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Abstract

In this paper, we study the initial value problem for a semi-linear heat equation with memory in n-dimensional space
Rn. Under a smallness conditions on the initial data, the global existence and decay estimates of the solutions are
established. Furthermore, time decay estimates in higher Sobolev space of the solution are provided. The proof is
carried out by means of the point-wise decay estimates of the solution in the Fourier space and a fixed point-contraction
mapping argument.
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1 Introduction

In this paper we consider the initial value problem of the following semi-linear Volterra integro-differential equations
of the first order posed in the whole space Rn{

∂tu(t, x)−∆u(t, x) + g ∗ (−∆)θu = f(u), t > 0, x ∈ Rn,
u(0, x) = u0 (x) , x ∈ Rn,

(1.1)

here u = u(t, x) is an unknown real valued function of x = (x1, ..., xn) ∈ Rn, t > 0, u0 (x) is a given initial data and the
function f is an external nonlinear force. The fractional Laplace operator (−∆)θ may be defined through its Fourier
transform F and its inverse F−1 by

(−∆)θh(x) = F−1
(
|ξ|2θ F (h) (ξ)

)
(x) , x ∈ Rn,

or by its representation (−∆)θh(x) = C(n, θ)

∫
Rn

h(x)− h(y)

|x− y|n+2θ
dy, with 0 < θ < 1. In the limit θ → 1 the standard

Laplace operator, −∆, is recovered (see Section 4 of [22]).
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The convolution g ∗ (−∆)θu :=

∫ t

0

g(t − s)(−∆)θu(s)ds corresponds to the memory term g, that satisfies the

following assumptions :

a) The kernel g is a nonnegative summable function having the explicit form

g (t) =

∫ +∞

t

µ (s) ds

for some (nonnegative) non-increasing piecewise absolutely continuous function µ ∈ L1 (R+) of total mass

g =

∫ ∞

0

µ(s)ds < ∞.

b) Moreover, we require that
g(s) ≤ Kµ(s)

for some positive constant K and every s > 0. As shown in [4], this is equivalent to the requirement that there
exist C ≥ 1 and δ > 0 such that for any t ≥ 0 and almost every s > 0

µ(t+ s) ≤ Ce−δtµ(s).

In particular, the kernel µ is allowed to exhibit (infinitely many) jumps. For example, a typical kernels µ
considered in the papers [4, 6, 12, 21] where the authors assumed that the set of jump points of µ is a strictly
increasing sequence {si}, with s0 = 0, either finite (possibly reduced to s0 only) or converging to s∞ ∈ (0,∞]
such that, for all i ≥ 1, µ has jumps at s = si, and it is absolutely continuous on each interval Ii = (si−1, si)
and on the interval I∞ = (s∞,∞), unless I∞ is not defined. If s∞ < ∞, then µ may or may not have a jump at
s = s∞. Thus, µ may be singular at s = 0, and µ′ exists almost everywhere .

Assumption [B] on f Assume that f ∈ C∞(R), and f(u) = O(|u|α) as |u| → 0, here α > αn and αn := 1 + 2
n ,

n = 1, 2, and α is assumed to be an integer for n ≥ 3.

Equation (1.1) can be viewed as an abstract version of an evolution model with fading memory describing the
dynamic behavior of different phenomena like, e.g., population dynamics, heat conduction in materials with memory
or diffusion in fractured media in materials (see [7, 17, 23] and the references therein). This is an important variant of
the classical diffusion case because there are many situations in which the evolution of the model is not only affected
by the present state of the system but for its past history.

From the mathematical point of view, the study of the qualitative properties of evolution equations involving a
finite or infinite memory is also important as such systems occur in various problems of applied science, and it has
attracted some of attention of many mathematicians for instance, see ([6, 7, 8, 12, 14, 15, 17, 21, 23, 24, 26]) and
references therein. These works deal with the questions of existence and uniqueness, asymptotic behavior, global
attractor and so forth as well as a variety of methods used to study these questions. In particular, stability and
boundedness results of the solutions of the homogeneous part of abstract forms of (1.1) have been investigated widely;
see, for instance ([1, 2, 3, 10, 11, 26, 28]) by means of representing the solution in terms of the resolvent operator.

Recent contributions on the existence of global attractor and exponential attractor with some of the previously
enumerated properties or another type of Volterra integro-differential equations in a bounded domain have been made
(see [4, 5, 6, 9, 13, 14, 15, 16, 21]) and the reference therein). Decay properties of the semigroup generated by a linear
parabolic integro-differential equation with memory functions in a Hilbert space arising from heat conduction with
memory has been studied by [2, 3, 4, 6, 21].

It is worth noticing that, the most previous works dealing about global existence and uniform decay rates of solution
for parabolic equation with memory in a bounded domains Ω in Rn. In this paper, we are interested in the case when
Ω is the whole space Rn. More precisely, we are interested to the parabolic Volterra integro-differential equation in
which some kind of finite memory is taken into account and fractional Laplacian operator is included in the memory
term.

