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Abstract

Of concern the present study deals with an updated food chain model in a natural environment with the inclusion
of fear effect in the prey population through Holling type II functional response in presence of prey refuge effect.
The present model is affluent with intra-specific competition among the hunter species having specific mortality. The
model system emphasizes its characteristics in the proximity of the probable equilibrium position in the realm of
biological dynamics. The response of the system is explored further for its stability analysis based on prerequisites
and Hopf-bifurcation phenomena as well with respect to some significant model parameters. Extensive numerical
simulation reveals the validity of the proposed model so as to indicate the ecological implications.
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1 Introduction

Mathematical model formulations including prey-predator, food chain and other ecological models and their anal-
yses have established a new trend of research in theoretical ecology (cf. [21], [23], [18], [22]). The predator-prey
interaction mechanism plays an important role in the behaviour of the proposed model.

In the ecosystem, there are enormous numbers of species of different kinds, of which prey and predator species
play crucial role in various types of interactions among the species in the system. Quite often the interaction between
the prey and the predator becomes the center of attraction in an ecosystem [24], [35] for complete understanding
their dynamical behavior. For this purpose, various mathematical models [16], [27] have been made use of so that
the outcomes of the models depending on model parameters often yielded new dimension in the domain of research.
With the evolution of mathematical models in ecosystem, Rosenzweig and MacArthur [31] developed a model by
combining Lotka- Volterra modified model having logistic growth rate for prey with predation rate of predator by
using Holling type II [15] in order to establish their findings closer to the real situation. Many more researchers [11],
[14] put forward three-dimensional models and explored various changes with the motivation of looking at different
domains of interest. Such modifications include many factors in the realm of the dynamics of the ecosystem like fear
effect, prey harvesting, delay effect, intra-specific competition and hunting cooperation as well [25], [8], [9], [28], [32].
A nonautonomous predator-prey model with fear, prey refuge and additional food together has been studied in [36].
The influence of Allee [33] with defense mechanism in the dynamical complexity is however, nor ruled out from the
investigation. Evolutionary process in nature has been studied to illustrate the diversity of living animals [6], [38].
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The choice of various functional responses depending on the nature of interacting species [2], [4], [29], [34], [41] has
been made to uphold the research worthwhile. So, one must realize that present-day research in the relevant domain
of interest is going to be more and more challenging. The ecosystem envelopes quite a good number of interacting
species and one may classify them as diverse levels in a food pyramid. In a food pyramid arrangement, prey species
exist in the lowest trophic level while predators reside in the level above that of prey to their feeding habit. Predator
species are solely depended on the prey population for their existence in the living kingdom.

On the other hand, prey species always encounter the risk of predation resulting in sense of fear in the mind of
prey population which largely perturbs their process of evolution. Here fear is an indirect effect [20] that manipulates
the mind set of prey psychologically [29]. Obviously, predators have the advantage to predate prey for food and thus
affect the growth rate of the prey population. Predation is an example of direct purport of predators on prey [20],
[39] while fear is an example of indirect effect. Several studies on the effect of fear in a tri-trophic food chain model
have been carried out by many researchers of which the first work of its kind was introduced by [40] to show how
the fear effect influences the growth rate of prey species. Attention has also been focused on the effects of fear of
large carnivores on herbivores and meso-carnivores by eminent researchers. Three dimensional food chain models are
of great use to exemplify the fear effect in the complex dynamics of such interacting species while two dimensional
models have got obvious limitations.

In 1969, Pielou [30] modified the Lotka-Volterra preator-prey model by incorporating intra-specific competition
in predator population. Bazykin [3] studied the predator-prey model with Holling type II functional response for
predation process with inra-specific competition among predator. A ratio-dependent predator-prey model with intra-
specific competition among predator population is studied by Haque [12] and showed that intra-specific competition
has stabilizing potential on the system behaviour. Three species Hasting Powell food chain model is studied by Haque
et. al. [13] by incorporating intra-specific competition among both the predator populations and conclude that intra-
specific competition has stabilizing potential when all the species coexist. Ali and Chakravarty [1] studied the impact
of prey refuge in the three species Hasting Powell food chain model in presence of intra-specific competition among
predator populations.

In 1991, Hastings & Powell [14] studied the following food chain model

dx

dt
= rx− d1x− h1x

2 − a1xy

b1 + x
, x(0) > 0, (1.1a)

dy

dt
=

e1a1xy

b1 + x
− d2y −

a2yz

b2 + x
, y(0) > 0, (1.1b)

dz

dt
=

e2a2yz

b2 + x
− d3z, z(0) > 0, (1.1c)

where x, y, z stands for population density of prey, predator and top-predator respectively. The parameters r and
d1 are the birth rate and death rate of the prey, h1 is the intra specific competition among prey population, ai are
the respective predation rates of predator and top-predator (i = 1, 2), bi are the respective half saturation constants
(i = 1, 2), ei are the respective conversion factors (i = 1, 2), di are the respective death rates of predator and top-
predator (i = 2, 3).

