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Abstract

In this paper, we introduce a new iteration method called inertial residual algorithm for finding a common fixed point
of finite family of strictly pseudocontractive mappings in a real uniformly smooth Banach spaces. We also establish
weak and strong convergence theorems for the scheme. Finally, we give numerical experiment to explain the proposed
method. Our results generalize and improve many recent results in the literature.
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1 Introduction

Throughout this paper, X is assume to be a real Banach space with its dual X∗. The generalized duality map is
a map Jφ : X → 2X

∗
associated with a gauge function φ defined by

Jφ(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ||x||||x∗||, ||x∗|| = φ(||x||)},

where φ(t) = tp−1 for all t ≥ 0 and 1 < p < ∞. In particular, if p = 2, then,Jφ = J2 is known as the normalized
duality map written as J which is defined by

J(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ||x||2, ||x∗|| = ||x||}.

It is known (see [18, 19]) that if X is a real Hilbert space H, the normalized duality map reduces to identity map, i.e.,
Jx = {x}.
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Let T : X → X be a nonlinear map. The fixed point problem with respect to T is to find a point x ∈ X such that

Tx = x. (1.1)

We denote by Fix(T ) the set of all fixed points of T , i.e., Fix(T ) = {x ∈ X : Tx = x}. A nonlinear map T : X → X
said to be contraction, if there exists a real number k ∈ (0, 1) such that

||Tx− Ty|| ≤ k||x− y|| ∀x, y ∈ X. (1.2)

However, if k = 1 in (1.2), then T is called nonexpansive. The map T is called pseudocontractive (see [6]), if for all
x, y ∈ X and k > 0, we have

||x− y|| ≤ ||x− y + k[(I − T )x− (I − T )y]||. (1.3)

As a result of Kato [26], (1.3) is equivalent to

⟨Tx− Ty, j(x− y)⟩ ≤ ||x− y||2, (1.4)

for some j(x − y) ∈ J(x − y). T is also called k - strictly pseudocontractive map (see [6]) if there exists k > 0 such
that, for all x, y ∈ X and for some j(x− y) ∈ J(x− y),

⟨Tx− Ty, j(x− y)⟩ ≤ ||x− y||2 − k||x− y − (Tx− Ty)||2. (1.5)

Equivalently, if I is the identity operator, then, (1.5) becomes

⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ k||(I − T )x− (I − T )y||2. (1.6)

If X = H, a real Hilbert space, then T is said to be k - strictly pseudocontractive (see [34]), if there exists k ∈ [0, 1)
such that for all x, y ∈ X we have

||Tx− Ty||2 ≤ ||x− y||2 + k||(I − T )x− (I − T )y||2. (1.7)

The map T is said to be L-Lipschitzian if there exists a constant L > 0 such that, for all x, y ∈ X,

||Tx− Ty|| ≤ L||x− y||.

Remark 1.1. It is worthy mentioning that the class of strictly pseudocontractive mappings contains properly the class
of nonexpansive mappings with k = 0 in (1.7) and every k - strictly pseudocontractive mapping is 1+k

k - Lipschitzian,
see [12]. Furthermore, the class of strictly pseudocontractive mappings is a subclass of Lipschitz pseudocontractive
mappings.

It was shown by Banach and Cacciopoli (see [7, 8, 9]) that if T satisfies (1.2), then it has a unique fixed point in X.
They furthermore showed that if x0 ∈ X is arbitrarily chosen, the sequence {xn} defined by

xn+1 = Txn = Tn+1x0 ∀n ≥ 0, (1.8)

converges strongly to the unique fixed point of T .
The iterative formula (1.8) was due to Picard [37], which is very useful in approximating fixed point of a map satisfying
(1.2) (see [5]), and does not converge for general nonexpansive mappings (see [39]). Mann [31] introduced the Mann
algorithm

xn+1 = (1− υn)xn + υnTxn, n ≥ 0. (1.9)

and showed that the sequence generated by (1.9) converges weakly to a fixed points of nonexpansive mappings, where
{υn} ⊂ (0, 1) satisfying some conditions.
Halpern [23] introduced the following algorithm as a motivation for failure of (1.9) to converge strongly to fixed points
of nonexpansive mappings.

xn+1 = υnx0 + (1− υn)Txn, (1.10)

where {υn} ⊂ (0, 1) satisfying some conditions. Ishikawa [24] introduced the Ishikawa’s iteration method{
yn = ϑnTxn + (1− ϑn)xn,
xn+1 = (1− υn)xn + υnTyn, ∀n ≥ 0,

(1.11)
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where {υn}, {ϑn} ⊂ (0, 1) satisfy some conditions.