However, to the best of the authors’ knowledge, the decay results for semilinear heat equations with memory in
whole space Rn, becomes much more complicated. One major difficulty is the loss of Poincaré’s inequality, which is
indispensable for obtaining the existence of global solution. On the other hand, the condition on the kernel k is more
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general than that existing in the literature where a differential inequality is necessary required for µ. In particular
the relaxation function µ may be unbounded in a neighborhood of the origin, and may exhibit infinitely many jumps
which constitute a rather demanding limitation on the choice of the possible kernels.

Motivated by this observation, we intend to study the decay property of solution for problem (1.1) in the energy
space in the presence of fractional Laplacian operator. To do this, we shall extend the solution u to negative times by
zero, and then we introduce a new auxiliary past history variable η in which dissipative semigroups theory is invoked.
In order to derive the decay estimates property of such semigroup in a suitable Sobolev space, first we make use the
energy multiplier techniques in the Fourier space see, eg. [12, 18, 20, 27]. Appealing to this pointwise estimates, the
corresponding uniform decay estimates of solution and their properties are obtained.

Consequently, the global existence and optimal decay estimates of solution to (1.1) are achieved by means of
contraction mapping theorem. As for the semi-linear problem one point worthy to be mentioned is that we obtain the
results for α > αn in the case n = 1, 2, while αn = 1 + 2

n is the well-known critical Fujita exponent in dealing with
the global existence of solutions to some semi-linear parabolic differential equations.

The rest of the paper is organized as follows. In Section 2, we obtain the fundamental solution formula of linear
Cauchy problem corresponding to the nonlinear problem (1.1). In Section 3, we obtain the point-wise estimates and
decay properties of the fundamental solution operator. In Section 4, we prepare such lemmas leads to the decay
estimates of solutions to the problem (2.1). In Section 5, we prove the global existence and the optimal decay
estimates of solution to the problem (1.1).

Notations. We give some notations which are used in this paper. Let F [f ] denote the Fourier transform of f
defined by

F [f ](ξ) = f̂(ξ) :=
1

(2π)
n
2

∫
Rn

e−ix.ξf(x)dx,

and we denote by F−1 for its Fourier inverse transform.

Let L[f ] the laplace transform of f defined by

L[f ](λ) :=
∫ +∞

0

e−λtf(t)dt,

and its inverse transform denoted by L−1.

Throughout the paper Lp = Lp(Rn) (1 ≤ p < ∞) denotes the usual Lebesgue space with the norm ∥f∥pLp =∫
Rn |f(x)|p dx and W s,p(Rn), (with s ≥ 1 is an integer and p ∈ [1,∞) denotes the usual Sobolev space with its norm

∥f∥W s,p := (

s∑
k=0

∥∂k
xf∥

p
Lp)

1
p .

In particular, we use W s,2 = Hs. For a nonnegative integer k, ∂k
x denotes the totality or each of all the k-th order

derivatives with respect to x ∈ Rn. Also, Ck(I,Hs(Rn)) denotes the space of k-times continuously differentiable
functions on the interval I with values in the Sobolev space Hs = Hs(Rn).

Finally, throughout this paper, C or c denote positive generic constants, not necessarily the same at different
places.

2 Solution formula

In this section we try to obtain the solution formula for the following linear problem corresponding (1.1){
∂tu−∆u+ g ∗ (−∆)θu = 0, t > 0, x ∈ Rn,
u(0, x) = u0 (x) , x ∈ Rn.

(2.1)

By applying Fourier transform and Laplace transform to Eq. (2.1), we obtain the solution ū which expressed in terms
of H, by ū = H(t) ∗ u0 where H is a fundamental solution to the following problem,{

∂tH −∆H + g ∗ (−∆)θH = 0, x ∈ Rn, t > 0,
H(0, x) = δ, x ∈ Rn.

(2.2)

Here δ is the Dirac distribution in x = 0 with respective to the spatial variables.
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The Fourier transform of the fundamental solution of (2.2) is given formally through Laplace inverse transform by

Ĥ(t, ξ) = Ĥ0 (ξ)L−1[
1

λ+ β|ξ|2 + |ξ|2θL[g]
](t, ξ). (2.3)

Lemma 2.1. The fundamental solution Ĥ(t, ξ) given by (2.3) exists.

Proof . Denote F (λ) := λ+ |ξ|2+ |ξ|2θL[g](λ). To prove L−1[ 1
F (λ) ] exists, we need to consider the zero points of F (λ).

Denote λ = σ + iν, σ > − δ
C , then L[g](λ) exists. Assume that λ1 = σ1 + iν1 is a zero point of F (λ) and σ1 > − δ

C ,
then σ1 and ν1 satisfy 

ℜF (λ1) = σ1 + |ξ|2 + |ξ|2θ
∫ ∞

0

cos(ν1t)e
−σ1tg(t)dt = 0,

ℑF (λ1) = ν1 − |ξ|2θ
∫ ∞

0

sin(ν1t)e
−σ1tg(t)dt = 0.

(2.4)

In order to show that F (λ) does not vanish in the region {λ ∈ C;ℜ(λ) ≥ max
{
g,
√
g
}
}, we distinguish to cases

case 1 : If |ξ| < 1, we assume that σ1 ≥ √
g, then

ℜF (λ1) = σ1 + |ξ|2 + |ξ|2θ
∫ ∞

0

e−σ1tg(t)dt

≥ σ1 + |ξ|2 − |ξ|2θg
∫ ∞

0

e−σ1tdt,

ℜF (λ1) ≥ σ1 + |ξ|2 − |ξ|2θ g

σ1
,

which implies

ℜF (λ1) ≥
g

σ1
+ |ξ|2 − |ξ|2θ g

σ1
.

