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Abstract

In this work, we shall give an upper bound for Jensen’s inequality (for uniformly convex functions). Also, we introduce
a refinement for the generalized A — G — H inequality. Applying those results in information theory and obtain bounds
for entropy.
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1 Introduction and Basic notions

Arithmetic and geometric means are used in making estimates or approximations. In this section we study the
properties of the arithmetic and geometric means.

Definition 1.1. Let 21, ..., 2, € I be points, and let py, ..., p, € [0,1] be coefficients such that Y"1 ; p; = 1. The sum
S piwi is called the convex combination of points z;.

Definition 1.2. [2] Let f be a real function on I := [a,b]. Then f is uniformly convex with modulus ¢ : R>¢g —
[0, 4+00) if is increasing, vanishes only at 0, and

flaz+ (1 —a)y) +a(l —a)é(lz —yl) < af(x) + (1 -a)f(y)

for every o € [0,1] and z,y € [a, b].

For x := {x;}"_; C I and p := {p1,...,pn} C (0, 1] define

A(p,x) = Zpixi» G(p,x) = folv H(pvx) = (Z %)717
i=1 ’

i=1 i=1
b —a 1 bb 1
G(a,b) = Vab, L(a,b) := ma I(a,b) := g(aﬁ)bﬂ'
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Theorem 1.3. [7] (The Theorem of Arithmetic and Geometric Means) Let {1, ...,z } be a positive sequence of real
numbers. The geometric mean of n positive real numbers is always less than or equal to their arithmetic mean, i.e.

G o ([ o)t = Bttt o,
Theorem 1.4. [I4] If f is convex on [a,b], then for any {p;}, p1,...,pn > 0 and {z;} C I, we have

a+b
2

Zpif(wi) *f(zpm) < fla) + f(b) = 2/( ) = S¢(a,b). (1.1)

Theorem 1.5. [15] If f is convex on I, and p,q > 0, p+ ¢ = 1, then

Zpif(xi) —~ f(Zpixi) < max{pf(a) + ¢f(b) = f(pa+qb)} := Ty(a,b).

Theorem 1.6. [I5] Let 0 < a < b, x = {x;}}_; C I. Then

A(p,x) _ L(a,b)I(a,b)
= G(p,x)

Theorem 1.7. [I5] Let 0 < a < b, x = {x;}}_; C I. Then

G(p,x)

1<
~ H(p,x)

< Ai(a,b). (1.3)

2 main results

In this section we continue with a refinement of theorems from [I3] [15].

Lemma 2.1. [II] If a > 0 and f : [a,b] — R defined by f(z) = log(%), then f is uniformly convex with modulus
2
P(r) = 3

Lemma 2.2. [II] If ¢ > 0 and f : [a,b] — R defined by

| zlog(z) ifx#0
f(“j)_{o ifz=0

. . . 2
then f is uniformly convex with modulus ¢(r) = ;.

Lemma 2.3. If f is differentiable and uniformly convex with modulus ¢ on [a, b], then

f@) = ft) + (z = )1 (t) + ¢(|z — 1),

for every z,t € I.

Proof . First, suppose that t < . For every r(t < r < x), we have

xr—r r—t

f0) = 1t Ty
T—r r—t (x—r)(r—1)
<TI0+ @) - T e -
Hence,
fr)—f@) _ flo)—f@) =x—r
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for every r(t <r <z). Asr — tT,

Flte) € == —; — @ 1)
Thus,

fl@) > f(t) + (z = 1) f'(t4) + oz —1). (2.1)
Similarly,

fl@) = ft) + (@ —t)f'(t-) + ot — @), (2:2)

for every x < t. The claim follows from (2.1)) and (2.2). O

Lemma 2.4. If f is uniformly convex with modulus ¢ on [a,b] and 0 < p,q < 1; p+ ¢ =1, then

pf(a) +af(b) ~ Flaa-+pb) < fla) + F(b) ~2f(“10)

—paob—a) — 2o(1(b— a)(p — ).

