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Abstract

Using the g-calculus operator we defined a new subclass of analytic functions M, (¢, ®) defined in the open unit disk
A ={z € C: |z| < 1} related with Bernoulli’s lemniscate and obtained certain coeflicient estimates, Fekete-Szegd
inequality results for f € My (J,®). As a special case of our result, we obtain Fekete-Szegd inequality for a class
of functions defined through Poisson distribution and further with the help of MAPLE™ software we find Hankel
determinant inequality for f € My(9, ®). Our investigation generalises some previous results obtained in different
articles.
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1 Introduction

We denote by H(A) the class of functions which are analytic in the open unit disk A := {z € C: |z] < 1}, and let
A be the subclass of H(A) consisting of the functions of the form

f(z):z—l—Zanz”, z € A. (1.1)
n=2
Let P be the well-known class of Carathéodory functions, that is p € H(A) with the power series expansion

p(z) =1+piz4+p2®+..., z€A, (1.2)

and Rep(z) > 0 for all z € A.
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For two functions f,g € H(A), the function f is called to be subordinate to the function g, written f(z) < g(z), if
there exists a function ¢ € H(A) with |[(2)] < 1, z € A, and ¥(0) = 0, such that f(z) = g(¢0(z)) for all z € A. In
particular, if g is univalent in A then the following equivalence relationship holds true:

f(z) < g(2) & f(0) = g(0) and f(A)Cg(A).

Let hj(z) = " an ;2" (j = 1,2) which are analytic in A, then the well-known Hadamard (or convolution) product
=0

of hy and hs is g;/en by
(h1 * ho)(2) := Zan,l an22", z € A.
n=0

Quantum calculus (g-calculus and h-calculus) is common classical calculus without the notion of limits. Here, h
represents the constant of Planck, while g represents quantum. Due to its application in a variety of branches such as
physics, mathematics, the area of g-calculus has gained great importance for researchers. The first study on ¢-calculus
was systematically established by Jackson [5], that is, he was the first to expand g¢-integral and g-derivative. Now, we
give some concept details of g-calculus which are used in the paper.

The Jackson’s ¢-derivative (0 < g < 1) of a function f € A is expressed by
f(z) — f(qz)

D,(z) = 1—q: if z#£0,
£1(0), if 2=0,

and D2 f = D4(Dyf). Thus, from the above definition we deduce that

D.f(z) =1+ Z[n]qanz"d,
n=2
where
g = L
q - 1 —q
1— "
If ¢ —» 17, we get [n];, — n. For the function h(z) = 2", we get D h(z) = Dy2" = 1 @ -1 [n]gz" ! and
—q

lim Dgh(z) = lim ([n]gz""') = nz""! = W/(z), where I/ is the ordinary derivative. The g-derivative operator D,
q—1- q—1—

was presumably first applied by Ismail et al. [4] to study a g-extension of the class S; of starlike functions in A.
For more details on study of the g-calculus and the fractional g-calculus in Geometric Function Theory of Complex
Analysis one can refere the recent article by Srivastava[24].

In [3], Fekete and Szegd obtained estimates of the functional ‘ag — ua%’ for p is real. That is, if f € A, then

-2
lag — pa?| < 1+2exp(1'u), if 0<pu<l,
—p
3 —4p, if p<o.

Furthermore, Keogh and Merkes [6] derived sharp estimates for |az — pa3| when f is close-to-convex, starlike, and
convex in A.

In our paper we have defined a new subclass of A using the concept of subordination and the linear operator @,
as below:

Definition 1.1. For 0 < ¢ <1 and 0 <9 <1, we let M, (¢, ) denotes the subclass of A, members of which are of

the form (1.1) and satisfy the condition
204f(2) 2 1 1
— A
‘((l—ﬁ)f(z)—kﬁz T—q| S 1-¢ ° %
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or equivalently
D) [ 2042
(1—=9)f(z)+ 9= 2+ (1—q)z

= d(z), (1.3)

2(1+2)

—_— =1
24+ (1—q)z

z=0

with

By fixing 9 = 1 we deduce a new class Rq(®) as defined below:

Definition 1.2. Let 0 < ¢ < 1 and ¥ = 1, My(1,®) =: Ry(®P) denotes the subclass of A, members of which are of
the form (1.1) and satisfy the subordination condition