Consequently

ℜF (λ1) ≥ |ξ|2 + g

σ1
(1− |ξ|2θ) > 0.

It yields contradiction with (2.4)1. Then σ1 <
√
g.

case 2 : In |ξ| ≥ 1 we assume that σ1 ≥ g, then we have

ℜF (λ1) = σ1 + |ξ|2 − |ξ|2θ
∫ ∞

0

e−σ1tg(t)dt

≥ σ1 + |ξ|2 − |ξ|2θg
∫ ∞

0

e−σ1tdt

≥ σ1 + |ξ|2 − |ξ|2θ g

σ1

≥ σ1 +
g

σ1
|ξ|2 − |ξ|2θ g

σ1
.

Which gives

ℜF (λ1) ≥ σ1 +
g

σ1
(|ξ|2 − |ξ|2θ) ≥ σ1 > 0,

which it yields a contradiction with (2.4)1. Therefore σ1 < g.

Combining the two cases, we know that 1
F (λ) is analytic in {λ ∈ C;ℜ(λ) ≥ √

g} if |ξ| < 1 and in {λ ∈ C;ℜ(λ) ≥ g}
if |ξ| ≥ 1.

Take λ = σ + iν, σ > max{ℜλs}, here {λs} is the set of all the singular points of F (λ), then we have that

L−1[
1

F (λ)
](t) =

∫ σ+i∞

σ−i∞

eλt

F (λ)
dλ =

∫ +∞

−∞
i
e(σ+iν)t

F (σ + iν)
dν

=

(∫
{ν;|ν|≤R}

+

∫
{ν;|ν|>R}

)(
i
e(σ+iν)t

F (σ + iν)
dν

)
= : J1 + J2.
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The integral J1 converges, so we only need to consider J2. Notice that 1
F (λ) = 1

λ − |ξ|2+|ξ|2θL[g](λ)
λF (λ) and |L[g](λ)| ≤ C,

then it is not difficult to prove that J2 converges, then we proved that J2 converges, so far we complete the proof. □

By Duhamel principle, the solution to the problem (1.1) could be expressed as following :

u(t) = H(t) ∗ u0 +

∫ t

0

H(t− τ) ∗ f(u)(τ)dτ. (2.5)

We denote
ū(t) := H(t) ∗ u0, (2.6)

then ū(t) is the solution to the linear problem (2.2).

3 Decay properties of solution operators

We look at (1.1) as an ordinary differential equation in a proper Hilbert space accounting for the past history of
the variable u. Extending the solution to (1.1) for all times, by setting u(t) = 0 when t < 0, and considering for t ≥ 0
the auxiliary variable

ηt(s, x) =

∫ t

t−s

u(r, x)dr, t ≥ 0, s > 0.

Note immediately that η0(s) = 0 for all s > 0, the integro-differential equation of problem (2.1) reads

∂tu(t)−∆u(t) +

∫ ∞

0

µ(s) (−∆)
θ
ηt(s)ds = 0, t > 0. (3.1)

The past history variable η is the unique mild solution (in the sense of [25]) of an abstract Cauchy problem in the
µ-weighted space M = L2

µ(R+, H1(Rn)), that is,{
∂tη

t = Tηt + u(t), t > 0,
η0 = 0,

(3.2)

where, as a consequence of the basic assumption (see [16]), the linear operator T is the infinitesimal generator of the
right-translation C0-semigroup on M,defined as

Tη = −η′, with domain D(T ) = {η ∈ M : η′ ∈ M, η(0) = 0}.

Here the prime ”′”symbol denotes the distributional derivative with respect to the internal variable s.

Applying the Fourier transform to (3.1) and (3.2), we obtain, for every ξ ∈ Rn, the following system
∂tû+ |ξ|2û+ |ξ|2θ

∫ ∞

0

µ(s)η̂t(s)ds = 0, t > 0,

∂tη̂
t = T η̂t + û(t), t > 0,

û(0) = û0, η̂0 = 0,

(3.3)

in the transformed variables û(t, ξ) and η̂t(t, ξ), where now T is the infinitesimal generator of the right-translation
semigroup on L2

µ(R+;Rn), and |.| stands for the standard euclidian norm in Rn.

The energy density function is given by

E(t, ξ) = |û(t, ξ)|2 + |ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds. (3.4)

In particular,
E(0, ξ) = |û0(ξ)|2.

Moreover, by the Plancherel theorem, we have a relation between the energy and the density

E(t) =

∫
Rn

E(t, ξ)dξ.
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Performing standard multiplication the first equation in (3.3) by û, using the second equation and then taking real
parts, it can be seen as in [6] that the functional density satisfies for every fixed ξ ∈ Rn the following differential
equality

d

dt
E(t, ξ) + 2|ξ|2|û(t, ξ)|2 − |ξ|2θ

∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds+ |ξ|2θ
∑
i≥1

(µ(s−i )− µ(s+i ))|η̂
t(si, ξ)|2 = 0. (3.5)

where the sum includes the value i = ∞ if s∞ < ∞. We notice that

−|ξ|2θ
∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds+ |ξ|2θ
∑
i≥1

(µ(s−i )− µ(s+i ))|η̂
t(si, ξ)|2 ≥ 0.