Proof . Let p+ ¢ =1, so

) = f(%(paJrqb) + %(anrpb))

Flpa +ab) + 5 flaa + pb) ~ 16(16 — a)(p — ).

<

Define I, := pf(a) + qf(b) — f(qa + pb),

Ipg = f(a) + f(b) — (¢f(a) +pf(b)) — f(qa + pb)
< f(a) + f(b) — f(qa + pb) — pgp(b — a) — f(qa + pb)

< f(a) + 1)~ pad(b—a) ~ 2/(“50) — Lo((b— a)(p— )]).

O

Theorem 2.5. If f is uniformly convex with modulus ¢ on I, then

Ji(p,x) 1 = Zsz(iEz) - f(Zplflfz)
< max{pf(a) + ¢f (b) — f(pa +¢b)}
(b — max{x;})(min{z;} — a)

- b~ a2 6(b—a) = Ty(a,b),

where p,g >0 and p+q = 1.

Proof . Since {z;}; C [a,b], there is a sequence {\;};(0 < A\; < 1), such that z; = \;a + (1 — A;)b. Hence, following
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Simic’s method [I5], we get

Zpl xl szxz

pifNia+ (1= A szAa+1— i)b))

[
M:

1

.
Il

NE

pi(Aif(a) + (1= X)f(b) = Ai(1 = Ai)g(b — a))
- (azpi)\i + bzpi(l —Ai))
i=1 i=1
a) Zpi)\i + f(b) Zpi(l — i) — ZPMi(l —Ai)o(b—a)
i—1 i=1 =1

— @Y pidi+b) pi(1— X))
=1 =1

Denoting p := > ; piA; and ¢ ;=1 — > | p;\;. Consequently,

-
Il

Jp(P,x) < pf(a) +qf(b) — f(pa+qb) — sz (1= Xi)o(b - a), (2.3)

On the other hand, since \; = 2=%s

b—a’

n

Y opdi(l = X)o(b—a) > Zpi min {A:}(1— max {A})é(b—a)

=1

= min {)\ H1— max {/\ (b —a)

B (b maxl{xl})(mmz{xl} a) . "
_ o o(b— a). (2.4)
Together, and (2.4]) imply
Zpif ‘T’L - szxz > + Qf( ) f(pa + qb)
B (b — max;{z;})(min{z;} — a) C
G o(b—a)

< max{pf(a) + qf(b) — f(pa + ¢b)}

3 (b — max;{z;})(min;{z;} — a)
(b—a)?

¢(b—a).
O

Theorem 2.6. If f is differentiable and uniformly convex with modulus ¢ on I C Dy, then
max{pf(a) +qf(b) — f(pa+ qb)}
(b= a)(f'(b) = f'(a)) — min{pp(g(b — a)) + ¢é(p(b — a))}.

NG

Proof . By the use of Lemma [2.3] we have

f@) = f@) + (z = ) f'(t) + ¢(|lz — 1),
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for every x,t € I. So,

f(pa+qb) = f(a) + q(b—a)f'(a) + ¢(q(b — a)),

and
f(pa+qb) > f(b) +p(b—a) f'(b) + ¢(p(b — a)).
Hence,
pf(pa+ qb) > pf(a) 4+ pg(b — a)f'(a) + pp(q(b — a)),
and
qf (pa+ qb) > qf(b) + pq(b — a) ' (b) + qé(p(b — a)).
Therefore,
pf(a) +qf(b) — f(pa + gb)
< pq(b—a)(f'(b) — f'(a)) — {pe(q(b — a)) + qd(p(b — a))}.
Thus,
mgx{pf (a) +qf(b) — f(pa+qgb)}
< max{pq(b — a)(f'(b) = f'(a)) — po(q(b — a)) — qo(p(b— a))}
< 10— a)(f'() — 1'(@) — min{po(a(b — a)) + ad(p(b — )}
0

Corollary 2.7. If f is differentiable and uniformly convex with modulus ¢ on I C Dy, then

(b= a)(f'(b) = f'(a)) — min{pp(q(b — a)) + qé(p(b — a))}

b= maX{ﬂ(CZ})(:)liQH{mi} —a) ¢(b—a) == Ry(a,b). (2.5)

Proof . The Corollary follows from Theorems [2.5] and O

Remark 2.8. Since Ry (a,b) < 1(b—a)(f'(b) — f'(a)), the estimation (2.5) is better than ([L3], Theorem 2.2 (I) or
[Z5], Theorem D (i)).