However, many authors have introduced different iterative algorithms to approximate fixed points of nonexpansive
and strictly pseudocontractive mappings, see [14, 15, 16] and the references contained therein. There have been an
interests in developing performance of algorithms (see [12, 21, 22, 28, 29, 33]), by use of inertial-type method, which
was first proposed by Polyak in [36] as a measure to speeding up the convergence properties. The main character
of inertial-type method is that the next iterate is defined by making use of the previous two iterates. Recently, the
inertial methods have been studied by several authors (see [4, 10, 11, 25, 20, 30] and the references contained therein).
Mainge [32] proposed the following inertial Mann algorithm by combining the Mann algorithm in [31] and inertial
extrapolation. {

wn = xn + ϑn(xn − xn−1),
xn+1 = (1− υn)wn + υnTwn, n ≥ 1.

(1.12)

Under some standard assumption on the control parameters, Mainge [32] proved weak convergence of the sequence
generated by (1.12).
Furthermore, note that Mann iteration defined by (1.9) may fail to converge for Lipschizian pseudocontractive mapping
in Hilbert space, (see [17]). However Browder and Petryshyn [6] proved a weak convergence theorems for k-srtictly
pseudocontractive mappings, using(1.9) with constant sequence υn = υ, for all n ≥ 0, in the setting of a real Hilbert
space. Leemon [27] proposed the class of algorithms called residual algorithms for performing reinforcement learning
with function approximation system. He proved that the direct and residual gradient algorithms are special cases of
his proposed residual algorithms and showed that the residual algorithms combine the beneficial properties of both
the direct and the residual gradient algorithms, such as speed, generalization and stability.

Recently, La Cruz [13] introduced a residual algorithm for approximating a fixed point of nonexpansive mapping, which
is better and more computationally efficient than many existing methods, such as Mann algorithm (1.9), Halpern al-
gorithm (1.10) and Ishikawa’s algorithm (1.11) as follows;

Algorithm (1) (La Cruz [13])
Step 0: Choose x0 ∈ H, 1 << υmax < ∞, υ0 ∈ (0, υmax], γ, δ ∈ (0, 1) and positive sequence {ηn} such that∑∞

n=0 ηn < +∞.

Let n := 0 and y0 = x0 − Tx0.
Step 1: If ||xn − Txn|| = 0, Stop.
Step 2: Compute xn+1, yn+1 and υn+1 as follows. Find mn as
the smallest nonnegative integer m such that;

||xn − δmnυnyn − T (xn − δmnυnyn)||2 ≤ (1− γδ2mn)||yn||2 + ηn. (1.13)

Set θn = δmn , xn+1 = xn − θnυnyn, yn+1 = xn+1 − Txn=1 and

υn+1 =

{
θnυn||yn||2

||yn||2−⟨yn+1,yn⟩ , if⟨yn+1, yn⟩ ≤ (1− υn

υmax
)||yn||2

υmax, Otherwise.
(1.14)

Step 3: Set n = n+ 1 and go back to step 1.
(A1) ||x0|| < ∞.
(A2) The set Ω0 = {x ∈ H : ||Fx||2 ≤ ||Fx0||2 + η} is compact, where F : H → H is defined by Fx = x− Tx.
Under conditions (A1) and (A2), he proved weak convergence of the algorithm (1) in Hilbert space.

Inspired and motivated by the results of La Cruz [13] and Polyak [36], our intention in this paper is to introduce a
new iteration method called inertial residual algorithm for finding a common fixed point of finite family of strictly
pseudocontractive mappings in a real uniformly smooth Banach space. Our results improve and extend many recent
results in the literature.