2(1+2) . 2(1+2)
D —_— th —_— =1
ST M Vara—or |
or equivalently
2 1 1

Further, by taking 9 = 0 we get My(0, ®) =: Sy(®) [15]:

Definition 1.3. Let 0 < ¢ < 1 and ¢ = 0, M4(0, ®) =: S;(®) denotes the subclass of A, members of which are of
the form (1.1)) and satisfy the subordination condition

2,() | [ 20+2)
i) 2+ (1—g)2

[CACHSER

=1, where 0 < ¢ < 1.
z=0

or equivalently

2(1+2)

ith y | ————
b 24+ (1—q)z

Remark 1.4. (i) If ¢ — 17, we let My (9, @) =: S(9, @), that is a function f € S(J, @) if it satisfies the subordination
condition

(1;§Ej§+ﬂz <VItz with vitz|_,=1,

|((1—19Z)];23+192)2_1

or equivalently

<1, z€A.

(ii) Remark that the subclass

S(0,¢) = SL* = {feA: |<Zf/(z)>2—1

f(z)
was introduced and studied by Sokdl and Stankiewicz [23], and the subclass
S(1,6) =R(8) = {f € A: |(f'(:)2 — 1] < 1, z € A}
was studied by Sahoo and Patel [21].

<1,zeA}7

In our work we have used the techniques of Libera and Zlotkiewicz [9] and Koepf [7], we obtained the initial
coefficient estimates for as, as, Fekete-Szegd inequality results for f € My (9, ®) and f~ € M, (9, ®). As a special
case of our result, we obtain Fekete-Szegé inequality for a class of functions defined through Poisson distribution and
further with the help of MAPLE™ software we find Hankel determinant forf € M, (9, ®).
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2 Preliminaries

To establish our main results, we shall need the followings lemmas. The first lemma is the well-known Carathéo-
dory’s lemma (see also [16] Corollary 2.3.]):

Lemma 2.1. [I] If ¢ € P and given by (1.2, then |px| < 2 for all k¥ > 1, and the result is best possible for the function
_1+nz

61(2) = Tl =1

The next lemma gives us a majorant for the coefficients of the functions of the class P, and more details may be
found in [I1, Lemma 1]:

Lemma 2.2. [10] Let the function p given by (1.2) be a member of the class P. Then,
|p271/p%| < 2max{1;|2v — 1|}, where v € C. (2.1)
The result is sharp for the functions given by

147222 1+nz
—_ = d = =1.
g and 6a(a)=

$2(2)

Lemma 2.3. [I1] If p(z) = 1+ ¢12 + 222 + ... is a function with positive real part in A, then

—4v+2, if v<0,
leo —wef| <4 2, if 0<ov<l, (2.2)
qv — 2, if v>1.

1
When v < 0 or v > 1, the equality holds if and only if p;(2) is il te or one of its rotations. If 0 < v < 1, then equality
1 2
holds if and only if p1(2) is %
—z

1 n\14+z2 1 n\1l-=z
_ (L. n - 0<n<l1
pi(2) (2+2>lz+(2 2)1+z O=n=1)

or one of its rotations. If v = 1, the equality holds if and only if p; is the reciprocal of one of the functions such that
the equality holds in the case of v = 0. Although the above upper bound is sharp, when 0 < v < 1, it can be improved
as follows:

or one of its rotations. If v = 0, the equality holds if and only if

ez —vei|+vler? <2, if 0<wv< % (2.3)
lco —vef| + (1 —v)|er* <2, if %<v§1. (2.4)
Lemma 2.4. [10] Let ¢ € P given by (1.2). Then,
b= [+ (1= p2)a]. (25)
and .
ps=—[pt+2(4—p})piz— (4—p})pr1a® +2 (4 —pi) (1 - |2]?)2] (2.6)

4

for some complex numbers z, z satisfying |z| < 1 and |z| < 1.