The model (1.1) is studied by many researchers ([17], [10], [26]). Haque et. al. [13] studied the food chain model
(1.1) incorporating intra-specific competition among both the predator populations and conclude that intra-specific
competition has the potential to control chaotic dynamics. Ali and Chakravarty [1] studied the influence of prey refuge
in the model (1.1) with intra-specific competition among predator populations. Kumar and Kumari [19] incorporate
fear effect in the model (1.1) and conclude that fear can control chaotic dynamics. Cong et. al. [7] formulate a
three-species food chain model e by using the classical Holling’s time budget argument where the cost and benefit of
anti-predator behaviours are included. But no one study the impact of fear effect in presence of prey refuge on the
dynamics of (1.1). Keeping in mind all the studies as mentioned above, at the moment, the interest is centered on the
consequences of fear in prey species and prey refuge effect in both the prey and predator species in a tri-trophic food
chain model (1.1) incorporating intra-specific competition among both the predator populations.

The present investigation is organized as follows. In Section 2, the formulation of the team model under consid-
eration and its assumptions are stated. Section 3 contains some preliminary results. Subsequently in Section 4 the
model with intra-specific competition is analyzed, identifying its equilibria, providing conditions for their feasibility,
stability and bifurcation. Numerical simulation has finally been carried out in Section 5. The investigation concludes
with a discussion of the results obtained.
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2 Mathematical model formulation

We consider fear factor following Wang et. al. [40] in the prey population due to predator’s hunting in the model
(1.1) in presence of prey refuge effect. We also consider the intra-specific competition among both the predator
populations. The dynamics of the model described above can be represented by the following set of differential
equations:

dx

dt
=

rx

1 + ky
− d1x− h1x

2 − a1(1−m1)xy

b1 + (1−m1)x
, x(0) > 0, (2.1a)

dy

dt
=

e1a1(1−m1)xy

b1 + (1−m1)x
− d2y −

a2(1−m2)yz

b2 + (1−m2)y
− h2y

2, y(0) > 0, (2.1b)

dz

dt
=

e2a2(1−m2)yz

b2 + (1−m2)y
− d3z − h3z

2, z(0) > 0, (2.1c)

where all the variables and parameters are defined earlier except k, m1, m2, h2, h3. k is the fear parameter of prey
population. The parameters mi (i = 1, 2) represents the constant proportion of prey refuge during predation process
and hi (i = 1, 2) are the intra specific competition among individuals of predator and top-predator respectively.

3 Preliminary results

3.1 Equilibria and their feasibility

System (2.1) has the following four positive equilibria Ei(xi, yi, zi), i = 0, 1, 2, 3. E0 is the origin, E1 ≡ ( r−d1

h1
, 0, 0),

E2 ≡ (x2, y2, 0), E3 ≡ (x3, y3, z3). For E2, we have x2, y2 are positive roots of the equations

0 =
r

1 + ky
− d1 − h1x− a1(1−m1)y

b1 + (1−m1)x
, (3.1)

0 =
e1a1(1−m1)x

b1 + (1−m1)x
− d2 − h2y. (3.2)

By numerical calculations, for the set of parameter values r = 2.0, k = 0.5, a1 = 2.0, a2 = 0.3, b1 = 3.2, b2 = 1.0,
e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1; E2 becomes
(1.230148922, 1.626838264, 0).

For the coexistence equilibrium E3(x3, y3, z3); x3, y3 and z3 are positive roots of the equations

0 =
r

1 + ky
− d1 − h1x− a1(1−m1)y

b1 + (1−m1)x
,

0 =
e1a1(1−m1)x

b1 + (1−m1)x
− d2 −

a2(1−m2)z

b2 + (1−m2)x
− h2y,

0 =
e2a2(1−m2)y

b2 + (1−m2)x
− d3 − h3z.

By numerical calculations, for the set of parameter values r = 1.4, k = 0.9, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0,
e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1; E3 becomes
(3.894309020, 0.6753642011, 1.024342722).

3.2 Boundedness

Proposition 1. The solutions of system (2.1) which initiate in R3
+ are uniformly bounded.