2 Preliminaries

A Banach space X is said to be smooth if for every x0 ∈ X with ||x0|| = 1, there exists a unique x∗
0 ∈ X∗ such

that
||x∗

0|| = 1 and ⟨x0, x
∗
0⟩ = ||x0||.
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Geometrically, the smoothness condition means that a normed space’s closed unit ball is smooth if the unit sphere
has no corners or sharp bends. However the smoothness of a Banach space X is characterized by the function
ρX : [0,∞) → [0,∞), called modulus of smoothness of X, defined by

ρX(t) = sup

{
||x+ y||+ ||x− y||

2
− 1 : ||x|| = 1, ||y|| = t

}
.

Equivalently,

ρX(t) = sup

{
||x+ ty||+ ||x− ty||

2
− 1 : ||x|| = 1, ||y|| = 1

}
.

X is said to be uniformly smooth if for any given ϵ > 0, there exists δ > 0 such that for all x, y ∈ X with ||x|| = 1
and ||y|| ≤ δ, then

||x+ y||+ ||x− y|| < 2 + ϵ||y||.
In other words, it is said to be uniformly smooth if and only if

lim
t→0

ρX(t)

t
= 0.

Remark 2.1. (see, [19])
(i) Every Hilbert space is uniformly smooth Banach space.
(ii) Every uniformly smooth Banach space is reflexive.
(iii) Furthermore, see, for example, [18] if X is smooth, then the duality map J is single valued and if X is uniformly
smooth, then the norm on X is fréchet differentiable and J is norm-to-norm uniformly continuous on bounded subsets
of X.

Definition 2.2. Let T : X → X be a map,

(i) T is said to be demiclosed at y0 ∈ X, if for any sequence {xn} in X which converges weakly to x0 ∈ X and
Txn → y0, it holds that Tx0 = y0.

(ii) T is said to be semicompact, if for any bounded sequence {xn} in X such that lim
n→∞

||xn−Txn|| = 0, there exists

a subsequence {xnk
} ⊂ {xn} such that xnk

→ x∗ ∈ X.

The following Lemmas will be needed in the proof of the main results.

Lemma 2.3. (see, [1]) Let X be a real Banach space and J : X → 2X
∗
the duality mapping. Then, the following

inequalities hold.
||x+ y||2 ≤ ||x||2 + 2 ⟨y, j(x+ y)⟩ ∀x, y ∈ X, ∀j(x+ y) ∈ J(x+ y).

Lemma 2.4. [40] Let X be a real Banach space with Fréchet differentiable norm. For x ∈ X, let β∗ be a function
define for 0 < t < ∞ by

β∗(t) = sup

{∣∣∣∣∣ ||x+ ty||2 + ||x||2

t
− 2 ⟨y, j(x)⟩

∣∣∣∣∣ : ||y|| = 1

}
. (2.1)

Then, β
t→0

∗(t) = 0 and

||x+ h||2 ≤ ||x||2 + 2 ⟨y, j(x)⟩+ ||h||β∗(||h||),
for all h ∈ E − {0}.

Remark 2.5. If X = Lp 2 ≤ p < ∞, we know that

||x+ y||2 ≤ ||x||2 + 2 ⟨y, j(x)⟩+ (p− 1)||y||2, ∀x, y ∈ X.

Then, β∗ in (2.1) is estimated by β∗(t) = (p− 1)t for t > 0.
In our more general setting, throughout this work, we will assume that

β∗(t) ≤ ct, t > 0 and for some c > 1, (2.2)

where β∗ is the function described by (2.1).
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Lemma 2.6. (see [38] Lemma 1) Let {an} and {bn} be sequences of nonnegative real numbers, such that

an+1 ≤ an + bn,

with
∑∞

n=1 bn < ∞ for all n ≥ 1, then lim
n→∞

an exists.

Lemma 2.7. (see, [41]) Let X be a real reflexive Banach space which satisfies Opial’s property, K a nonempty, closed
and convex subset of X and T : K → K a continuous pseudocontractive mapping. Then I − T is demiclosed at 0.