3 Fekete-Szegd inequality for f € M, (9, P)

In our first result we will determine an upper bound for |a3 — pa3|, and this tends to solve the Fekete-Szegd
problem for the subclass My (9, ®).
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Theorem 3.1. For f € M, (9, ®) and is in the form given by (1.1)) then,

14g¢
< 1
laz] < 4(g+9)’
a5 < quax{r 3q2+(19—3)q+(2—719)}
B> U@ +q+9) ’ 8(qg + ) ’
and for any pu € C we have
las — pad] < RN L SRRV B 2u(1+ q)(¢® + ¢+ 9) — 3¢+ (9 — 3)g + (2 — 79)] (¢ + ) 51)
SRR e g+ ) 8(q + V)2 ' ‘

Proof . If f € M, (¥, ®), from (1.3)) it follows that there exists a function ¢ € H(A) satistying the conditions ¢(0) =
and |¢(2)] <1, z € A, such that

294f(2) 2(1+2)

< . 3.2
(1-=9)f(2)+ 9= 24+ (1—-q)z (32)
Setting
1+1(2) 2
=—==1 A
p(z) = 7 Tl TP RS 2 €A
then p € P. From the above relation, we get
p(z) — 1
= A
2 OES U
and from it follows that
D) (e G
1=9)f(z)+0z \(1+g+B—ap(z)) ’
It is easy to show that
4p(2) ) H 1+¢q 1+g¢
=1+ + 16p2 + (3¢ — 13
<(1+q)+(3—q) (2) § P g (16024 (30— 13)pd]
1
+ﬁ [128p5 + (48 — 208)p1p2 + (5¢° — 38¢ + 85)p%] 2% + ..., z € A, (3.3)
and
2Dqf(2) 21 27 .2
=1 —[(1 - —(1-
+{([g — (1= 9))as — 1= 0) [[8]g + [2]g — 2(1 = )] azaz + (1 = 9)*[(1 +q) — (1 = D)]a3} 2* + ...
=1+ (q+Dazz + [(¢+¢" +9) as — (1 = 9)(q + 0)a3] 2
+ @+ P+ +9)as— (1-9)(¢* +2¢ + 20)azas + (1 —9)*(g+ 9)a3] 2° + .. ..
(3.4)
Equating the corresponding coefficients of (3.3)) and (3.4)), we deduce that
(14 q)p
=~ 0 3.5
1+gq 3¢+ (9 —11)g+ (2 — 159) ,
- ; 3.6
4 8(¢2+q+9) b2 16(q + V) p1 (36)
and from Lemma we get
14+¢

< .
ja2] < A(q + )
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Now from (3.6)), we have

1+gq 3¢+ (9 — 11)g+ (2 — 159)
P
_ 1+g _]9%(—3q2+(11—19)q+(1519—2)>
S(@+q+0) [ 2 8(qg+ ) ’

and by using the estimate
|c2 — vei| < 2max(1;]2v — 1))

given in Lemma [2.2] we deduce

|as| <

e G T A |

__ 1+gq )max{l' —3q2+(3—19)q+(719—2)‘}

4?2 +q+0 ' 8(q + )
1+q { 3q2+(19—3)q—|—(2—719)}
= ——————max< 1;|— .
4(¢* +q+7) 8(q +7)

Thus, from (3.5) and (3.6)) we get

l+g [ 3 2(2u(1+q)(q2+q+19)[3q2+(7911)Q+(21519)](q+19)>}
8(@2+q+9) 7 1 16(q + )2 ’

which with the aid of the inequality (2.1)) of Lemma yields

) 1+gq 200+ 9)(¢* +q+9) = [3¢* + (9 = 11)g + (2= 159)|(¢ +9) |
vl < gy S+ P )=}

2
az — pag =

that is the required estimate (3.1]). [

For ¥ = 1 the above theorem reduces to the following special case:

Corollary 3.2. If f € R4(®) and is given by (1.1) then, for any p € C we have

| o l4g 26(¢® +q+1) — [3¢° — 2¢ — 5]
CL3*/L0J2}—7I’H&X 1; .
4?+q+1) 8(qg+1)

If we take p € R in Theorem we get the next special case:

Theorem 3.3. If the function f € My (9, ®) and is given by (L.1)), with p € R, then

14+¢q Aq,9) 2u(g+1)(¢*+q+9)\ .
- f
8(q2+q+79)( 4¢ 42 s
14+4¢q .
— na? - -t <pu<
az — paz| < 8(q2+q+19)’1f o1 < p <oy,
1+¢ Ag,9) | 2ulg+1)(*+q+9)\ .
— f
8(q2+q+19>( 4 1¢? o
with
3¢ + (¥ — 11)g + (2 — 159)](g + V) ®(q,9)¢
g1 i — = ,
22 +q+9)(1+q) 22 +q+9)(1+q)
3¢ + (¥ +5)g+ (2+9)](g + )
09 = ’
2(¢> +q+9)(1+q)
where for convenience we let
Ag,9) :=3¢*+ (9 — 3)qg + (2 — 70), (3.7)

U(g,9) == 3¢> + (9 — 11)g + (2 — 159)
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and
E:=q+ 0. (3.9)

These results are sharp.