This means that the functional density E(t, ξ) is a non-increasing function of t.

Theorem 3.1. Let µ satisfy the assumptions a), b), and let θ ∈ [0, 1]. There exists a positive constant C > 0, such
that the solution u of (2.2) satisfies the following pointwise estimate in the Fourier space:

E(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t, for any t > 0.

We begin by introducing the following functionals :

Υ(t, ξ) = |ξ|2θ
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds,

Θ(t, ξ) = |ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds.

Lemma 3.2. The functionals Υ and Θ are well defined and fulfill the following inequality

Υ(t, ξ) ≤ KΘ(t, ξ). (3.6)

Proof . Inequality (3.6) follows directly by assumption b). Moreover, by using (3.4) we have

Θ(t, ξ) ≤ E(t, ξ) ≤ E(0, ξ) < ∞,

the well-definedness of Θ is achieved whereas the one for Υ is a consequence of (3.6). □

Lemma 3.3. The following differential inequality holds:

d

dt
Υ(t, ξ) +

1

2
|ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds ≤ 2K2g|ξ|2θ|û(t, ξ)|2, (3.7)

Proof . By means of the equation for the past history variable, a direct calculation leads to the following differential
equality for Υ(t, ξ) :

d

dt
Υ(t, ξ) + |ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds = 2ℜ|ξ|2θ
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds. (3.8)

Concerning the right-hand side of (3.8), we have

ℜ
∫ ∞

0

g(s)û(t, ξ)η̂t(s, ξ)ds ≤ ν(

∫ ∞

0

g(s)|η̂t(s, ξ)|ds)2 + 1

4ν
|û(t, ξ)|2,

for some ν > 0. Using assumption b) and Cauchy-Shwarz’s inequality, we get∫ ∞

0

g(s)|η̂t(s, ξ)|ds ≤ K

∫ ∞

0

µ(s)|η̂t(s, ξ)|ds

≤ K(

∫ ∞

0

µ(s)ds)
1
2 (

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds) 1
2

≤ K
√
g(

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds) 1
2 .
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Therefore

2ℜ|ξ|2θ
∫ ∞

0

k(s)û(t, ξ)η̂t(s, ξ)ds ≤ 2νK2g|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+ 1

2ν
|ξ|2θ|û(t, ξ)|2. (3.9)

Now, we go back to equality (3.8), we infer from (3.9)

d

dt
Υ(t, ξ) + |ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds ≤ 2νK2g|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds+ 1

2ν
|ξ|2θ|û(t, ξ)|2,

taking ν = 1
4K2g , we obtain the desired inequality

d

dt
Υ(t, ξ) +

1

2
|ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds ≤ 2K2g|ξ|2θ|û(t, ξ)|2.

□

Proof .[Proof of Theorem3.1] We define the additional functional

L(t, ξ) = E(t, ξ) + βρ (ξ)Υ(t, ξ),

for some β > 0 and 0 ≤ ρ (ξ) ≤ 1 to be determined later.

Clearly we have L(t, ξ) ≥ E(t, ξ). On the other hand, we have

L(t, ξ) = E(t, ξ) + βρ (ξ)Υ(t, ξ)

≤ E(t, ξ) + βΥ(t, ξ)

≤ E(t, ξ) + β|ξ|2θ
∫ ∞

0

g(s)|η̂t(s, ξ)|2ds

≤ E(t, ξ) + βK|ξ|2θ
∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds

≤ (1 + βK) E(t, ξ).

From (3.5) and (3.7), we get

d

dt
L(t, ξ) =

d

dt
E(t, ξ) + βρ (ξ)

d

dt
Υ(t, ξ)

≤ −2|ξ|2|û(t, ξ)|2 + |ξ|2θ
∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds

+βρ (ξ)

(
2K2κ|ξ|2θ|û(t, ξ)|2 − 1

2
|ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds
)
.

From which, it follows

d

dt
L(t, ξ) + 2|ξ|2|û(t, ξ)|2 − |ξ|2θ

∫ ∞

0

µ′(s)|η̂t(s, ξ)|2ds+ β

2
ρ (ξ) |ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds

≤ 2K2gβρ (ξ) |ξ|2θ|û(t, ξ)|2.

Therefore
d

dt
L(t, ξ) + 2

(
|ξ|2 −K2gβρ (ξ) |ξ|2θ

)
|û(t, ξ)|2 + β

2
ρ (ξ) |ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.

We choose β ≤ 1/
(
1
4 +K2g

)
so that 2

(
|ξ|2 −K2gβρ (ξ) |ξ|2θ

)
≥ ρ (ξ) β

2 . In fact by substituting ρ (ξ) = |ξ|2
1+|ξ|2 and

using that |ξ|2θ
1+|ξ|2 ≤ 1, we obtain that

2
(
|ξ|2 −K2gβρ (ξ) |ξ|2θ

)
≥ 2

(
1−K2gβ

)
|ξ|2 ≥ β

2
|ξ|2 ≥ ρ (ξ)

β

2
, for any ξ ∈ Rn.