Proof . Define a positive definite function

Ω(t) = x(t) +
y(t)

e1
+

e1z(t)

e2
. (3.3)
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From definition, Ω(t) is differentiable in some maximal interval (0, tb). For an arbitrary η > 0, the time derivative of
(3.3) along the solution of the system (2.1) is

dΩ

dt
+ ηΩ = x

(
η +

r

1 + ky
− d1 − h1x

)
+ y

(
η − d2

e1
− h2y

e1

)
+ z

(
η − e1d3

e2
− e1h3z

e2

)
≤

(
η + r − d1 − h1x

)
+ y

(
η − d2

e1
− h2y

e1

)
+ z

(
η − e1d3

e2
− e1h3z

e2

)
≤ (η + r − d1)

2

4h1
+

(η − d2

e1
)2

4h2

e1

+
(η − e1d3

e2
)2

4 e1h3

e2

.

Hence, we can find µ > 0 such that

dΩ

dt
+ ηΩ ≤ µ ∀ t ∈ (0, tb).

Applying the theory of differential equation [5], we get

0 < Ω(x, y, z) <
µ

η
(1− e−ηt) +Ω(x(0), y(0), z(0))e−ηt ∀ t ∈ (0, tb)

and for tb → ∞, 0 < Ω(x, y, z) < µ
η . Hence all the solutions of system (2.1) that initiate at (x(0), y(0), z(0)) lie in R3

+

and are confined in the compact region

Γ = {(x, y, z) ∈ R3
+;x(t) +

1

e
y(t) + z(t) =

µ

η
+ ε, ∀ ε > 0}. (3.4)

4 Stability and bifurcation analysis

In order to investigate the dynamics of the proposed model (2.1) around the above equilibrium points, the Jacobian
matrix of the system (2.1) at any arbitrary point (x, y, z) is given by

J(x, y, z) =

 J11 J12 J13
J21 J22 J23
J31 J32 J33

 ,

where J11 = r
1+ky − d1 − 2h1x− a1(1−m1)y

b1+(1−m1)x
+ a1(1−m1)

2xy
{b1+(1−m1)x}2 , J12 = − rkx

(1+ky)2 − a1(1−m1)x
b1+(1−m1)x

, J13 = 0,

J21 = e1a1b1(1−m1)zy
{b1+(1−m1)x}2 , J22 = e1a1(1−m1)x

b1+(1−m1)x
− d2 − a2(1−m2)z

b2+(1−m2)y
+ a2(1−m2)

2yz
({b2+(1−m2)y}2 − 2h2y, J23 = − a2(1−m2)y

b2+(1−m2)y
,

J31 = 0, J32 = e2a2b2(1−m2)z
{b2+(1−m2)y}2 , J33 = e2a2(1−m2)y

b2+(1−m2)y
− d3 − 2h3z.

4.1 Dynamics of the system around E0(0, 0, 0)

The eigenvalues of the Jacobian matrix J0 at E0 are r− d1 > 0, −d2 < 0, −d3 < 0. Hence E0 is unstable manifold
in x direction.

4.2 Dynamics of the system around E1(x1, 0, 0)

The eigenvalues of the Jacobian matrix J1 at E1 are −(r − d1),
e1a1(1−m1)x1

b1+(1−m1)x1
− d2, −d3. Hence E1 will be locally

assymptotically stable if e1a1(1−m1)x1

b1+(1−m1)x1
< d2.

4.3 Dynamics of the system around E2(x2, y2, 0)

(i) E2 will be locally assymptotically stable if a1(1 − m1)
2x2y2 < h1x2{b1 + (1 − m1)x2}2, e2a2(1 − m2)y2 <

d3{b2 + (1−m2)y2}, b1 > m1x2.

(ii) E2 experiences hopf-bifurcation at a1 = a
[1HB]
1 where a

[1HB]
1 = (h1x2+h2y2){b1+(1−m1)x2}2

(1−m1)2x2y2
.
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Proof: (i) The Jacobian matrix J2 evaluated at E2 is given by J2 = (cij)3×3, where c11 = −h1x2 +
a1(1−m1)

2x2y2

{b1+(1−m1)x2}2 ,

c12 = − rkx2

(1+ky2)2
− a1(1−m1)x2

b1+(1−m1)x2
< 0, c13 = 0, c21 = e1a1y2(1−m1)(b1−m1x2)

{b1+(1−m1)x2}2 , c22 = −h2y2 < 0, c23 = − a2(1−m2)y2

b2+(1−m2)y2
< 0,

c31 = 0, c32 = 0, c33 = e2a2(1−m2)y2

b2+(1−m2)y2
− d3. Its eigenvalues are

λ1,2 =
1

2

[
c11 + c22 ±

√
(c11 + c22)2 − 4(c11c22 − c12c21)

]
λ3 = c33. (4.1)

If we assume c11 < 0, c33 < 0, c21 > 0 then λ3 < 0 and λ1,2 both are either negative or complex numbers with negative
real parts. Hence, E3 will be locally assymptotically stable if c11 < 0, c33 < 0, c21 > 0 that is, a1(1 − m1)

2x2y2 <
h1x2{b1 + (1−m1)x2}2, e2a2(1−m2)y2 < d3{b2 + (1−m2)y2}, b1 > m1x2.