Further, if 07 < u < o3, then

2u(1+q) (> +q+0) — [3¢> + (0 — 11)g + (2 — 159)] (¢ + 19)) 1+¢q
2 2
_ + < 3.10
jas — paz] < 2(q+9)(q>+q+7) la2l" < A(q* +q+1) (310
If 05 < p < 09, then
2 [3q2+(19+5)q+(2+19)}(qﬂ9)—2u(1+q)(q2+q+19)> o l+g
3 — _ 3.11
las — paz| + ( 2(q+9)(q>+q+9) lazl” < 4q* +q+9) (310
where )
oo BEH 0 =3)a+ 2-T))(g+9) _ A(g, 9)§
. 20 +q+9)(1+4q) 202 +q+0)(1+q)
These results are sharp.
Proof . From and we have
e 1+gq 32 + (= 1)g+ (2—159) ,]  (14¢)*p}
R Tl 16(g + 0) S TP RN
that is
s l4g [ 2(2u(1+q)(q2+q+19)—[3q2+(19—11)Q+(2—15?9)](Q+19)>}
ag — pay = ——>———+ |P2 — P1 2 ’
8(¢®> +q+ 1) 16(g +v)
144¢q 2
=— "7 (p,— , 3.12
where

2u(1+ q)(¢* + g+ 9) — [3¢> + (9 — 11)qg + (2 — 159)](q + ¥))
16(q + v)?

From the assumptions, using the second above equality if follows that v € R. We have
l+g (A(q,ﬁ) L2+ D@ gt 19))
8(¢* +q+17) A€ 4¢? ’
v > 1 is equivalent to p > 02, and v < 0 is equivalent to u < .
The assertion of Theorem now follows by an application of Lemma
For the proof of the second part, first we see that 0 < v < 1/2 is equivalent to 01 < p < o3. Using the relations

(3.12) and (3.5, and then applying the inequality (2.3) of Lemma [2.3 we get

_1te
8(¢> +q+9)

v —2 =

1+
{Ipz —vai|+ V\pf\] < q

2 2 2 2
az — pas| + (u—oq1)las| = |las — pas| + | — o1llas| = -
‘ 3 — paz| + (p 1)| 2 | 3 — pay| + [p 1” 2‘ = 4(q2 q+9)

3

that represents the required inequality (3.10)).

Further, we easily check that 1/2 < v < 1 is equivalent to o3 < u < 9. From the relations (3.12) and (3.5)), and
then applying the inequality (2.4) of Lemma we obtain

1+4q 1+¢
2 2 2 2 2 2
a—a—i—a—a:a—a—i—a—a:i{ —vail+(1—v }Si,
o = a3 + (72 = )] = las — ] + o2 = pllof] = gL [1po = vl + (1= V)] < gty
that is the inequality (3.11]).
Clearly, the result is sharp for the function
20, F1(2) 2(1+2)

(1-=9)Fi(2) + 9=z “\a2¥ (1-9)z
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if 4 < o1 or > o9, or one of its rotations. When o7 < p < o9, then the equality holds if and only if

2D Fi(2) ¢2[2+2(1 — @)z + (1+¢2)22

1—9F(z) +0z 2+ (1—q)z)2

or one of its rotations. O

Remark 3.4. For ¥ =1 in Theorem one can easily deduces the corresponding results for f € R,(®).

4 Coeflicient inequalities for some special functions of M, (¥, ®)

Theorem 4.1. If f € M, (9,®) and f~(w) =w+ Y. d,w™ is the analytic continuation to A of the inverse function
n=2

of f, then for any complex number p we have

ge T 162

where ¥(g, ) and ¢ are given by (3.8)and (3.9)) respectively.

