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CUBIC-QUARTIC FUNCTIONAL EQUATIONS IN FUZZY
NORMED SPACES

N.GHOBADIPOUR1 ∗ AND CHOONKIL PARK 2

Abstract. In this paper, we investigate the generalized Hyers–Ulam stability of
the functional equation

4(f(3x + y) + f(3x− y)) = −12(f(x + y) + f(x− y))

+ 12(f(2x + y) + f(2x− y))− 8f(y)− 192f(x) + f(2y) + 30f(2x).

in fuzzy normed spaces..

1. Introduction and preliminaries

In 1984, Katsaras [12] defined a fuzzy norm on a linear space and at the same year
Wu and Fang [35] also introduced a notion of fuzzy normed space. In [5], Biswas
defined and studied fuzzy inner product spaces. Since then some mathematicians
have defined fuzzy metrics and norms on a linear space from various points of view
[4, 8, 14, 30, 31, 32, 34]. In 1994, Cheng and Mordeson introduced a definition
of fuzzy norm on a linear space in such a manner that the corresponding induced
fuzzy metric is of Kramosil and Michalek type [13]. In 2003, Bag and Samanta [2]
modified the definition of Cheng and Mordeson [6] by removing a regular condition.
They also established a decomposition theorem of a fuzzy norm into a family of
crisp norms and investigated some properties of fuzzy norms. Following [2], we give
the notion of a fuzzy norm.

Let X be a real linear space. A function N : X × R → [0, 1] is said to be a fuzzy
norm on X if for all x, y ∈ X and all a, b ∈ R:
(N1) N(x, a) = 0 for a ≤ 0;
(N2) x = 0 if and only if N(x, a) = 1 for all a > 0;
(N3) N(ax, b) = N(x, b

|a|) if a 6= 0;

(N4) N(x + y, a + b) ≥ min{N(x, a), N(y, b)};
(N5) N(x, .) is non-decreasing function on R and lima→∞ N(x, a) = 1;
(N6) For x 6= 0, N(x, .) is (upper semi) continuous on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, a) as the
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truth value of the statement the norm of x is less than or equal to the real number a.

Example 1.1. Let (X, ‖.‖) be a normed linear space. Then

N(x, a) =

{
a

a+‖x‖ , a > 0 , x ∈ X,

0, a ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 1.2. Let (X, N) be a fuzzy normed linear space. Let xn be a sequence
in X. Then xn is said to be convergent if there exists x ∈ X such that limn→∞ N(xn−
x, a) = 1 for all a > 0. In that case, x is called the limit of the sequence xn and we
denote it by N -limn→∞ xn = x.

Definition 1.3. A sequence xn in X is called Cauchy if for each ε > 0 and each a > 0
there exists n0 such that for all n ≥ n0 and all p > 0, we have N(xn+p−xn, a) > 1−ε.

It is known that every convergent sequence in fuzzy normed space is Cauchy. If
each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and
the fuzzy normed space is called a fuzzy Banach space.

The stability problem of functional equations originated from a question of Ulam
[33] in 1940, concerning the stability of group homomorphisms. Let (G1, .) be a
group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does
there exist a δ > 0, such that if a mapping h : G1 −→ G2 satisfies the inequality
d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1? In the other words, under what
condition does there exist a homomorphism near an approximate homomorphism?
The concept of stability for functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [10] gave the first affirmative answer to the question of Ulam for Banach
spaces. Let f : E → E ′ be a mapping between Banach spaces such that

‖f(x + y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping
T : E → E ′ such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T
is R−linear. In 1950, Aoki [1] generalized Hyers’ theorem for approximately additive
mappings. In 1978, Th. M. Rassias [28] proved the following theorem.

Theorem 1.4. Let f : E → E ′ be a mapping from a normed vector space E into a
Banach space E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists
a unique additive mapping T : E → E ′ such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)
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for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2) for
x 6= 0. Also, if the function t 7→ f(tx) from R into E ′ is continuous in t ∈ R for
each fixed x ∈ E, then T is R−linear.

In 1991, Gajda [9] answered the question for the case p > 1, which was raised by
Th.M. Rassias. This new concept is known as generalized Hyers–Ulam stability of
functional equations. On the other hand, J.M. Rassias [23], generalized the Hyers
stability result by presenting a weaker condition controlled by a product of different
powers of norms (see also [22, 24, 25]).