Proof: (ii) From (4.1), we see that λ3 is real, λ1 and λ2 will be purely imaginary if and only if there is a a1 = a
[1HB]
1

such that a
[1HB]
1 = (h1x2+h2y2){b1+(1−m1)x2}2

(1−m1)2x2y2
.

But for i = 1, 2,

Re

(
dλi

da1

)
|
a1=a

[1HB]
1

=
(1−m1)

2x2y2
{b1 + (1−m1)x2}2

̸= 0.

Therefore, the system enters into hopf-bifurcation at a1 = a
[1HB]
1 around E2.

4.4 System behaviour near the coexistence equilibrium E3(x3, y3, z3)

The Jacobian matrix J3 evaluated at E3 has the components

J11 = −h1x3 +
a1(1−m1)x3y3

{b1 + (1−m1)x3}2
, J12 = − rkx3

1 + ky3
− a1(1−m1)x3

b1 + (1−m1)x3
< 0, (4.2)

J13 = 0, J21 =
e1a1y3(1−m1)(b1 −m1x3)

{b1 + (1−m1)x3}2
, J22 = −h2y3 +

a2(1−m2)y3z3
{b2 + (1−m2)y3}2

,

J23 = − a2(1−m2)y3
b2 + (1−m2)y3

< 0, J31 = 0, J32 =
e2a2z3(1−m2)(b2 −m2y3)

{b2 + (1−m2)y3}2
,

J33 = −h3z3.

The characteristic equation of J3 is λ3 +A1λ
2 +A2λ+A3 = 0 where A1 = −J11 − J22 − J33, A2 = J11J22 + J11J33 +

J22J33 − J12J21 − J23J32, A3 = J11J23J32 + J12J21J33 − J11J22J33.
4.4.1: The system (2.1) is locally asymptotically stable if A1 > 0, A3 > 0 and A1A2 −A3 > 0.
Proof: From the Routh-Hurwitz criterion, the equilibrium point E3 is locally asymptotically stable if A1 > 0, A3 > 0
and A1A2 > A3. Here,

A1A2 −A3 = −J11
2J22 − J11

2J33 − J11J22
2 − J22

2J33 − J11J33
2 − J22J33

2

+J11J12J21 + J22J23J32 + J22J12J21 + J33J23J32 − 2J11J22J33.

Assuming J11 < 0, J22 < 0, J21 > 0 and J32 > 0, A1A2 − A3 > 0. Hence A1 > 0, A3 > 0 and A1A2 − A3 > 0 i.e. E3

is locally asymptotically stable if J11 < 0, J22 < 0, J21 > 0 and J32 > 0 which implies the conditions are as follows:
a1(1−m1)x3y3 < h1x3{b1 + (1−m1)x3}2, a2(1−m2)y3z3 < h2y3{b2 + (1−m2)y3}2, b1 > m1x3, b2 > m2y3.

4.4.2: The system (2.1) is globally asymptotically stable if h1b1{b1 +(1−m1)x3} > a1y3(1−m1)
2, h2b2{b2 +(1−

m2)y3} > a2z3(1−m2)
2.

Proof: Let R3
∗ = {(x, y, z) ∈ R3

+, x > 0, y > 0, z > 0} and consider the scalar function L : R3
∗ → R defined by

L = k1

[
x− x3 − x3ln

x

x3

]
+ k2

[
y − y3 − y3ln

y

y3

]
+ k3

[
z − z3 − z3ln

z

z3

]
(4.3)
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where k1, k2, k3 are positive constants determined latter. The derivative of the above equation (4.3) along the solution
of the system (2.1) is given by

dL

dt
= k1

[
1− x3

x

]
ẋ+ k2

[
1− y3

y

]
ẏ + k3

[
1− z3

z

]
ż

= k1(x− x3)

[
r

1 + ky
− d1 − h1x− a1(1−m1)y

b1 + (1−m1)x

]
+k2(y − y3)

[
e1a1(1−m1)x

b1 + (1−m1)x
− d2 −

a2(1−m2)z

b2 + (1−m2)y
− h2y

]
+k3(z − z3)

[
e2a2(1−m2)y

b2 + (1−m2)y
− d3 − h3z

]