1+gq
2 .
[ds = pds| < wmx{lv

V(g.9)  2-pl+a(@+q+9) 1‘}

Proof . As -
Hw) zw—i—Zdnw” = 2+ dow® + dsw® + -+ - .

n=2

is the inverse function of f, it can be seen that

From equations (4.2)) and (4.3)), we have
(o)
ft (z + Z a,,z”) = z.
n=2

Thus (4.3) and (4.4]) yields
24 (ag + do) 2% + (a3 + 2a9ds 4+ d3)2> 4+ - = 2,
hence by equating corresponding coefficients of z, 22, 23, it can be seen that
d2 = —a2,
d3 = 20,% — as.
From relations (3.5), (3.6)), (4.5) and (4.6]) it follows that

,—_Utap _ (+ap

8(qg+ 1Y) 8¢
_(A+a) 1+g¢ { 3¢° + (0 — 11)g + (2 — 159) 2]
ST +0)2 8@ +q+0) |7 16(q + V) Prp

__ I+4g C(Y(g,9) | A+ 9@+t
- 8(q2+q+z9){2 ( 166 4€2 )pl]’

where U(g,4) and £ are given by (3.8)and (3.9) respectively.

For any complex number p, consider

14¢ U(g,9)  Q2—p)A+q)(@+q+9)\ ,
8(q2 +q+9) {p”( T 8¢2 )pl]’

dy — pdy = —

(4.1)

(4.4)

(4.7)

where U(q,9) and & are given by (3.8)and (3.9) respectively. Taking modules on the both sides and by applying
%

Lemma on the right hand side of ({4.7)), one can obtain the result as in (4.1). O
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[ee]
Theorem 4.2. If f € M (9, ®) and G(z) = S + > qnz™, z € A, then for any complex number p we have
n=1

f(z)
1+gq U(g,d) (A+p)(l+q)(e®+q+9
2~ ) < g s L " (4.9
> +q+9)| 8 48
where ¥(g, ) and & are given by (3.8) and (3.9)), respectively, and the result is sharp.
Proof . Since f € My(9,®) and
Py o]
Glz)=—==1+ ) gqu2", z€ A, (4.9)
R
by a simple computation one can obtain that
2z
——=1- 5—az)2+ ... A. 4.10
8] agz + (a3 —as)z“+ ..., z € (4.10)
Upon equating the coefficient of 2z and 22, from relations (4.9) and (4.10)) it can be seen that
¢ = —as, (4.11)
g2 = —az + aj. (4.12)

From equations (3.5), (3.6), (4.11) and (4.12)), we obtain

“ _ (O+gp _ (0+9m

8(g+ ) 8¢
_ A+ 1+g [ 3¢° + (0 — 11)q + (2 — 159) 2}
@ 64(g+9)2 8(@+q+0) |° 16(q + ¥) bi)

_ . He [ L (‘I’(q»ﬁ) N (1+q)(q2+q+ﬁ))p2}7

8(q>+q+1) 16¢ 8¢2 !
~ l+gq [ _p?(‘I’(qﬂ9)+(1+Q)(q2+q+ﬁ)ﬂ
T 8@ rqr0) [P 2 U s 42 '

For any complex number x4, consider

G2 — pgi = —

144¢ [ p%(\ll(q,ﬂ) (1+u)(1+q)(q2+q+ﬂ)>}7 (4.13)

8(2+q+9) [0 2\ s 4¢2
and taking modules on both sides of the above relation, by applying Lemma for the right hand side of (4.13]), one
can obtain the inequality (4.8). The sharpness of the result follows from the sharpness of Lemma O

5 Application to Functions Defined by Poisson distribution

—K
A variable X is said to be Poisson distributed if it takes the values 0,1,2,3,... with probabilities e™", neT,

—K

217

—K

TR

2¢ 3¢

K K respectively, where k is called the parameter. Thus,

T ,—K
P(X=1)="5— 7=0123,...
T

In [I7], Porwal introduced a power series whose coefficients are probabilities of Poisson distribution
& k=1
I(k,z) =2+ ——e 2" z €A,
(,2) Z:; (n—1)!

where k > 0. We note that by using the familiar ratio test the radius of convergence of the above series is infinity.
Lately, Porwal [I7] (see also [13] 14}, [18]) introduced a new linear operator Z"(z) : A — A given by

o0 n—1 o0
I6f(2) :=T(k,2) * f(2) =z + Z he‘“anz" =z+ Z on(K)anz", z € A,
n=2 : n=2
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Kn—l

( 1)‘6_"‘, and “¢” denotes the convolution (or Hadamard) product of the two power series.
n—1)!

where @, = (k) =

In particular,
2

K
po = ke " and @3 = 56_“.