Jun and Kim [11] introduced the following functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x) (1.3)

and they established the general solution and the generalized Hyers–Ulam stability
for the functional equation (1.3). The function f(x) = x3 satisfies the functional
equation (1.3), which is thus called a cubic functional equation. Every solution of
the cubic functional equation is said to be a cubic mapping. Jun and Kim proved
that a mapping f between real vector spaces X and Y is a solution of (1.3) if and
only if there exists a unique mapping C : X×X×X → Y such that f(x) = C(x, x, x)
for all x ∈ X, and C is symmetric for each fixed one variable and is additive for
fixed two variables. The stability of quartic functional equation was introduced by
J. M. Rassias [26, 27], and was employed by W. Park [21] and others such that:

f(x + 2y) + f(x− 2y) = 4(f(x + y) + f(x− y)) + 24f(y)− 6f(x). (1.4)

We deal with the following functional equation deriving from quartic and cubic
functions:

4(f(3x + y) + f(3x− y)) = −12(f(x + y) + f(x− y)) + 12(f(2x + y) + f(2x− y))

− 8f(y)− 192f(x) + f(2y) + 30f(2x). (1.5)

It is easy to see that the function f : R → R defined by f(x) = ax4+bx3 is a solution
of the functional equation (1.5). M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari
[7] investigated the general solution and the generalized Hyers–Ulam stability and
Ulam–Gavruta–Rassias stability of the functional equation (1.5).

The generalized Hyers–Ulam stability of different functional equations in random
normed and fuzzy normed spaces has been recently studied in [15]-[20] and [29].

In the present paper, we investigate the generalized Hyers–Ulam stability for
functional equation (1.5) in fuzzy normed spaces.

2. Main results

Throughout this section, assume that X, (Z,N
′
) and (Y,N) are linear space,

fuzzy normed space and fuzzy Banach space, respectively. For convenience, we use
the following abbreviation for a given mapping f : X → Y :

Df (x, y) = 4[f(3x + y) + f(3x− y)]− 12[f(2x + y) + f(2x− y)] + 12[f(x + y) + f(x− y)]

− f(2y) + 8f(y)− 30f(2x) + 192f(x)

for all x, y ∈ X.
We now investigate the generalized Hyers–Ulam stability problem for functional

equation (1.5).
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Theorem 2.1. Let β ∈ {1,−1} be fixed and let ϕ1 : X×X → Z be a mapping such
that for some α > 0 with ( α

16
)β < 1

N
′
(ϕ1(0, 2

βx), a) ≥ N
′
(αβϕ1(0, x), a) (2.1)

for all x ∈ X and all a > 0, and limn→∞ N
′
(ϕ1(2

βnx, 2βny), 16βna) = 1 for all
x, y ∈ X and all a > 0. Suppose that an even mapping f : X → Y with f(0) = 0
satisfies the inequality

N(Df (x, y), a) ≥ N
′
(ϕ1(x, y), a) (2.2)

for all a > 0 and all x, y ∈ X. Then the limit

Q(x) = N- lim
n→∞

1

16βn
f(2βnx)

exists for all x ∈ X and the mapping Q : X → Y is the unique quartic mapping
satisfying

N(f(x)−Q(x), a) ≥ N
′
(ϕ1(0, x), a|16− α|)

(2.3)
for all x ∈ X and all a > 0.

Proof. Let β = 1. Letting x = 0 in (2.2), we get

N(f(2y)− 16f(y), a) ≥ N
′
(ϕ1(0, y), a)

(2.4)
for all y ∈ X and all a > 0. Replacing y by x in (2.4), we get

N(f(2x)− 16f(x), a) ≥ N
′
(ϕ1(0, x), a)

(2.5)
for all x ∈ X and all a > 0. Replacing x by 2nx in (2.5), we obtain

N(
f(2n+1x)

16
−f(2nx),

a

16
) ≥ N

′
(ϕ1(0, 2

nx), a) (2.6)

for all x ∈ X and all a > 0. Using (2.1), we get

N(
f(2n+1x)