At the equilibrium point E3 of the system (2.1), we have

d1 =
r

1 + ky3
− h1x3 −

a1(1−m1)y3
b1 + (1−m1)x3

,

d2 =
e1a1(1−m1)x3

b1 + (1−m1)x3
− a2(1−m2)z3

b2 + (1−m2)y3
− h2y3,

d3 =
e2a2(1−m2)y3
b2 + (1−m2)y3

− h3z3. (4.4)

Using (4.4), the time derivative of L becomes

dL

dt
= k1(x− x3)

[
− h1(x− x3) +

r

1 + ky
−+

r

1 + ky3
− a1(1−m1)y

b1 + (1−m1)x

+
a1(1−m1)y3

b1 + (1−m1)x3

]
+ k2(y − y3)

[
e1a1(1−m1)x

b1 + (1−m1)x
− e1a1(1−m1)x3

b1 + (1−m1)x3

− a2(1−m2)z

b2 + (1−m2)y
+

a2(1−m2)z3
b2 + (1−m2)y3

− h2(y − y3)

]
+ k3(z − z3)[

e2a2(1−m2)y

b2 + (1−m2)y
− e2a2(1−m2)y3

b2 + (1−m2)y3
− h3(z − z3)

]
,

= k1(x− x3)

[
− h1(x− x3)−

rk(y − y3)

(1 + ky)(1 + ky3)
+

a1y3(1−m1)
2(x− x3)

{b1 + (1−m1)x}{b1 + (1−m1)x3}

−a1(1−m1)(y − y3)

b1 + (1−m1)x

]
+ k2(y − y3)

[
e1a1b1(1−m1)(x− x3)

{b1 + (1−m1)x}{b1 + (1−m1)x3}

+
a2z3(1−m2)

2(y − y3)

{b2 + (1−m2)y}{b2 + (1−m2)y3}
− a2(1−m2)(z − z3)

b2 + (1−m2)y
− h2(y − y3)

]
+k3(z − z3)

[
e2a2b2(1−m2)(y − y3)

{b2 + (1−m2)y}{b2 + (1−m2)y3}
− h3(z − z3)

]
≤ k1(x− x3)

[
− h1(x− x3)−

rk(y − y3)

(1 + ky3)
+

a1y3(1−m1)
2(x− x3)

b1{b1 + (1−m1)x3}

−a1(1−m1)(y − y3)

b1

]
+ k2(y − y3)

[
e1a1b1(1−m1)(x− x3)

b1{b1 + (1−m1)x3}

+
a2z3(1−m2)

2(y − y3)

b2{b2 + (1−m2)y3}
− a2(1−m2)(z − z3)

b2
− h2(y − y3)

]
+k3(z − z3)

[
e2a2b2(1−m2)(y − y3)

b2{b2 + (1−m2)y3}
− h3(z − z3)

]
Now we choose k1, k2, k3 in such a way that the coefficients of (x − x3)(y − y3), (y − y3)(z − z3) will be zero i.e.
e1a1b1(1−m1)k2

b1{b1+(1−m1)x3} − a1(1−m1)k1

b1
− rkk1

(1+ky3)
= 0,

e2a2b2(1−m2)k3

b2{b2+(1−m2)y3} − a2(1−m2)k2

b2
= 0. Taking k3 = 1, we get k2 = e2b2

b2+(1−m2)y3
, k1 = e1a1b1(1−m1)k2

b1{b1+(1−m1)x3}
b1(1+ky3)

a1(1−m1)(1+ky3)+rkb1
.
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Now,

dL

dt
≤ −[Ak1(x− x3)

2 +Bk2(y − y3)
2 + h3k3(z − z3)

2],

where A = h1 − a1y3(1−m1)
2

b1{b1+(1−m1)x3} , B = h2 − a2z3(1−m2)
2

b2{b2+(1−m2)y3} .

Hence L will be the lyapunov function and the system (2.1) will be globally asymptotically stable around the coexistence
equilibrium point if A > 0 and B > 0 i.e. h1b1{b1+(1−m1)x3} > a1y3(1−m1)

2, h2b2{b2+(1−m2)y3} > a2z3(1−m2)
2.