We define the class My (¢, ®) in the following way
M0, @) :={f e A:I"f € My(¥,®)},

where M, (9, ®) is given by Definition We could obtain the coefficient estimates for functions of this class
Mg (9, ®) from the corresponding estimates for functions of the class M, (¢, ®). Applying the Theorems and
for the function Z* f we get the following Theorems [5.1] and [5.2] after an obvious change of the parameter yu:

Theorem 5.1. Let 0 < ¢ < 1, and 0 < ¢ < 1. Further, let

T f(2) = 2+ poan2® + pza32® + ..., z € A,
2
where o = ke™" and 3 = %e"‘. If f € My (9, ®), then for any complex p we have

2 1+4¢ 2u(1+q)(¢® + g+ )3 ¥(q,9)
— B — . — — .
}ag ua2‘ NP +q+0)0s max 4 1; 1

423 8¢
42
In particular, taking s = ke™" and 3 = 76_H, we get

4€2e—r 8¢

1+¢
2 .
|a3 — ,ua2’ < 2(q2 +q+19)/£26*" max{l,

where U(g, ) and £ are given by (3.8)and (3.9)respectively.

Theorem 5.2. Let 0 < ¢<1,0<9 <1 and

(M(1+Q)(q2 +q+7) ‘P(q,ﬁ)) B 1’}

T f(2) = 2 + poagz® + pza32® + ..., 2 € A.
If f e M;(9,®), and p a real number, then

144 (A(q,ﬁ) _2M(‘1+1)(92+q+79)‘p3> if p<or

B(2+q+0)ps \ 4 48703 | |
14 :

— 2 o/.9 1 . a\ - f < <
as ILLClQ’S 8(q2+q+’l_9)903,1 01 S U 02,

14¢ (_A(qﬂ?) 2u(g +1)(¢° +q“9)¢3> if p> o

8(q* + g+ 1)ps A 48203 | |

a4 e _ABE 05+ @10

o] = — , 09 .=
LT 2@ g+ )1+ T es 2@ g+ 0)(1+q)

where A(q,9), ¥(g,?) and £ are given by (3.7)), (3.8) and (3.9)respectively.
2

)

In particular, for o = ke™" and @3 = %e‘”, we get
1 A(g,9 1)(¢? VY
o (¢.9)  ple+ )(q7+q+ ) i p<on,
4(q®> + g+ V9)KrZe™* 4¢ 4€2¢—rK
1+gq .
—pail < f <u<
as — paj| < 4(q® +q+I9)k2e"’ ==
14gq Ag9) | wa+1D)(@+a+9)) .
- f
4(q?2 + g + V)K2e=" ( 4¢ + 4€2e—~ 1> 02
R (g, 7)€ B+ (@ +5)g+ (2+9))E
01 :=¢€ 09 1= ,

(> +q+9)(1+q)’ (> +q+0)(1+q)
where A(g,1),¥(q,¥) and £ are given by (3.7), (3.8) and (3.9)respectively.
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Remark 5.3. Suitably fixing the parameters ¢ as stated in Definitions [I.2] and [I.3] in Theorems B3] and
one can easily state above result for the function classes defined in Definitions [T.2] to [I.3] subordinated to Bernoulli’s
lemniscate. We also state analogues results as proved in Theorems and Further, allowing ¢ — 1~ one can
easily state the results for the function classes mentioned in Remark

6 Hankel determinant result for f € M,(dJ, ®)
Theorem 6.1. If f € M/ (J, @) has the form given by then,

|lazay — a3| < max {M(q,9); N(q,9)}, (6.1)

with
8|k3|f

M(q,0) = + 16| A|, and N (q,9) =

8|k3|V3
Sl | 4k, (6.2

where A is given by 1_' ks and k4 are given by (6.6)) and (6.7)), respectlvely, and depends of Ay, Ag, ¥, Q and T

defined by ., . 3.8) and , respectively.