Theorem 2.9. For an arbitrary uniformly convex function f and I C Dy there exist a sequence {xo} C I and an
associated weight sequence pg, such that J¢(po,xo0) = Tf(a,b).

Proof . The proof is similar to the proof of ([15], Theorem E). OJ

In view of ([I5], Theorem D), we prove the following theorem.

Theorem 2.10. If f is differentiable and uniformly convex with modulus ¢ on I C Dy, then
Ty(a,b) < C(f)Ss(a,b), (2.6)
where

. pf(@) +4f(b) = f(pa + qb) — C=Eimnlnd=t g — q)
C(f) = sup{ s
wbp f(a) + f(b) = 2/ (%) — J#%(a,)
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_ 1 n
J*%(a,b) : = 5latb—2 > pixi])
=1

(b= piws) Qi piwi — a)

+ = o(b—a)
(b — max{z;})(min{z;} —a) "
A o(b—a),

and Sy(a,b) == f(a) + f(b) — 2f(%EL) — J#7(a, b).

Proof . Let p and ¢ be two non-negative arbitrary points with p+ ¢ =1,
(b — max{z;})(min{z;} — a)

Kpq :=pf(a) +qf(b) — f(pa +gb) — b a)? o(b—

and Sy (a,b) == f(a) + f(b) — 2f(%E2) — J*%(a,b). So,

= — x S¢(a,b
Pq 5;(a,b) f(a )

Kpq &
< SI;I])?{ Sf(a,b)} x Sy(a,b)
= C(f)S;(a,b).

Since p is an arbitrary point in [0, 1], we obtain T¢(a,b) < C(f)S¢(a,b). O

Sayyari

Remark 2.11. With the use of Lemma we obtain C'(f) < 1 and S’f(a,b) < Sy(a,b). So the estimation (2.6) is

better than and ([I3], Theorem 2.2 (II)).

Theorem 2.12. Let f be differentiable and uniformly convex with modulus ¢ on I C Dy, then

10~ 10)g 1y, WO =l
)

- 1(©s(a) - LB D) =0 )

Tf (a, b) =

where ©¢(a,b) is the Lagrange mean value of numbers a,b defined by

f(0) = f(a)

b—a

Of(a,b) = (f) 7 )-

Proof . Let

g(p) :=pfla) + (1 —p)f(b) — f(pa+ (1 —p)d)
(b — max{z;})(min{z;} — a)

- e o0 — )

Therefore py = b7$ (Z’b)

3 Applications

is the only critical point of g, and g(pp) is the maximum value of the function g. O

The convex theory becomes essential in entropy bounds [8]-[I5]. In this section we apply the results of previous
section in the A — G — H inequality, applying those results in information theory and obtain bounds for Shannon’s

entropy.
Theorem 3.1. Let 0 < a <b, x = {z;}]-; € I. Then

A(p,x)
= G(p,x)

L(a,b)I(a,b) _@-maxi{ehmingfa;}—a) -
=T = dala)
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Proof . Applying Theorems and with f(z) = —logx and ¢(r) = %, obtain

A
0 < 1og{ AP )3 <106 (poa+ (1= po)b) — pologa — (1 — po) logh

G(p,x)
(b — max{z;})(min{z;} — a)
2b2
L(a,b)I(a,b) _—max;{e;))(min;fz;}—a)
=8 ot ¢ b
where pg = bi@’bljga“”(a’b) = bbe_(Z’b). Which completes the proof. O

Remark 3.2. Since A;(a,b) < Ay(a,b), (3.1) is a better bound than (1.2)), for A — G inequality.