4.4.3: The system enters into a Hopf-bifurcation at E3 for λ = λi, for a suitable value k = k[2HB] if A1A2−A3 = 0
hold.
Proof: The Routh-Hurwitz conditions are satisfied, as mentioned above, if we assume J11 < 0, J22 < 0, J21 > 0 and
J32 > 0. To have a Hopf bifurcation, we need however A1A2 = A3 for some value of k, say k = k[2HB]. Since A2 > 0
at k = k[2HB], for some k > ϵ > 0 there is an interval (k[2HB] − ϵ, k[2HB] + ϵ) in which A2 > 0. Thus in this interval
the characteristic equation cannot have real positive roots.
Now, for k = k[2HB], the characteristic equation factorizes (λ2 + A2)(λ+ A1) = 0 to give the three roots λ1 = i

√
A2,

λ2 = −i
√
A2, λ3 = −A1. These roots are functions of k ∈ (k[2HB] − ϵ, k[2HB] + ϵ) and can therefore be written as

λ1 = α(k) + iβ(k), λ2 = α(k)− iβ(k), λ3 = −A1(k) .

Now we verify the transversality condition

Re

(
dλi

dk

)
|k=k[2HB] ̸= 0, i = 1, 2.

Substituting λj = α(k) + iβ(k), j = 1, 2, into the characteristic equation and differentiating w.r.t k, we have

ω(k)α′(k)− ϕ(k)β′(k) + η(k) = 0,

ϕ(k)α′(k) + ω(k)β′(k) + µ(k) = 0,

where

ω(k) = 3α2(k) + 2A1(k)α(k) +A2(k)− 3β2(k), (4.5)

ϕ(k) = 6α(k)β(k) +A1(k)β(k), (4.6)

η(k) = α2(k)A′
1(k) +A′

2(k)α(k) +A′
3(k)−A′

1(k)β
2(k), (4.7)

µ(k) = 2α(k)β(k)A′
1(k) +A′

2(k)β(k). (4.8)

Since ϕ(k)µ(k) + ω(k)η(k) ̸= 0, we have

Re

(
dλj

dk

)
|k=k[2HB] = −ϕµ+ ωη

ϕ2 + ω2
̸= 0, j = 1, 2, λ3(k) = −A1(k) ̸= 0.

Hence, the claim.

5 Numerical simulation

In this section, the dynamical behaviour of the food chain model (2.1) are studied numerically to support our
analytical results. The numerical simulation about the co-existence equilibrium point E3 based on various model
parameter values satisfying the criteria mentioned above is undertaken for the purpose of present model (2.1) validation
and complete understanding the dynamical behavior. For numerical computations, we solve the system of ordinary
differential equations by Runge-Kutta fourth order method and made use of software packages like Maple 16 and
MATLAB R2010a with due attention on developing necessary codes for the purpose. Several diagrams are exhibited
in order to illustrate the complex dynamics of the proposed model keeping in mind the entire analytical findings. The
consequences of various diagrams relating to phase portraits and bifurcations behavior are presented for the purpose
of understanding the nature of the system under consideration.

Figure 1 exhibits the time series and phase portrait representations of stable steady state behaviour of the system
around the predator free equilibrium E1. Figure 2 shows the hopf-bifurcation behaviour around E2 representing in
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the time series and phase portrait for the set of following parameter values r = 2.0, k = 0.5, a1 = 2.0, a2 = 0.3,
b1 = 1.9, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1,
h3 = 0.1. Keeping all the parameters same, if we increase the value of b1 from 1.9 to 3.2, periodic behaviour of the
system changes into stable steady state behaviour which is represented in the time series and phase portrait in Figure
3. Figure 5 exhibits the time series and phase portrait representations around E3 for prey, predator and top-predator
species over a large span of time. All the species appear to follow an undulating trend towards the onset which
continues for a short period of time and eventually they all become invariant for rest of the time. One may note that
the system becomes globally stable around the interior equilibrium E3 as shown in Figure 5 for the following set of
model parameter values: r = 1.4, k = 0.9, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1,
m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. Subsequently, we focus our attention to
the occurrence of Hopf-bifurcation phenomena because of its importance in the present dynamical system which is
responsible for both switching and periodic solutions of the system. In the event of tumbling the equilibrium position
of the model from its local stability, Hopf-bifurcation sets in with respect to the model parameter k. This situation
may be illuminated mathematically that a conjugate pair of purely imaginary eigenvalues crosses the imaginary axis
in the complex plane. Figure 4(a) exhibits the limit cycle stability of the model system for a specific value of k = 0.1
in three dimensional spaces while the corresponding time series delineations for all the species involved are included
in Figure 4(b). All these trajectories are found to be periodic with respective fixed amplitudes over the entire period
of time. Global stability behaviour of the system around coexistence equilibrium E3 is presented in Figure 6. Hopf
bifurcation situatuin around E3 is depicted in Figures 7, 8, 9, 10 for the system parameters r, k, m1, m2 respectively.
Stabilizing potential of intra-specific competition among predator populations are shown in Figure 11.