Proof . If f € M,(¥,®), using a similar proof like in the proof of Theorem 3.1] . from (3.5) and . we get

(@® +@*+q+9)as — (1 —9)(q* + 2q + 20)azas + (1 — 9)*(q + ¥)aj

14+
= Jogy (12805 + (43¢ — 208)pipa + (54° — 38 + 85)p7]
hence
1+gq 16 As(p, ) )
= 128
“ m%@+¢+MWJ< P o @ +q+0) ) P2
Ai(p,9)(¢® +q+9) + (1 =91+ q)(¢° + 29 +29)¥(g,9) ,
+ pl I (63)
(g+v)2(¢* +q+9)
where
Ai(p,9) == (5¢° — 38¢ +85)(¢ + 0)* — 2(1 = ¥)*(1 + )%,
Aa(p,9) := (3¢ —13)(q + 9)(¢* + ¢+ 9) + (1 = ) (1 + ¢)(¢° + 2¢ + 20),
and U(q, ) as assumed in (3.8]).
From (3.5)), (3.6) and (6.3) we get
asay — a3 = kipi + kap?ps + kapips + kap3,
where
py = @@ +a+9) + (191 +9)(¢° +20+20)¥(q,0) )  (¥(g,0)° ¢
8(qg+ 9)%(¢>+q+9) 256(q + 9)?
k2 _ 2A2(pa 19) Q _ W((L U)
(g+9)(¢>+q+9)  8(g+9)
(1+9)°
ks = — 169, 6.6
ST 1024 PB + 2+ g+ 9) (6.6)
(1+9)?
[ S k. N 6.7
YT 6@+ g+ )2 (6.7)
and Ai(q, ), Aa(p,9) and ¥(q, ) are assumed as in (6.4), (6.5) and (3.8) respectively, while
2 2
(1+9) and T—_1+d (6.8)

T 1024( + @2 + g+ 9) C64(¢> + g+ )%



248 Murugusundaramoorthy, Bulboaca

Using the relations (2.5 and (2.6) of Lemma we get

k ki k
|agay — a3| = |Ap} + B (4 — p}) ap? + <44 (4—pf) - ;ﬁ) (4 —pi)a® + 33291 (4—p}) (1=1]2) 2,  (6.9)

with |z| <1, |2] <1, and

Ai(g,9)(¢* +q+9) + (1 =9)(1 4 q)(¢* + 2¢ + 20)¥(q,)

Q
8(¢ +9)*(¢* + g+ )

1
A ::Z (4k’1 + 2ko + k3 + k‘4) =

_ \I/(q,ﬁfT Ao (p, ) B T(q,v) Y
256 (q+ 072 | @+ 0@ +a+0)  16(g +19)T +4Q - (6.10)
B.—Q(k:2+k:3+k4)—(q+ﬂ)(q2+q+ﬂ)9 e 19)’1‘+8§2 5

where A1 (g, ), A2(p,¥) and ¥(q, ¥) are assumed as in (6.4), (6.5) and (3.8) respectively Q and T are assumed in (6.8).
Since ¢ € P it follows that ¢ (e_i"“g plz) € P, hence we may assume without loss of generality that p := p; > 0, and
according to Lemma it follows that p € [0,2]. Now, using the triangle’s inequality in and substituting |x| = ¢
we get

Jasas — a3 <1Alp* + 18] (4 p2) o2t + 22 a2y Bl gy B8l gy oy
S\A|p4+|B|(4—p)pt+‘4|(4 p)2t2+%p2(4—p2)t2
+@p(4fp2)(17t2)::g(p,t), (0<p<20<t<l).

Denoting

Gi(p,t) := |A|p* +|B| (4 - p*) p*t,

k k k
Ga(p,t) == % (4-p)" 8 + |T$|p2 (4-p°)t*+ |273|p (4-p*) (1-1%),

then G = G1 + G, hence
max {G(p,t) : (p,t) € 0,2] x [0,1]} <max{Gi(p,t) : (p,t) € [0,2] x [0,1]}
+ max {Ga(p,t) : (p,t) € [0,2] x [0,1]}. (6.11)

Next, we will find maximum of G;(p,t) and Ga(p,t) on the closed rectangle [0,2] x [0,1]. Using the MAPLE™
software for the following code

[> Lambdal1] (5%q~2 - 38*%q + 85)x(q + v)"2 - 2x(1 - v)"2*%(1 + q)"2;