Lemma 2.8. (see [35] Opial’s property) A Banach space X is said to satisfy Opial’s property if for every sequence
{xn} in X such that xn ⇀ x ∈ X, then for any y ∈ X such that x ̸= y, we have

lim inf
n→∞

||xn − x|| < lim inf
n→∞

||xn − y||.

Lemma 2.9. Let {Ti}pi=1 be a ki - strictly pseudocontractive mappings and let k = max{ki} and {αi}pi=1 be a finite
real sequence in (0, 1). Define Tαi

x := (1−αi)x+αiTix and T := Tα1
◦Tα2

◦ . . .◦Tαp
. Then, Tαi

for each i = 1, 2, . . . , p
and T are strictly pseudocontractive mappings.

Proof . Consider the following computations;

⟨Tαi
x− Tαi

y, j(x− y)⟩ =
〈
(1− αi)x+ αiTix−

(
(1− αi)y + αiTiy

)
, j(x− y)

〉
= ⟨(1− αi)(x− y) + αi(Tix− Tiy), j(x− y)⟩
= ⟨(1− αi)(x− y), j(x− y)⟩+ ⟨αi(Tix− Tiy), j(x− y)⟩
≤ (1− αi)||x− y||2 + αi

(
||x− y||2 − ki||(I − Ti)x− (I − Ti)y||2

)
= ||x− y||2 − αiki

∣∣∣∣∣∣x− (Tαi
x− x+ αix)

αi
−

(
y − (Tαi

y − y + αiy)

αi

)∣∣∣∣∣∣2
= ||x− y||2 − αiki

∣∣∣∣∣∣ 1
αi

(
(x− Tαix)− (y − Tαiy)

)∣∣∣∣∣∣2
= ||x− y||2 − ki

αi

∣∣∣∣(I − Tαi
)x− (I − Tαi

)y
∣∣∣∣2.

Thus, Tαi is ki

αi
- strictly pseudocontractive mapping.

On the other hand

⟨Tx− Ty, j(x− y)⟩ =
〈
Tα1 ◦ Tα2 ◦ . . . ◦ Tαpx− Tα1 ◦ Tα2 ◦ . . . ◦ Tαpy, j(x− y)

〉
≤ ||Tα2Tα3 ◦ . . . ◦ Tαpx− Tα2 ◦ Tα3 ◦ . . . ◦ Tαpy||2

− k1
α1

||(I − Tα1
◦ Tα2

◦ . . . ◦ Tαp
)x− (I − Tα1

◦ Tα2
◦ . . . ◦ Tαp

)y||2

≤ ||x− y||2 − k1
α1

||(I − T )x− (I − T )y||2.

This implies T is k1

α1
- strictly pseudocontractive mapping. □

Lemma 2.10. Let X be a real Banach space with Fréchet differentiable norm and Ti : X → X be a ki - strictly
pseudocontractive mappings for i = 1.2, 3, . . . , p. Let {αi}pi=1 be a finite real sequence in (0, 1). Define Tαi

x :=
(1 − αi)x + αiTix and T = Tα1

◦ Tα2
◦ . . . ◦ Tαp

, as αi ∈ (0, µ], µ = min
{
1, 2k

c

}
, where k = max{ki : i = 1, 2, . . . , p}

and c is the constant appearing in (2.2), then

(i) Tαi
is nonexpansive.

(ii) Fix(Tαi
) = Fix(Ti).

(iii) T is nonexpansive.
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Proof . (i) Let x, y ∈ X, then we have from Lemma 2.9 that

||Tαi
x− Tαi

y||2 = ||(1− αi)x+ αiTix−
(
(1− αi)y + αiTiy

)
||2

= ||(x− y)− αi

(
x− y − (Tix− Tiy)

)
||2

≤ ||x− y||2 − 2αi ⟨x− y − (Tix− Tiy), j(x− y)⟩
+ α2

i ||x− y − (Tix− Tiy)||β∗(||x− y − (Tix− Tiy)||
)

≤ ||x− y||2 − 2kiαi||x− y − (Tix− Tiy)||2 + α2
i c||x− y − (Tix− Tiy||2

= ||x− y||2 − αi(2ki − cαi)||x− y − (Tix− Tiy)||2

≤ ||x− y||2.

Which implies that Tαi
is nonexpansive.