In Figure 12, the infuence of fear on the system behaviour in absence of prey refuge effect are recorded. Influence
of prey refuge in absence of fear effect are represented in Figure 13. Despite the response of the present scenario, the
concluding Figure 14 depict the influence of fear in presence of prey refuge effect on the population of prey, predator
and top-predator species in the system under consideration. Thus the growth rate of the population experiences
substantial impact due to the presence of fear factor in the system under study.
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Figure 1: Solution trajectories tends to the equilibrium E1. Here r = 2.0, k = 0.5, a1 = 2.0, a2 = 0.3, b1 = 3.2, b2 = 1.0,
e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 1.48, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase
portrait.
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Figure 2: Hopf-bifurcation behaviour of model the system (2.1) around the equilibrium position E2 for the set of parameter
values r = 2.0, k = 0.5, a1 = 2.0, a2 = 0.3, b1 = 1.9, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3,
d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase portrait.
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Figure 3: Solution trajectories tends to the equilibrium E2. Here r = 2.0, k = 0.5, a1 = 2.0, a2 = 0.3, b1 = 3.2, b2 = 1.0,
e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase
portrait.

(a)
0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

Time

P
op

ul
at

io
ns

 

 

Prey

Predator

Top−predator

(b)
4

6

8

10

0

1

2

3
1

1.5

2

2.5

PreyPredator

T
o
p
−

p
re

d
a
to

r

Figure 4: Hopf-bifurcation behaviour of model the system (2.1) around the equilibrium position E3 for the set of parameter
values r = 1.4, k = 0.1, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3,
d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase portrait.
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Figure 5: Solution trajectories tends to the equilibrium E3. Here r = 1.4, k = 0.9, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0,
e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase
portrait.
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Figure 6: Global stability behaviour around the equilibrium E3. Global stability conditions h1b1{b1 + (1 − m1)x3} =
25.12970221 > a1y3(1 − m1)

2 = 0.5752640511, h2b2{b2 + (1 − m2)y3} = 2.152201223 > a2z3(1 − m2)
2 = 1.530052850 are

satisfied for the set of parameter values r = 1.4, k = 0.9, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1,
m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1. (a) Time series, (b) Phase portrait.
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Figure 7: (a) Hopf-bifurcation around the equilibrium E3 for r = 1.2 and (b) stable behaviour for r = 3.1. The other parameter
values are k = 0.0, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.0, m2 = 0.0, d1 = 0.3, d2 = 0.3, d3 = 0.2,
h1 = 0.1, h2 = 0.1, h3 = 0.1.
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Figure 8: (a) Hopf-bifurcation around the equilibrium E3 for k = 0.3 and (b) stable behaviour for k = 2.7. The other parameter
values are r = 1.4, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.0, m2 = 0.0, d1 = 0.3, d2 = 0.3, d3 = 0.2,
h1 = 0.1, h2 = 0.1, h3 = 0.1.
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Figure 9: (a) Hopf-bifurcation around the equilibrium E3 for m1 = 0.7 and (b) stable behaviour for m1 = 0.9. The other
parameter values are r = 1.4, k = 0.0, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m2 = 0.0, d1 = 0.3, d2 = 0.3,
d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1.
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Figure 10: (a) Hopf-bifurcation around the equilibrium E3 for m2 = 0.2 and (b) stable behaviour for m2 = 0.8. The other
parameter values are r = 1.4, k = 0.0, a1 = 2.0, a2 = 1.0, b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.0, d1 = 0.3, d2 = 0.3,
d3 = 0.2, h1 = 0.1, h2 = 0.1, h3 = 0.1.
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Figure 11: Stabilizing potential of intra-specific competetion among predator populations. (a) Limit cycle behaviour for h2 = 0.0,
h3 = 0.0 (b) stable behaviour for h2 = 0.3, h3 = 0.2. The other parameter values are r = 1.4, k = 0.3, a1 = 2.0, a2 = 1.0,
b1 = 3.2, b2 = 1.0, e1 = 0.9, e2 = 0.8, m1 = 0.1, m2 = 0.1, d1 = 0.3, d2 = 0.3, d3 = 0.2, h1 = 0.1.
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Figure 12: Influence of fear effect on the system behaviour around the equilibrium E3. (a) k = 0, (b) k = 0.2, (c) k = 0.4, (d)
k = 1.0, (e) k = 4.0. The other parameter values are same as mentioned in Figure 5.