16
− f(2nx),

a

16
) ≥ N

′
(ϕ1(0, x),

a

αn
) (2.7)

for all x ∈ X and all a > 0. Replacing a by αna in (2.7), we get

N(
f(2n+1x)

16n+1
− f(2nx)

16n
,

aαn

16(16n)
) ≥ N

′
(ϕ1(0, x), a)

(2.8)

for all x ∈ X and all a > 0. It follows from f(2nx)
16n − f(x) =

∑n−1
i=0

f(2i+1x)
16i+1 − f(2ix)

16i

and (2.8) that

N(
f(2nx)

16n
−f(x),

n−1∑
i=0

aαi

16(16i)
) ≥ min{N(

f(2i+1x)

16i+1
−f(2ix)

16i
,

aαi

16(16i)
) : i = 0, 1, ..., n−1}

≥ N
′
(ϕ1(0, x), a) (2.9)

for all x ∈ X and all a > 0. Replacing x with 2mx in (2.9), we obtain

N(
f(2n+mx)

16n+m
−f(2mx)

16m
,

n−1∑
i=0

aαi

16(16i+m)
) ≥ N

′
(ϕ1(0, 2

mx), a) ≥ N
′
(ϕ1(0, x),

a

αm
),
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and so

N(
f(2n+mx)

16n+m
−f(2mx)

16m
,
n+m−1∑

i=m

aαi

16(16i)
) ≥ N

′
(ϕ1(0, x), a)

for all x ∈ X, all a > 0 and all m, n ≥ 0. Hence

N(
f(2n+mx)

16n+m
− f(2mx)

16m
, a) ≥ N

′
(ϕ1(0, x),

a∑n+m−1
i=m

αi

16(16i)

)

(2.10)
for all x ∈ X, all a > 0 and all m,n ≥ 0. Since 0 < α < 16 and

∑∞
i=0(

α
16

)i < ∞, the

Cauchy criterion for convergence and (N5) imply that {f(2nx)
16n } is a Cauchy sequence

in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point

Q(x) ∈ Y. So one can define the mapping Q : X → Y by Q(x) := N -limn→∞
f(2nx)

16n

for all x ∈ X.
The evenness of f implies that Q is even. Letting m = 0 in (2.10), we get

N(
f(2nx)

16n
−f(x), a) ≥ N

′
(ϕ1(0, x),

a∑n−1
i=0

αi

16(16i)

) (2.11)

for all x ∈ X and all a > 0. Taking the limit as n →∞ and using (N6) we get

N(f(x)−Q(x), a) ≥ N
′
(ϕ1(0, x), a(16− α))

for all x ∈ X and a > 0.
Now we claim that Q is quartic. Replacing x, y by 2nx, 2ny in (2.2), respectively,

we get

N(
1

16n
Df (2

nx, 2ny), a) ≥ N
′
(ϕ1(2

nx, 2ny), 16na)

for all x, y ∈ X and all a > 0. Since limn→∞ N
′
(ϕ1(2

nx, 2ny), 16na) = 1 and then by
Corollary 2.2 of [7] we get that the mapping Q : X → Y is quartic.

To prove the uniqueness of Q, let Q
′

: X → Y be another quartic mapping
satisfying (2.3). Fix x ∈ X. Clearly Q(2nx) = 16nQ(x) and Q

′
(2nx) = 16nQ

′
(x) for

all x ∈ X and all n ∈ N. It follows from (2.3) that

N(Q(x)−Q
′
(x), a) = N(

Q(2nx)

16n
− Q

′
(2nx)

16n
, a)

≥ min{N(
Q(2nx)

16n
− f(2nx)

16n
,
a

2
), N(

f(2nx)

16n
− Q

′
(2nx)

16n
,
a

2
)}

≥ N
′
(ϕ1(0, 2

nx),
16na(16− α)

2
) ≥ N

′
(ϕ1(0, x),

16na(16− α)

2αn
)

for all x ∈ X and all a > 0.
Since limn→∞

a(16−α)(16n)
2αn = ∞, we obtain limn→∞ N

′
(ϕ1(0, x), 16na(16−α)

2αn ) = 1.

Thus N(Q(x)−Q
′
(x), a) = 1 for all x ∈ X and all a > 0, and so Q(x) = Q

′
(x).