(ii) It is obvious that x = Tαix if and only if x = Tix. Hence the result.
(iii) Let x, y ∈ X, then we have from (i)

||Tx− Ty|| = ||Tα1 ◦ Tα2 ◦ . . . ◦ Tαpx− Tα1 ◦ Tα2 ◦ . . . ◦ Tαpy||
≤ ||Tα2 ◦ Tα3 ◦ . . . ◦ Tαpx− Tα2 ◦ Tα3 ◦ . . . ◦ Tαpy||
≤ ||Tα3 ◦ Tα4 ◦ . . . ◦ Tαpx− Tα3 ◦ Tα4 ◦ . . . ◦ Tαpy||
...

≤ ||Tαp
x− Tαp

y||
≤ ||x− y||.

Which implies that T is nonexapnsive. □

3 Main Results

In what follows, Ti, i = 1, 2, 3, . . . , p, p ∈ N is a finite family of ki - strictly pseudocontractive maps. Also,
µ := min

{
1, 2k1

c

}
, where c is the constant appearing in Lemma 2.4, αi ∈ (0, µ

σ ), Tαix := (1 − αi)x + αiTix,

T := Tα1 ◦ Tα2 ◦ . . . ◦ Tαp , M = diamX = sup
x,y∈X

||x− y|| and m∗ is the least positive integer for which σm < 2k1

cα1
, for

all m ≥ m∗, σ ∈ (0, 1) fixed. Let {xn} be a sequence generated as follows:

Algorithm (2)
Step 0: Choose x0, x1 ∈ X, γ, σ ∈ (0, 1), positive sequence {ηn} such that

∑∞
n=0 ηn < +∞ and

0 ≤ θn ≤ θ̄n, θ̄n =

{
min

{
δn

||xn−xn−1|| ,
n−1

n+η−1

}
, if xn ̸= xn−1

n−1
n+η−1 , Otherwise,

for some η ≥ 3 and {δn} is a positive sequence such that
∑∞

n=0 δn < ∞. This idea was obtained from the recent
inertial extrapolation step introduced in [2, 3].
Let n := 1, w1 = x1 + θ1(x1 − x0) and g1 = w1 − Tw1.
Step 1: If ||wn − Twn|| = 0, define xn+k := xn ∀k ≥ 1 and stop. Otherwise,
Step 2: Find the least positive integer mn such that for all m ≥ mn, the following inequality holds.

||wn − σmgn − T (wn − σmgn)||2 ≤ (1− γσ2m)||gn||2 + ηn. (3.1)

Step 3: Compute the step length λn using the formula

λn := σmax{mn, m∗}. (3.2)

Step 4: Compute xn+1, wn+1 and gn+1 using the following relations. xn+1 = wn − λngn,
wn+1 = xn+1 + θn+1(xn+1 − xn),
gn+1 = wn+1 − Twn+1, ∀n ≥ 1,

(3.3)
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Step 4: Set n := n+ 1 and go back to step 1.

Remark 3.1. We note that:

(i) If θn = 0 and wn = Twn, we get a fixed point of T . Then we define xn+k = xn ∀k ≥ 1, so that our algorithm
(2) generates an infinite sequence.

(ii) For each n ≥ 1, we have θn||xn − xn−1|| ≤ δn, together with
∑∞

n=0 δn < ∞ implies
∑∞

n=0 θn||xn − xn−1|| < ∞.

(iii) max{mn, m∗} ∈ N and max{mn, m∗} ≥ mn. So by the definition of mn, the inequality (3.1) is satisfied with
m := max{mn,m∗}.

Weak Convergence Theorem

Theorem 3.2. Let X be a real uniformly smooth Banach space and suppose that it satisfies Opial’s property. Let
Ti : X → X, i = 1, 2, 3, . . . , p be a finite family of ki - strictly pseudocontractive mappings with

⋂p
i=1 Fix(Ti) ̸= ∅.

Define Tαi
x := (1 − αi)x + αiTix. Then, the sequence {xn} generated by the algorithm (2) converges weakly to

x∗ ∈ Fix(T ), provided the following conditions hold;

(C1) αi ∈ (0, µ
σ ], µ = min

{
1, 2k

c

}
, where k = max{ki : i = 1, 2, . . . , p} and c is the constant in (2.2)

(C2) lim inf
n→∞

λn

(
2k1

α1
− cλn

)
> 0.