Hence, we arrive at
d

dt
L(t, ξ) + β

2
ρ (ξ) |û(t, ξ)|2 + β

2
ρ (ξ) |ξ|2θ

∫ ∞

0

µ(s)|η̂t(s, ξ)|2ds ≤ 0.
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From the definition of E , we obtain
d

dt
L(t, ξ) + β

2
ρ (ξ) E(t, ξ) ≤ 0. (3.10)

Making use the equivalence between functionals E and L in (3.10), we infer

d

dt
L(t, ξ) + β

2 (1 + βK)
ρ (ξ)L(t, ξ) ≤ 0,

with ρ(ξ) = |ξ|2
|ξ|2+1 . By invoking the Gronwall Lemma, we get

E(t, ξ) ≤ L(t, ξ) ≤ CE(0, ξ)e−cρ(ξ)t, (3.11)

which concludes the proof. □

Now we study the decay estimates of solutions to the linear problem (2.1).

Theorem 3.4 (Energy estimate for linear problem). Let s ≥ 1 be an integer, and θ ∈ [0, 1]. Assume that
u0 ∈ Hs(Rn), and put

I0 := ||u0||Hs(Rn).

Then the solution ū to the problem (2.1) given by (2.6) satisfies

ū ∈ C0([0,+∞);Hs(Rn)),

and the following energy estimate :

||ū(t)||2Hs +

∫ t

0

||∂xū(t)||2Hs−1dτ ≤ cI20

Proof . From (3.10) we have that
d

dt
L(t, ξ) + cρ(ξ)E(t, ξ) ≤ 0.

Integrate the previous inequality with respect to t and appeal to (3.11), then we obtain

E(t, ξ) + c

∫ t

0

ρ(ξ)E(τ, ξ)dτ ≤ cE(0, ξ). (3.12)

Multiply (3.12) by (1 + |ξ|2)s and integrate the resulting inequality with respect to ξ ∈ Rn, then we have that

||ū(t)||2Hs +

∫ t

0

||∂xū(t)||2Hs−1dτ ≤ cI20 (3.13)

(3.13) guarantees the regularity of the solution (2.6). So far we complete the proof of Theorem 3.4. □

Lemma 3.5. The fundamental solution H(t, x) satisfies :

|Ĥ(t, ξ)| ≤ Ce−cρ(ξ)t

where ρ(ξ) = |ξ|2
1+|ξ|2 .

Proof . From the representation formula of solution to the linear problem, we have

ū(t, x) := H(t, .) ∗ u0 (x) .

Using the expression of ū in Theorem 3.1, we find

|̂̄u(t, ξ)|2 =
∣∣∣Ĥ(t, ξ)

∣∣∣2 |û0(ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2,

which gives the desired estimate. □
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Lemma 3.6 (Pointwise estimate). Assume ū is the solution of (2.1) and if θ ∈ [0, 1], then it satisfies the following
point-wise estimate in the Fourier space:

|̂̄u(t, ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2, (3.14)

where ρ(ξ) = |ξ|2
1+|ξ|2 .

Proof . we have
ū(t, x) := H(t, .) ∗ u0 (x) .

Then by Fourier transform property and from Lemma 3.5, we get

|̂̄u(t, ξ)|2 = |Ĥ(t, ξ)|2|û0(ξ)|2 ≤ Ce−cρ(ξ)t|û0(ξ)|2.

□

Proposition 3.7. Let s ≥ 1 be an integer and 1 ≤ p ≤ 2. Let φ ∈ Hs(Rn) ∩ Lp(Rn). If θ ∈ [0, 1] then the following
estimates hold :

||∂k
xH(t) ∗ φ||L2 ≤ C(1 + t)−

n
2 ( 1

p−
1
2 )−

k
2 ||φ||Lp + Ce−ct||∂k

xφ||L2 , (3.15)

for 0 ≤ k ≤ s.

Proof . In view of Lemma 3.6 we have that

||∂k
xH(t) ∗ φ||2L2 ≤ C

∫
Rn

|ξ|2ke−2cρ(ξ)t|φ̂(ξ)|2dξ

≤ C

∫
{ξ,|ξ|≤1}

|ξ|2ke−c|ξ|2t|φ̂|2dξ + C

∫
{ξ,|ξ|≥1}

|ξ|2ke−2ct|φ̂|2dξ ≤ k1 + k2.

Assume that p′ satisfies 1
p + 1

p′ = 1, then by Hausdorf–Young’s inequality, we obtain

k1 ≤ C(1 + t)−n( 1
p−

1
2 )−k||φ̂||2p′ ≤ C(1 + t)−n( 1

p−
1
2 )−k||φ||2p.

On the other hand
k2 ≤ Ce−2ct||∂k

xφ||2L2 , for 0 ≤ k ≤ s,

then
||∂k

xH(t) ∗ φ||L2 ≤ C(1 + t)−
n
2 ( 1

p−
1
2 )−

k
2 ||φ||p + Ce−ct||∂k

xφ||L2 , for 0 ≤ k ≤ s.

