t)♢g1(t)♢g2(s) <∞
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for x ≥ 0, y ≥ 0. Then

G(x, y) ≤ exp

(∫ ∞

x

K(θ, y)dθ

)

×
[
Hq(x, y) + q

∫ ∞

x

∫ ∞

y

F (s, t)exp

(∫ ∞

s

K(θ, y)dθ

)
♢g1(t)♢g2(s)

]1
q

for x ∈ [0, A), y ∈ [0, B), where q = 1− p, A and B are chosen so that the expression between the interval is positive
in the subintervals [0, A) and [0, B).

Proof . The proof of Theorem 3.6 follows from Theorem 3.1 with little changes in notations of Theorem 3.4. Therefore,
we omit the proof. □

Theorem 3.7. Let G,F : [a, b)T1
× [c, d)T2

→ R be Henstock-Kurzweil-Stieltjes-♢-double integrable with respect
to monotone increasing functions g1 and g2 on [a, b)T1

and [c, d)T2
respectively. Let G(x, y), H(x, y),K(x, y) be rd-

continuous functions in a rectangle R = [a, b)T1
× [c, d)T2

for x0 ≤ x, y0 ≤ y and let H(x, y) be monotone increasing
in x and monotone decreasing in y. Suppose that

G(x, y) ≤ H(x, y) +

∫ ∞

x

K(s, y)G(s, y)♢g2(s) +
∫ ∞

x

∫ ∞

y

F (s, t)Gp(s, t)♢g1(t)♢g2(s)

for x0 ≤ x, y0 ≤ y, where p ≥ 0, p ̸= 1, is a constant, and∫ x

0

∫ ∞

y

F (s, t)♢g1(t)♢g2(s) <∞

for x ≥ 0, y ≥ 0. Then

G(x, y) ≤ exp

(∫ x

0

K(θ, y)dθ

)

×
[
Hq(x, y) + q

∫ x

0

∫ ∞

y

F (s, t)exp

(∫ s

0

K(θ, y)dθ

)
♢g1(t)♢g2(s)

]1
q

for x ∈ [0, A), y ∈ [0, B), where q = 1− p, A and B are chosen so that the expression between the interval is positive
in the subintervals [0, A) and [0, B).

Proof . By the assertions of Theorem 3.5 with similar reasoning, then Theorem 3.7 holds. Therefore, we omit the
proof. □

4 Applications

We shall give some applications of Theorem 3.5 and Theorem 3.6 in hyperbolic partial differential equation. Some
properties of solutions of terminal value problem will be considered.

Consider the following:
Gxy(x, y)− U(x, y,G(x, y)) + V (x, y), (4.1)

G(x,∞) = ψ∞(x), G(∞, y) = θ∞(y), G(∞,∞) = F, (4.2)

where U : [a, b)T1
× [c, d)T2

→ R, V : [a, b)T1
× [c, d)T2

→ R, ψ∞, θ∞ : R+ → R are continuous functions and F is a
real constant.
Let us consider an example that estimates the solution of the partial differential equation (4.1) with condition (4.2).

Example 4.1. Suppose that the function U satisfies the condition

|U(x, y,G)| ≤ F (x, y)|G|p, (4.3)
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and ∣∣∣∣ψ∞(x) + θ∞(y)− F +

∫ ∞

x

∫ ∞

y

V (s, t)♢g1(t)♢g2(s)

∣∣∣∣ ≤ H(x, y) +

∫ ∞

x

K(s, y)G(s, y)♢g2(s), (4.4)

where G(x, y), H(x, y),K(x, y) are rd-continuous functions in a rectangle R = [a, b)T1 × [c, d)T2 . If G(x, y) is a solution
of (4.1) with the condition (4.2), then we have

G(x, y) = ψ∞(x) + θ∞(y)− F +

∫ ∞

x

∫ ∞

y

(U(s, t,G(s, t)) + V (s, t))♢g1(t)♢g2(s) (4.5)

for s, t ∈ [a, b)T1
× [c, d)T2

. Then from (4.3), (4.4), (4.5), we have

|G(x, y)| ≤ H(x, y) +

∫ ∞

x

K(s, t)|G|♢g2(s) +
∫ ∞

x

∫ ∞

y

F (x, y)|G|p♢g1(t)♢g2(s). (4.6)

By applying Theorem 3.6 in (4.6), we have the required estimate

|G(x, y)| ≤ exp

(∫ ∞

x

K(θ, y)dθ

)

×
[
Hq(x, y) + q

∫ ∞

x

∫ ∞

y

F (s, t)exp

(∫ ∞

s

K(θ, y)dθ

)
♢g1(t)♢g2(s)

]1
q

for x ∈ [0, A), y ∈ [0, B), where q = 1− p, A and B are chosen so that the expression between the interval is positive
in the subintervals [0, A) and [0, B). The right hand side of the estimate yields the bound on the solution G(x, y) of
(4.1)and (4.2) in terms of the known functions.

Conclusion

In this paper, we have obtained some Gronwall-Bellman’s type lemma when dealing with Henstock-Kurzweil-
Stieltjes-♢-double integrals on time scales. An analysis of the behavior of the solutions of some hyperbolic partial
differential equations as an application to our results is considered.

Open Problem

Can analogue of the results in this paper be obtain for multidimensional case?
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