Proof . We divide the proof into the following steps:

Step (i): We show that there exists a smallest integer mn > 0 such that the inequality (3.1) is true.

By contradiction. Suppose for every mn > 0 such that m ≥ mn, we have

||wn − σmngn − T (wn − σmngn)||2 > (1− γσ2mn)||gn||2 + ηn. (3.4)

Passing limit as mn → ∞ to both sides of (3.4), we obtain

||gn||2 > ||gn||2 + ηn,

which is impossible. Hence, the line-search rule defined by (3.1) is well defined.

Step (ii): Next we show that the lim
n→∞

∥ xn − p ∥ exists for any point p ∈ Fix(T ).

Let p ∈ Fix(T ), using (3.3) and Lemma 2.4, we get

||wn − p||2 = ||xn + θn(xn − xn−1)− p||2

= ||(xn − p) + θn(xn − xn−1)||2

≤ ||xn − p||2 + 2 ⟨θn(xn − xn−1), J(xn − p)⟩
+ ||θn(xn − xn−1)||β∗(||θn(xn − xn−1)||

)
≤ ||xn − p||2 + 2θn ⟨xn − xn−1, J(xn − p)⟩

+ cθ2n||xn − xn−1||2

≤ ||xn − p||2 + 2θn
∣∣ ⟨xn − xn−1, J(xn − p)⟩

∣∣
+ cθ2n||xn − xn−1||2

≤ ||xn − p||2 + 2θn||xn − xn−1||||J(xn − p)||
+ cθ2n||xn − xn−1||2

= ||xn − p||2 + 2θn||xn − xn−1||||xn − p||
+ cθ2n||xn − xn−1||2

≤ ||xn − p||2 + 2Mθn||xn − xn−1||
+ cθ2n||xn − xn−1||2. (3.5)
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Again using (3.5) and Lemma 2.4, we have

||xn+1 − p||2 = ||wn − λngn − p||2

= ||(wn − p)− λngn||2

≤ ||wn − p||2 − 2λn ⟨gn, J(wn − p)⟩
+ ||λngn||β∗(||λngn||

)
≤ ||wn − p||2 − 2λn ⟨wn − Twn, J(wn − p)⟩

+ cλ2
n||wn − Twn||2

≤ ||wn − p||2 − 2
k1
α1

λn||wn − Twn||2

+ cλ2
n||wn − Twn||2

= ||wn − p||2 − λn

(
2k1
α1

− cλn

)
||wn − Twn||2

≤ ||xn − p||2 + 2Mθn||xn − xn−1||

+ cθ2n||xn − xn−1||2 − λn

(
2k1
α1

− cλn

)
||wn − Twn||2

= ||xn − p||2 + Vn − λn

(
2k1
α1

− cλn

)
||wn − Twn||2 (3.6)

≤ ||xn − p||2 + Vn by the definition of λn,

where Vn = 2Mθn||xn − xn−1||+ cθ2n||xn − xn−1||2. It follows from Remark 3.1(ii) that
∑∞

n=0 Vn < ∞. Therefore, by
Lemma 2.6, we have lim

n→∞
||xn − p|| exists. This implies that the sequence {||xn − p||} is bounded. Consequently, the

sequence {xn} is bounded.

Step (iii): We show that lim
n→∞

∥ xn − Txn ∥= 0.

From (3.6), we obtain

λn

(
2k1
α1

− cλn

)
||wn − Twn||2 ≤ ||xn − p||2 − ||xn+1 − p||2 + Vn.

Since lim
n→∞

Vn = 0 and the sequence {||xn − p||} converges, we get

lim
n→∞

λn

(2k1
α1

− cλn

)
||wn − Twn||2 = 0.

Using (C2), we have
lim
n→∞

||wn − Twn||2 = 0.