For β = −1, we can prove the result by a similar method. �

Theorem 2.2. Let β ∈ {1,−1} be fixed and let ϕ2 : X×X → Z be a mapping such
that for some α > 0 with (α

8
)β < 1

N
′
(ϕ2(0, 2

βx), a) ≥ N
′
(αβϕ2(0, x), a) (2.12)
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for all x ∈ X and all a > 0, and limn→∞ N
′
(ϕ2(2

βnx, 2βny), 8βna) = 1 for all
x, y ∈ X and all a > 0. Suppose that an odd mapping f : X → Y satisfies the
inequality

N(Df (x, y), a) ≥ N
′
(ϕ2(x, y), a) (2.13)

for all a > 0 and all x, y ∈ X. Then the limit

C(x) = N- lim
n→∞

1

8βn
f(2βnx)

exists for all x ∈ X and the mapping C : X → Y is a unique cubic mapping
satisfying

N(f(x)− C(x), a) ≥ N
′
(ϕ2(0, x), a|8− α|) (2.14)

for all x ∈ X and all a > 0.

Proof. Let β = 1. Letting x = 0 in (2.13), we get

N(f(2y)− 8f(y), a) ≥ N
′
(ϕ2(0, y), a) (2.15)

for all y ∈ X and all a > 0. Replacing y by x in (2.15), we get

N(f(2x)− 8f(x), a) ≥ N
′
(ϕ2(0, x), a) (2.16)

for all x ∈ X and all a > 0. Replacing x by 2nx in (2.16), we obtain

N(
f(2n+1x)

8
−f(2nx),

a

8
) ≥ N

′
(ϕ2(0, 2

nx), a) (2.17)

for all x ∈ X and all a > 0. Using (2.13), we get

N(
f(2n+1x)

8
− f(2nx),

a

8
) ≥ N

′
(ϕ2(0, x),

a

αn
) (2.18)

for all x ∈ X and all a > 0. Replacing a by αna in (2.18), we get

N(
f(2n+1x)

8n+1
− f(2nx)

8n
,

aαn

8(8n)
) ≥ N

′
(ϕ2(0, x), a) (2.19)

for all x ∈ X and all a > 0. It follows from f(2nx)
8n − f(x) =

∑n−1
i=0

f(2i+1x)
8i+1 − f(2ix)

8i

and (2.19) that

N(
f(2nx)

8n
−f(x),

n−1∑
i=0

aαi

8(8i)
) ≥ min

n−1⋃
i=0

{N(
f(2i+1x)

8i+1
−f(2ix)

8i
,

aαi

8(8i)
)} ≥ N

′
(ϕ2(0, x), a)

(2.20)
for all x ∈ X and all a > 0. Replacing x with 2mx in (2.20), we obtain

N(
f(2n+mx)

8n+m
− f(2mx)

8m
,

n−1∑
i=0

aαi

8(8i+m)
) ≥ N

′
(ϕ2(0, 2

mx), a) ≥ N
′
(ϕ2(0, x),

a

αm
),

and so

N(
f(2n+mx)

8n+m
− f(2mx)

8m
,
n+m−1∑

i=m

aαi

8(8i)
) ≥ N

′
(ϕ2(0, x), a)
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for all x ∈ X, all a > 0 and all m, n ≥ 0. Hence

N(
f(2n+mx)

8n+m
− f(2mx)

8m
, a) ≥ N

′
(ϕ2(0, x),

a∑n+m−1
i=m

αi

8(8i)

) (2.21)

for all x ∈ X, all a > 0 and all m,n ≥ 0. Since 0 < α < 8 and
∑∞

i=0(
α
8
)i < ∞, the

Cauchy criterion for convergence and (N5) imply that {f(2nx)
8n } is a Cauchy sequence

in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point

C(x) ∈ Y. So one can define the mapping C : X → Y by C(x) := N -limn→∞
f(2nx)

8n

for all x ∈ X.
Since f is odd, C is odd. Letting m = 0 in (2.21), we get

N(
f(2nx)

8n
− f(x), a) ≥ N

′
(ϕ2(0, x),

a∑n−1
i=0

αi

8(8i)

) (2.22)

for all x ∈ X and all a > 0. Taking the limit as n →∞ and using (N6), we get

N(f(x)− C(x), a) ≥ N
′
(ϕ2(0, x), a(8− α))

for all x ∈ X and all a > 0.
Now we claim that C is cubic. Replacing x, y by 2nx, 2ny in (2.13), respectively,

we get

N(
1

8n
Df (2

nx, 2ny), a) ≥ N
′
(ϕ2(2

nx, 2ny), 8na)

for all x, y ∈ X and all a > 0. Since limn→∞ N
′
(ϕ2(2

nx, 2ny), 8na) = 1, by Corollary
2.2 of [7], we get that the mapping C : X → Y is cubic.