□

By using Proposition 3.7 with p = 2, we obtain the following decay estimates of ū given by (2.6), if initial data
u0 ∈ Hs(Rn).

4 Decay estimates for linear problem

Theorem 4.1 (Decay estimates for linear problem). Under the same assumptions as in Theorem 3.4, the solu-
tion ū given by (2.6) satisfies the decay estimates:

||∂k
x ū(t)||Hs−k ≤ cI0(1 + t)−

k
2

for 0 ≤ k ≤ s.

Also, if initial data u ∈ Hs(Rn) ∩ Lp(Rn) then by using (3.15) we have that sharp decay estimates of the solution
ū to (2.1) . Therefore the theorem 4.1 can be stated as follows.

Theorem 4.2 (Sharp decay estimates for linear problem). Let s ≥ 1 be an integer and θ ∈ [0, 1]. Assume that
u0 ∈ Hs(Rn) ∩ Lp(Rn) and put Ip := ||u0||Hs + ||u0||Lp with 1 ≤ p < 2. Then the solution ū to (2.1) given by (2.6)
satisfies the following decay estimates :

||∂k
x ū(t)||Hs−k ≤ cIp(1 + t)−

n
2 ( 1

p−
1
2 )−

k
2 , (4.1)

for 0 ≤ k ≤ s.



2280 Berbiche, Ammar

Since proof of Theorem 4.1 and Theorem 4.2 are similar, here we only prove Theorem 4.2.

Proof . Let k ≥ 0, m ≥ 0 are an integers. In view of (2.6), by using (3.15), we have that

||∂k+m
x ū(t)||L2 ≤ C(1 + t)−

n
2 ( 1

p−
1
2 )−

k
2 ||u0||Lp + Ce−ct||∂k+m

x u0||L2

≤ C(1 + t)−
n
2 ( 1

p−
1
2 )−

k
2 (||u0||Lp + ||∂k+m

x u0||L2) (4.2)

for k +m ≤ s then m ≤ s− k we have that

||∂k
x ū(t)||Hs−k ≤ CJp(1 + t)−

n
2 ( 1

p−
1
2 )−

k
2 , for 0 ≤ k ≤ s.

Thus (4.1) is proved. □

Remark 4.3. The estimates in Theorem 4.1 and Theorem 4.2 indicate that the decay structure of solutions to the
linear problem (2.1) is not of regularity-loss type.

5 Global existence and decay for semi-linear problem

In this section we will first introduce a set of time-weighted Sobolev spaces and employ the contraction mapping
theorem to prove the global existence and optimal decay of solution to the semi-linear problem.

First we give some useful lemmas.

Lemma 5.1. Assume that p, q, r and k are integers, 1 ≤ p, q, r ≤ ∞, 1
p = 1

q + 1
r and k ≥ 0, then

||∂k
x(uv)||Lp ≤ C(||u||Lq ||∂k

xv||Lr + ||v||Lq ||∂k
xu||Lr ).

Proof of Lemma 5.1 can be found in [19].

By using Lemma 5.1, we have

Lemma 5.2. Assume that p, q, r, k, α and β are integers, 1 ≤ p, q, r ≤ ∞, 1
p = 1

q +
1
r and k ≥ 0, α ≥ 1 and β ≥ 1, then

||∂k
x(u

αvβ)||Lp ≤ C||u||α−1
L∞ ||v||β−1

L∞ (||u||Lq ||∂k
xv||Lr + ||v||Lq ||∂k

xu||Lr ).

Recall Assumption [B], we know that f ∈ C∞(R\{0}), and f(u) = O(|u|α) as |u| → 0, here α > αn and αn := 1+ 2
n ,

n ≥ 1, and α is assumed to be an integer for obtain the following result about the global existence and optimal decay
estimates of solution to the semi-linear problems (1.1).

Theorem 5.3 (existence and decay estimates for semi-linear problem). Let s be an integer such that s ≥
[n/2] + 1 for n ≥ 1 and θ ∈ [0, 1]. Let u0 ∈ Hs(Rn) ∩ L1(Rn), and put

I0 := ||u0||Hs + ||u0||L1 .

If I0 is suitably small, then there exists a unique solution u(t, x) ∈ C0([0,∞);Hs(Rn)) of (1.1) satisfying the following
decay estimates:

||∂k
xu(t)||Hs−k ≤ cI0(1 + t)−

n
4 − k

2 , for 0 ≤ k ≤ s. (5.1)

Proof . Let us define the following space

X := {u ∈ C([0,∞), Hs(Rn)); ||u||X < ∞},

where
||u||X :=

∑
k≤s

sup
t≥0

(1 + t)
n
4 + k

2 ||∂k
xu(t)||Hs−k .
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We introduce the closed ball
BR := {u ∈ X; ||u||X ≤ R}, R > 0;

Denote

Φ[u](t) := Φlin(t) +

∫ t

0

H(t− τ) ∗ f(u)(τ)dτ,

where
Φlin(t) := H(t) ∗ u0.

We have

∀v, w ∈ X, Φ[v](t)− Φ[w](t) =

∫ t

0

H(t− τ) ∗ (f(v)− f(w))(τ)dτ.