On the food chain model with prey refuge and fear effect 2083

(a)
0 200 400 600 800 1000

0

2

4

6

8

10

12

Time

P
op

ul
at

io
ns

 

 

Prey

Predator

Top−predator

(b)
0 200 400 600 800 1000

0

2

4

6

8

10

12

Time

P
o
p
u
la

tio
n
s

 

 

Prey

Predator

Top−predator

(c)
0 200 400 600 800 1000

0

2

4

6

8

10

12

Time

P
o
p
u
la

tio
n
s

 

 

Prey

Predator

Top−predator

(d)
0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

Time

P
o
p
u
la

tio
n
s

 

 

Prey

Predator

Top−predator

Figure 13: Influence of prey refuge effect on the system behaviour around the equilibrium E3. (a) m1 = 0.0,m2 = 0.0 (b)
m1 = 0.1,m2 = 0.1, (c) m1 = 0.2,m2 = 0.2, (d) m1 = 0.3,m2 = 0.3. The other parameter values are same as mentioned in
Figure 5.
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Figure 14: Influence of prey refuge and fear effect on the system behaviour around the equilibrium E3. (a) k = 0.1,m1 =
0.1,m2 = 0.1, (b) k = 0.2,m1 = 0.2,m2 = 0.2, (c) k = 0.3,m1 = 0.3,m2 = 0.3, (d) k = 1.8,m1 = 0.5,m2 = 0.5. The other
parameter values are same as mentioned in Figure 5.
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6 Conclusions and future directions

The model system under consideration is dealt with three interacting species designated by the prey, the predator
and the top-predator. This is basically a food web model where predation is executed following a sequence in which
the predator captures prey and the top predator takes the middle predator into its custody resulting in setting up
an interesting food chain model. Inclusion of logistic growth for prey species together with Holling type II functional
response for both the predator and the top predator put up the model more interesting especially for the predators
role in food collection. Special emphasis is paid on the impact of fear in presence of constant proportion of prey refuge
in the system to examine how the growth of the interacting species gets substantially perturbed. The incorporation
of the consequences of mortality together with the intra-specific competition among predator species in the present
pursuit is not ruled out however.

The present article bears the potential for its merit on several counts. First, the rightful analytical proof concerning
boundedness of the model system as well provided in the text affirm good foundation. Secondly, both the local and
the global stability analysis for the ecologically feasible equilibrium positions are carried out theoretically and duly
validated numerically in order to uphold the merit of the investigation. Thirdly, the model switches off from limit
cycle to stable phase with respect to key model parameters b1 and k. This feature adds another novelty of the work
undertaken. Fourth merit counts the influence of fear factor in presence of prey refuge on the growth rate of the
entire population under investigation. Finally, the fear and prey refuge effect deserve their need for rectification of
the system dynamics as it may control instability of the model system. One may add further that appropriate level
of intra-specific competition accomplishes the predation pressure on both the prey and the predator resulting in the
reduction of mortality risk of both the predator species.

Table 1: Comparison between the model considered by Sk. et. al. [37] and the revised model (2.1). LAS≡ Locally asymptotically stable
& GAS≡ Globally asymptotically stable.

Sl.No. Results of the model ([37] Results of the model (2.1)
1 E0 is unstable. E0 is unstable.
2 E1 is LAS. E1 is LAS.
3 E3 is LAS. E3 is LAS.
4 E4 is LAS. E4 is LAS.
5 Hopf-bifurcation Hopf-bifurcation
6 - E4 is GAS.
7 - Stabilizing potential of k (Fig. 12).
8 - Stabilizing potential of m1, m2 (Fig. 13).
9 - Stabilizing potential of h1, h2 (Fig. 11).

One can again study the following food chain model to get the richer dynamics incorporating hunting cooperation
effect in model 2.1 as follows:

dx

dt
=

rx

1 + ky
− d1x− h1x

2 − a1(1 + α1y)(1−m1)xy

b1 + (1 + α1y)(1−m1)x
, x(0) > 0, (6.1a)

dy

dt
=

e1a1(1 + α1y)(1−m1)xy

b1 + (1 + α1y)(1−m1)x
− d2y −

a2(1 + α2z)(1−m2)yz

b2 + (1 + α2z)(1−m2)y
− h2y

2, y(0) > 0, (6.1b)

dz

dt
=

e2a2(1 + α2z)(1−m2)yz

b2 + (1 + α2z)(1−m2)y
− d3z − h3z

2, z(0) > 0, (6.1c)

where all the variables and parameters are defined earlier except α1, α2. The parameters αi (i = 1, 2) represents
the coefficients of hunting cooperation of predator and top-predator respectively. The model 6.1 is different from the
model considered by Sk et. al [37] where intra-specific competition among predator populations are not considered.
One can again incorporate time delay in the model 6.1 to get more richer behaviour of food chain model.
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