Consequently,
lim
n→∞

||wn − Twn|| = 0. (3.7)

From the definition of wn and Remark 3.1(ii), we have

||wn − xn|| = ||xn + θn(xn − xn−1)− xn||
= θn||xn − xn−1|| → 0 as n → ∞. (3.8)

Using (3.7) and (3.8), we get

||xn − Twn|| ≤ ||xn − wn||+ ||wn − Twn|| → 0 as n → ∞. (3.9)

Since from Lemma 2.10(iii), T is nonexpansive, we get

||xn − Txn|| = ||xn − Twn + Twn − Txn||
≤ ||xn − Twn||+ ||Twn − Txn||
≤ ||xn − Twn||+ ||wn − xn||
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Using (3.8) and (3.9), we obtain
lim
n→∞

||xn − Txn|| = 0. (3.10)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} which converges weakly to, say x∗ ∈ X. Therefore

from (3.10), it follows that lim
i→∞

||xni − Txni || = 0 and consequently by Lemma 2.7 we have Tx∗ = x∗. Therefore, we

obtain that ωw(xn) ⊂ Fix(T ) =
⋂p

i=1 Fix(Ti).

Now, to prove that the sequence {xn} converges weakly to a point, say, x∗ ∈ Fix(T ) =
⋂p

i=1 Fix(Ti), it suffices to
show that ωw(xn) is singleton. To do that, we proceed as follows;

By our assumption that X satisfies Opial’s property, therefore using Lemma 2.8 and taking p1, p2 ∈ ωw(xn), let {xnk
}

and {xnj
} be subsequences of {xn} such that xnk

⇀ p1 and xnj
⇀ p2. Then we have for p1 ̸= p2 that

lim
n→∞

||xn − p1|| = lim
k→∞

||xnk
− p1||

< lim inf
k→∞

||xnk
− p2||

= lim
n→∞

||xn − p2||

= lim inf
j→∞

||xnj
− p2||

< lim inf
j→∞

||xnj − p1||

= lim
n→∞

||xn − p1||,

which is a contradiction. This shows that ωw(xn) is a singleton. This completes the proof.
□

Theorem 3.3. If in addition to all the hypothesis of Theorem 3.2, the map T is semicompact, then the iterative
sequence {xn} generated by (3.3) converges strongly to a fixed point of T .

Proof . Assume that T is semicompact. Since from step (ii) and step (iii) in the proof of Theorem 3.2, we know that
the sequence {xn} is bounded and lim

n→∞
||xn − Txn|| = 0, then there exists a subsequence {xnk

} of {xn} such that

xnk
→ x∗ as k → ∞. Therefore xnk

⇀ x∗ and so x∗ ∈ ωw(xn) ⊆ Fix(T ). Since from step (ii) in the proof of Theorem
3.2 lim

n→∞
||xn − x∗|| exists, then

lim
n→∞

||xn − x∗|| = lim
k→∞

||xnk
− x∗|| = 0,

which means that xn → x∗ ∈ Fix(T ). This completes the proof.
□

If in Theorem 3.2, X is a real Hilbert space H, then we have the following corollary:

Corollary 3.4. Let H be a real Hilbert space and Ti : H → H, i = 1, 2, 3, . . . , p be a finite family of ki - strictly
pseudocontractive mappings with

⋂p
i=1 Fix(Ti) ̸= ∅. Define Tαix := (1 − αi)x + αiTix. Then, the sequence {xn}

generated by the algorithm (2) converges weakly to x∗ ∈ Fix(T ), provided the following conditions hold;

(C1) αi ∈ (0, µ
σ ], µ = min

{
1, 2k

}
, where k = max{ki : i = 1, 2, . . . , p}

(C2) lim inf
n→∞

λn

(
2k1

α1
− λn

)
> 0.

Remark 3.5. Theorems 3.2 and 3.3 are improvements of the result of La Cruz [13] in the following sense:

� In La Cruz [13], the author proved a weak convergence theorem for a nonexpansive map in a real Hilbert space.
In our theorems 3.2 and 3.3, weak and strong convergence theorems are respectively proved for a finite family
of strictly pseudocontractive maps in a more general uniformly smooth real Banach space.
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� Unlike the algorithm of La Cruz[13], our algorithm has an inertial term, which is well known to improve the
speed of convergence of the algorithm.