[> Lambdal2] (3%¥q - 13)*x(q + v)*(q"2 + q + V)

+ (1 - v)*(1 + @*(q"2 + 2%q + 2%v);

[> Phi := 3%q"2 + (v - 11)*q + 2 - 15%v;

[> Omega := (1 + @)"2/(1024*%(q"3 + q"2 + q + V));

[> Upsilon := (1 + q)~2/(64*(q"2 + q + v)"2);

[> k[1] := (Lambda[1]*(q"2 + q + V)

+ (1 - v)*(1 + @*(q"2 + 2%q + 2%v)*Phi)/(8%(q + v)"2*(q"2 + q + v))*0Omega
- Phi~2/(256%(q + v)~2)*Upsilon;

[> k[2] := 2+Lambda[2]*0Omega/((q + v)*(q"2 + q + v))

- Phi*Upsilon/(8%(q + v));

[> k[3] := 16%0Omega;

[> k[4] := -Upsilonm;

[> A := (4xk[1] + 2xk[2] + k([3] + k[4])/4;

[> B := (k[2] + k[3] + k[4]1)/2;

[> G1 := abs(A)*p~4 + abs(B)*(-p~2 + 4)*p~2xt + abs(k4)/4*(-p~2 + 4)"2*t"2
+ abs(k3)/4*p 2% (-p~2 + 4)*t"2;

[> G2 := abs(k3)/2*p*x(-p~2 + 4)*(-t"2 + 1);

[> maximize(Gl, p =0 .. 2, =0 .. 1, location);

[> maximize(G2, p =0 .. 2, =0 .. 1, location);

t
t
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we get
max {G1(p,t) : (p,t) € [0,2] x [0,1]} = max {G;(2,0) = 16|A[; G1(0,1) = 4|k4|},
max {Ga(p,£) : (1) € [0,2] x [0,1]} = Ga (2\3@) _ 8|k3;9|\/§,

hence

max {G(p,t) : (p,t) € [0,2] x [0,1]} < max {M(q,?); N(q,9)},
where M (g, ) and N (g, V) are defined by (6.2). O

Remark 6.2. 1. Since in the above proof we used the inequality (6.11]), and the global maximum for G1(p,t) and
G2(p,t) are not attained at the same point, it follows that the upper bound of G(p,t) we found is not the best possible
(the lowest one).

The reason we split the function G(p,t) in the sum of Gy(p,t) and Ga(p,t) is that the maximization of G(p,t)
cannot be obtained by using MAPLE™ since the computation capacity of this software was exceeded.

2. Using the next MAPLE™ software codes

[> K := (8*abs(k[3])*sqrt(3))/9;
[>M := K + 16%abs(A);

[> N := K + 4*xabs(k[4]);

[> with(plots):

[> inequal(M <= N, g =0 .. 1, v=0 .. 1, color = "Nautical 1",
optionsexcluded = [color = "Niagara DarkOrchid"]);
[> inequal(N <=M, g =0 .. 1, v=0 .. 1, color = "Nautical 1",

optionsexcluded = [color = "Niagara DarkOrchid"]);

the solutions of the inequalities M(q,?) < N(g,9) and M(q,9) > N (q,9) for (g,9) € (0,1) x [0,1] are shown in the
below Figure and Figure respectively, marked with blue colours:

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
q q

(a) The solution of the inequality M(q,9) < N (g, ) (b) The solution of the inequality M(g,d) > N (g, )

According to the Figure if (¢,9) € Dy, where the set Dy C R? is given by

Dy :={(g.9) eR*:0<¢<1,0<9<1,5¢+5)—1>0},
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then, according to (6.1) we have

(g+1)*V3 (q+1)?

—a3] < 9) =
laza1 = a3 <N 0) = o 0 T T T 0

hence we have the following special case:

Corollary 6.3. If f € My(9, ®) has the form given by (L.1]) then,

|aza —a2|< (¢+1)*V3 (q+1)?
IR P+ q+0) T 16(¢2 + g+ 9)%

whenever (gq,9) € Dy.

Similarly, we get the next corollary:

Corollary 6.4. If f € M,(9,®) has the form given by (L.1]) then,

lazas — a3| < M(q,9),

whenever (q,9) € Dpy, where

Dy i={(q,9) ER*:0<q<1,0<9<1,10g+ 109 —1 <0} .
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