Theorem 3.3. Let 0 < a <b, x = {z;}]-; € I. Then

G(p,x)
b= H(p,x)

Lia.b)I(a.b _(bxnini{mi.}—l))(l—an—naxi{wi}) _
< (6:2()(17(1))’ )8 262 min, {z; } max; {z;} = Ag(a,b). (3.2)

Proof . By the change of variable x; — %7 we have

1 1 1
Ap, )= ——— =)=
(p. ) Hpx) Gp, )
Hence the proof easily follows from Theorem [3.1} O

The combination of Theorems and yields the following theorem.

- 11 -
] and Al(g’g) = As(a,b).

G(p,x

Theorem 3.4. Let 0 < a <b, x = {z;}I; C I. Then

0<) pislogei — (Y piws) log(Y_ pii)
i=1 =1

i=1
G?*(a,b) (b — max;{z;})(min;{z;} — a)

< — — .
s Hab) =T 2
Proof . Suppose that f(t) = tlogt. Then
Jr(p,x) =Y piailoga; — (Y piri)log(Y  piwi), (3.3)
i=1 i=1 i=1
7 Nz) =e*! and
_ b) — f(a
0(a.) = (1) (L=,
—a
_ 6b10gl;:<;10ga71
1 b
= ~(Z)"% = I(a,b).
(T = 10,

Also,

bf(a) —af(b) baloga —ablogh _Gz(a,b)
b—a B b—a ~ L(a,b)’

f(bl)):i(a) _ blogll)):zloga — a(a,b) and

£(©5(a,1) = O5(a,b)og(O7(a,)
b b
= () log(L (1))

= I(a,b) x a(a,b) — I(a,b).
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On the other hand, by Theorem [2.12]

Ty(a,b) = max {g(p)} = g(po)

a ’ b—a

b—
- (o)) - BRIl “ D, )

bf(a) — af(b)

b—O(a,b)
b—a

where pg = and

g(p) =pfla) + (1 —=p)f(b) — f(pa+ (1 —p)b)

(b — max{x; })(min{z;} — a)
- e o(b— a).

Therefore,

ooy = SO S W@ 0l
- F(©(a) - LB U] =0, )

= a(a,b) x I(a,b) — i((aa’bl;)

(b — max{z;})(min{z;} —a) " (b—a)?
(b—a)? 2

— (I(a,b) x a(a,b) — I(a,b))

Hence,

G?(a,b) (b — max;{z;})(min;{z;} — a)
L(a,b) 2b ’

Thus, the result follows from ([3.3) and (3.4), Lemma and Theorems and O

Tt(a,b) = I(a,b) —

Definition 3.5. Let P = (py,...,pn) and @Q = (qi,...,qn) are two positive probability distributions. The Shannon
entropy of P is defined by H(P) := >, p; log pi Also the relative entropy or Kullback-Leibler distance between two
positive probability distributions P and @, is defined as

P H Q sz IOg —
Remark 3.6. 1. Aj(a,b) = Aj(a,d) if and only if @ = min{z;}; or b = max{z;};.
2. As(a,b) = Ay(a,b) if and only if min{;}; = ; or max{z;}; = 1.
From the above remark and ([I5], Theorem I) we conclude the following estimates.

Theorem 3.7. Define m := mml{qi M= maxz{qi }, p:=min;{p;} and v := max;{p;}. Then

1. 0 < D(P || Q) <log(A1(m, M)) = log(A4 (m, M)).
2. 0 <logn — H(P) <log(Aa(p,v)) =log(A1(ps,v)).

Proof . This is an easy consequence of Remark and ([15], Theorem I). OJ

4 Conclusions

The topic of this paper is precisely the extension of results from [I5] considering the class of uniformly convex
functions, and improve the upper bound for the A — G — H inequality. Also, we establish some results related to the
bounds of the Shannon entropy.
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