Observe that if the inertial term is drop in algorithm 2, then the algorithm reduces to the following algorithm:
Algorithm 3 Step 0: Choose x0 ∈ X, γ, σ ∈ (0, 1) and positive sequence {ηn} such that;

∞∑
n=0

ηn < +∞. (3.11)

Let n := 0 and y0 = x0 − Tx0.
Step 1: If ||xn − Txn|| = 0, define xn+k := xn ∀k ≥ 1 and stop. Otherwise,
Step 2: Find the least positive integer mn such that for all m ≥ mn, the following inequality holds.

||xn − σmyn − T (xn − σmyn)||2 ≤ (1− γσ2m)||yn||2 + ηn. (3.12)

Step 3: Compute the step length λn using the formula

λn := σmax{mn, m∗}. (3.13)

Step 4: Compute xn+1 and yn+1 using the following relations.

xn+1 = xn − λnyn, (3.14)

yn+1 = xn+1 − Txn+1. (3.15)

Step 5: Set n := n+ 1 and go back to step 1.

4 Numerical Examples

In this section, we give a numerical example to show the computational performance of our proposed inertial algorithm
and compare it with algorithm 3.
Example: Let X = R with its usual norm. For each i = 1, 2, 3, . . . , p, let Ti : X → X be a map defined by for all
x ∈ X,

Ti(x) =
−(5 + i)

4 + i
x,

then, it is easy to see that for each i = 1, 2, 3, . . . , p, Ti is strictly pseudocontractive with ki =
1

9+2i and 0 ∈
⋂p

i=1 F (Ti).

We choose c = 3
2 , σ = 2

9 and αi = 1
2i , then µ = 4

33 and clearly αi ∈ (0, µ
σ ) and Tαi

(x) = (2i2+6i−9)
2i(4+i) x, for each

i = 1, 2, 3, . . . , p. So, for p = 3, we have T (x) = −99
3360x and m∗ = 1. Assume x0 = 2, x1 = 5, γ = 10−5, σ =

0.22, ηn = (0.888)n(104 + ∥w1 − Tw1∥2) and δn = 1
n2+1 . If ∥xn − x∗∥ ≤ 10−5 is chosen as stopping criteria, where

x∗ = 0 ∈
⋂p

i=1 F (Ti), we obtain using MATLAB the numerical results for algorithm 2 and algorithm 3 in Figure 1,
Figure 2 and Table 1

It is clear from Figure 1, Figure 2 and Table 1 that algorithm 2 with the inertial term converges faster than
algorithm 3 with out the inertial term.

5 Conclusions

We studied an inertial redual algorithm in a real uniformly smooth Banach spaces. Weak and strong convergence
Theorems were proved to approximate solutions of fixed points of strictly pseudocontractive mappings. Numerical
example was presented to show the performance of our iterative scheme with a non-inertial algorithm.
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Table 1: Computational results for algorithm 2 and algorithm 3

Number of iteration Agorithm 2 Algorithm 3

1 3 3
2 7 2.32055
3 6.44598 1.79498
4 4.84323 1.38845
5 3.33308 1.07399
6 2.18882 0.83075
7 1.39805 0.64260
8 0.87753 0.49706
9 0.54457 0.38448
10 0.33538 0.2974
11 0.20549 0.2300
12 0.12546 0.1779
13 0.07641 0.1376
14 0.04645 0.1064
15 0.02821 0.0823
16 0.01711 0.0637
17 0.01038 0.04927
18 0.00629 0.03811
19 0.00381 0.02948
20 0.00231 0.02280
21 0.00140 0.01764
22 0.00083 0.01364
23 0.00051 0.01055
24 0.00031 0.008164
25 0.00019 0.006315
26 0.00011 0.004885
27 6.909e-05 0.003778
28 4.184e-05 0.002922
29 2.534e-05 0.002260
30 1.534e-05 0.001748
31 0.000000 0.001352
32 0.000000 0.001046
33 0.000000 0.000809
34 0.000000 0.000626
...

...
...

47 0.000000 2.222e-05
48 0.000000 1.718e-05
49 0.000000 1.329e-05
50 0.000000 1.0286e-05
51 0.000000 0.000000
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