To prove the uniqueness of C, let C
′
: X → Y be another cubic mapping satisfying

(2.14). Fix x ∈ X. Clearly C(2nx) = 8nC(x) and C
′
(2nx) = 8nC

′
(x) for all x ∈ X

and all n ∈ N. It follows from (2.14) that

N(C(x)− C
′
(x), a) = N(

C(2nx)

8n
− C

′
(2nx)

8n
, a)

≥ min{N(
C(2nx)

8n
− f(2nx)

8n
,
a

2
), N(

f(2nx)

8n
− C

′
(2nx)

8n
,
a

2
)}

≥ N
′
(ϕ2(0, 2

nx),
8na(8− α)

2
) ≥ N

′
(ϕ2(0, x),

8na(8− α)

2αn
)

for all x ∈ X and all a > 0.
Since limn→∞

a(8−α)(8n)
2αn = ∞, we obtain limn→∞ N

′
(ϕ2(0, x), 8na(8−α)

2αn ) = 1. Thus

N(C(x)− C
′
(x), a) = 1 for all x ∈ X and all a > 0, and so C(x) = C

′
(x).

For β = −1, we can prove the result by a similar method. �

We now prove our main theorem in section.

Theorem 2.3. Let β ∈ {1,−1} be fixed and let ϕ : X ×X → Z be a mapping such
that for some α > 0 with αβ < (4(−β + 3))β

N
′
(ϕ(0, 2βx), a) ≥ N

′
(αβϕ(0, x), a) (2.23)

for all x ∈ X and all a > 0, and

lim
n→∞

N
′
(ϕ(2βnx, 2βny), [(|β|+ β)24βn−1 + (|β| − β)23βn]a) = 1
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for all x, y ∈ X and all a > 0. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(Df (x, y), a) ≥ N
′
(ϕ(x, y), a) (2.24)

for all a > 0 and all x, y ∈ X. Then there exist a unique quartic mapping Q : X → Y
and a unique cubic mapping C : X → Y such that

N(f(x)−Q(x)− C(x), a) ≥ N
′′
(x, a) (2.25)

for all x ∈ X and all a > 0, where

N
′′
(x, a) := min{N ′

(ϕ(0, x),
a(16− α)

2
), N

′
(ϕ(0, x),

a(8− α)

2
)} .

Proof. Assume β = 1. Then we have α < 8. Let fe(x) = f(x)+f(−x)
2

for all x ∈ X.
Then fe(0) = 0, fe(−x) = fe(x) and

N(Dfe(x, y), a) = N(
1

2
[Df (x, y) + Df (−x,−y)], a)

≥ min{N(Df (x, y), a), N(Df (−x,−y), a)}
for all x ∈ X and all a > 0. Hence, by Theorem 2.1, there exists a unique quartic
mapping Q : X → Y satisfying

N(fe(x)−Q(x), a) ≥ N
′
(ϕ(0, x), a(16− α)) (2.26)

for all x ∈ X and all a > 0.
Let fo(x) = f(x)−f(−x)

2
for all x ∈ X. Then fo(0) = 0, fo(−x) = −fo(x) and

N(Dfo(x, y), a) = N(
1

2
[Df (x, y)−Df (−x,−y)], a)

≥ min{N(Df (x, y), a), N(Df (−x,−y), a)}
for all x ∈ X and all a > 0. Hence, by Theorem 2.2, there exists a unique cubic
mapping C : X → Y satisfying

N(fo(x)− C(x), a) ≥ N
′
(ϕ(0, x), a(8− α)) (2.27)

for all x ∈ X and all a > 0. Hence (2.25) follows from (2.26) and (2.27). If β = 1,
then we have α > 16. The rest of proof is similar to the case β = 1. �
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