Noticing that f(v) = O(|v|α) and using Lemma 5.2. We have the following inequalities for k ≥ 0

||∂k
x(f(v)− f(w))(τ)||L1

≤ C||(v, w)(τ)||α−2
L∞(

||(v, w)(τ)||L2 ||∂k
x(v − w)(τ)||L2 + ||∂k

x(v, w)(τ)||L2 ||(v − w)(τ)||L2

)
, (5.2)

and

||∂k
x(f(v)− f(w))(τ)||L2

≤ C||(v, w)(τ)||α−2
L∞(

||(v, w)(τ)||L∞ ||∂k
x(v − w)(τ)||L2 + ||∂k

x(v, w)(τ)||L2 ||(v − w)(τ)||L∞
)
. (5.3)

Also, if v ∈ X, then the following estimate holds

||v(τ)||L∞ ≤ C||v||X(1 + τ)−
n
4 . (5.4)

In fact, by using the Gagliardo-Nirenberg inequality, we get

||v(τ)||L∞ ≤ ||v(τ)||1−λ
L2 ∥∂s0

x v(τ)∥λL2 ,

where s0 =
[
n
2

]
+ 1, λ = n

2s0
. We have for any n ≥ 1,

||v(τ)||L2 ≤ C(1 + τ)−
n
4 ||v(τ)||X

and since s ≥ s0, we obtain

∥∂s0
x v(τ)∥L2 ≤ ∥v(τ)∥Hs0 ≤ ∥v(τ)∥Hs ≤ C(1 + τ)−

n
4 ||v(τ)||X .

Hence, we deduce

∥v(τ)∥L∞ ≤ C(1 + τ)−
n
4 (1−λ)−n

4 λ||v(τ)||X = C(1 + τ)−
n
4 ||v(τ)||X .

Now, we prove the estimate

||∂k
x(Φ[v]− Φ[w])(t)||Hs−k ≤ C(1 + t)−

n
4 − k

2 ||(v, w)||α−1
X ||v − w||X , (5.5)

for 0 ≤ k ≤ s.

Assume that k, m are non-negative integers, such that k ≤ s.

By applying ∂k+m
x to Φ[v]− Φ[w], we have that

||∂k+m
x (Φ[v]− Φ[w])(t)||L2 ≤ (

∫ t
2

0

+

∫ t

t
2

)||∂k+m
x H(t− τ) ∗ (f(v)− f(w))(τ)||L2dτ

= : I1 + I2. (5.6)
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By virtue of (3.15) with p = 1, we have

I1 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4 − k+m

2 ||(f(v)− f(w))(τ)||L1dτ

+C

∫ t
2

0

e−c(t−τ)||∂k+m
x (f(v)− f(w))(τ)||L2dτ

= : I11 + I12. (5.7)

By using (5.2) with k = 0 and (5.4), we have that

||(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1
X ||(v − w)||X(1 + τ)−

n
4 (α−1)−n

4 . (5.8)

Since α > αn = 1 + 2
n for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (5.8), we have

I11 ≤ C

∫ t
2

0

(1 + t− τ)−
n
4 − k+m

2 (1 + τ)−
n
4 (α−1)−n

4 dτ ||(v, w)||α−1
X ||(v − w)||X

then
I11 ≤ C(1 + t)−

n
4 − k

2 ||(v, w)||α−1
X ||v − w||X . (5.9)

If k +m ≤ s, by virtue of (5.3) with k replaced by k +m and (5.4), it yields that

||∂k+m
x (f(v)− f(w))(τ)||L2 ≤ C||(v, w)||α−1

X ||(v − w)||X(1 + τ)−
n
2 (α−1)−n

4 − k
2 . (5.10)

By appealing to (5.10) and notice that α ≥ 2, we obtain

I12 ≤ C

∫ t
2

0

e−c(t−τ)(1 + τ)−
n
2 (α−1)−n

4 − k
2 dτ ||(v, w)||α−1

X ||(v − w)||X .

Hence
I12 ≤ Ce−ct||(v, w)||α−1

X ||v − w||X ,

Therefore by putting estimates I11 and I12 into (5.7), we get

I1 ≤ C(1 + t)−
n
4 − k

2 ||(v, w)||α−1
X ||v − w||X + Ce−ct||(v, w)||α−1

X ||v − w||X . (5.11)

Thus
I1 ≤ C(1 + t)−

n
4 − k

2 ||(v, w)||α−1
X ||v − w||X (5.12)

with 0 ≤ m ≤ s− k. Also by employing (3.15) with p = 1 to the term I2, we obtain

I2 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4 −m

2 ||∂k
x(f(v)− f(w))(τ)||L1dτ

+C

∫ t

t
2

e−c(t−τ)||∂k+m
x (f(v)− f(w))(τ)||L2dτ

: = I21 + I22. (5.13)

In view of (5.2) and (5.4), we have that

||∂k
x(f(v)− f(w))(τ)||L1 ≤ C||(v, w)||α−1

X ||(v − w)||X(1 + τ)−
n
2 (α−2)−n

2 − k
2 , (5.14)

for 0 ≤ k ≤ s.

Since α > αn = 1 + 2
n for n = 1, 2 and α ≥ 2 for n ≥ 3, appealing to (5.14), we have

I21 ≤ C

∫ t

t
2

(1 + t− τ)−
n
4 −m

2 (1 + τ)−
n
2 (α−2)−n

2 − k
2 dτ ||(v, w)||α−1

X ||(v − w)||X

then
I21 ≤ C(1 + t)−

n
4 − k

2 ||(v, w)||α−1
X ||v − w||X ,
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with 0 ≤ k ≤ s. We use (5.10) to have that

I22 ≤ C

∫ t

t
2

e−c(t−τ)(1 + τ)−
n
2 (α−1)−n

4 − k
2 dτ ||(v, w)||α−1

X ||(v − w)||X .

Therefore
I22 ≤ C(1 + t)−

n
4 − k

2 ||(v, w)||α−1
X ||v − w||X ,

with 0 ≤ m ≤ s− k. We substitute the estimates for I21 and I22 into (5.13), we infer

I2 ≤ C(1 + t)−
n
4 − k

2 ||(v, w)||α−1
X ||v − w||X , (5.15)

with 0 ≤ m ≤ s− k.

Using estimates (5.12) and (5.15) into (5.6) and take the sum with respect to m, 0 ≤ m ≤ s−k, we get the estimate
(5.5). Hence, we obtain that

||Φ[v]− Φ[w]||X ≤ C||(v, w)||α−1
X ||v − w||X .

So far we proved that ||Φ[v]− Φ[w]||X ≤ C1R
α−1||v − w||X for v, w ∈ BR.

On the other hand Φ[0](t) = Φlin(t) = ū(t) and from Theorem 4.2 we know that ||Φlin||X ≤ C2I0 if I0 suitably
small. We put R = 2C2I0. Now, if I0 suitably small such that R < 1 and C1R ≤ 1

2 , then we infer that

||Φ[v]− Φ[w]||X ≤ 1

2
||v − w||X .

So, it yields for v ∈ BR that

||Φ[v]||X ≤ ||Φ0||X +
1

2
||v||X ≤ C2I0 +

1

2
R = R,

i.e. Φ[v] ∈ BR. Thus v → Φ[v] is a contraction mapping on BR, which implies that there exists a unique u ∈ BR

satisfying Φ[u] = u, and it is a solution to the semi-linear problem (1.1) satisfying the decay estimate (5.1). So we
complete the proof of Theorem 5.3.□

Example 5.4. Consider the following initial value problem{
∂tu(t, x)−∆u(t, x) + g ∗ (−∆)1/2u = (sin t) e−u2

u3, t > 0, x ∈ Rn,
u(0, x) = u0 (x) , x ∈ Rn,

(5.16)

here, θ = 1/2, g (t) =
∫ +∞
t

µ (s) ds where µ (t) = t−γe−βtχ(0,s0]+
+∞∑
i=1

aiχ[si−1,si] (t), with s0 = 1, 0 ≤ γ < 1, β ≥ 0 and

where {ai} is a strictly decreasing positive sequence such that a1 ≤ e−β . Note that µ′ (t) ≤ 0 for almost everywhere

t > 0, and g = g(0) =
∫ 1

0
s−γe−βsds +

+∞∑
i=1

ai (si − si−1) . Now, we check that g (t) ≤ Kµ (t) holds for any t > 0 and

for some K > 0. In fact, for t < 1, we have

g (t) =

∫ +∞

t

µ (s) ds =

∫ 1

t

s−γe−βsds+

+∞∑
i=1

ai (si − si−1)

=

∫ 1

t

s−γe−βsds+

[
+∞∑
i=1

ai (si − si−1)

]
tγeβtt−γe−βt

≤ (1− t) t−γe−βt + geβt−γe−βt

≤
(
1 + geβ

)
t−γe−βt = Kµ (t) .

When t ≥ 1, there exists i0 ≥ 1 such that t ∈ [si0−1, si0 ], so we have

g (t) =

∫ +∞

t

µ (s) ds = ai0 (si0 − t) +

+∞∑
i=i0+1

ai (si − si−1)

≤ ai0

(
si0 − 1 +

g

ai0

)
= Kµ (t) .

On the other hand the function f(u) = (sin t) e−u2

u3 ∈ C∞ (R) satisfies f(u) = O
(
|u|3
)

as u → 0. Thus, all the

assumptions in Theorem 5.3 satisfied, and, hence, the initial value problem (5.16) has a unique global solution u(t, x)
∈ C([0,∞);Hs(Rn)), s > n/2.
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Conclusion

In this paper, we studied the initial value problem for certain semilinear parabolic equation with effect of memory
involving fractional Laplacian term in the whole space Rn. It is well-known that this type of problems can be considered
as nonclassical diffusion in which the Fourier law and the standard heat conduction equations are replaced by more
general equations. As first aim of this study, we extended the energy multiplier techniques in the Fourier space to
prove optimal decay estimates of the fundamental solution of the linear homogeneous equation under some conditions
on the memory term. Further by using Fourier–Laplace transforms the solution formula of the problem is obtained.
Then, by employing the same time-weighted energy method together with the semigroup argument, we show the
optimal decay estimate of solutions for small initial data. Our results improve and generalize many earlier related
works where the system is not necessarily dissipative and the kernel µ may be unbounded at the origin and contain
jumping discontinuities. Finally, an example is provided to illustrate the main results.
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