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Abstract

In this paper, we introduce the notions of generalized ∗-derivations, generalized Jordan ∗-derivations and Jordan
triple ∗-derivations with the associated Hochschild ∗-2-cocycles and then it is proved that if R is a prime ∗-ring and
f : R → R is a nonzero generalized ∗-derivation with an associated Hochschild ∗-2-cocycle β, then R is commutative.
Some other results regarding generalized Jordan ∗-derivations are also established.
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1 Introduction and preliminaries

Throughout the present paper, R represents an associative ring with center Z(R). First of all, let us recall some
basic definitions and set the notations which are used in what follows. A ring R is said to be n-torsion free, where
n > 1 is an integer, if for x ∈ R, nx = 0 implies that x = 0. Recall that a ring R is called prime if for x, y ∈ R,
xRy = {0} implies that x = 0 or y = 0, and is semiprime if for x ∈ R, xRx = {0} implies that x = 0. As usual,
the commutator xy − yx will be denoted by [x, y]. An involution over R is a map ∗ : R → R satisfying the following
conditions for all x, y ∈ R:
(i) (x∗)∗ = x,
(ii) (xy)∗ = y∗x∗,
(iii) (x+ y)∗ = x∗ + y∗.
A ring equipped with an involution is called ring with involution or ∗-ring and usually is denoted, as an ordered pair,
by (R, ∗). An element x in an ∗-ring is called Hermitian (self-adjoint) if x∗ = x and is said to be skew-Hermitian if
x∗ = −x. The sets of all Hermitian and skew-Hermitian elements of an ∗-ring R are denoted by H(R) and S(R),
respectively. The involution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second
kind. In this case, S(R) ∩ Z(R) ̸= {0}. If R is 2-torsion free then every x ∈ R can be uniquely represented in the
form 2x = h + k where h ∈ H(R) and k ∈ S(R). An element x ∈ R is normal if xx∗ = x∗x and in this case the
mentioned elements h and k commute with each other. If all elements in R are normal, then R is called a normal ring.
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An example in this regard is the ring of quaternion. The reader is referred to [10] for more details and descriptions of
such rings.

Let R be an ∗-ring. An additive mapping d : R → R is called an ∗-derivation (resp. Jordan ∗-derivation) whenever
d(xy) = d(x)y∗ + xd(y) (resp. d(x2) = d(x)x∗ + xd(x)) holds for all x, y ∈ R. Note that the mapping x 7→ ax∗ − xa
of R into itself, where a is a fixed element in R, is a Jordan ∗-derivation; such Jordan ∗-derivations are said to be
inner. Moreover, if a[x, y]∗ = 0 for all x, y ∈ R, then the mapping x 7→ ax∗ − xa is an ∗-derivation. The concepts
of ∗-derivation and Jordan ∗-derivation were first introduced in [5]. In an interesting article, Zalar and Bresar [6]
studied the structure of Jordan ∗-derivations and also they presented a characterization of these mappings on complex
∗-algebras. The innerness of Jordan ∗-derivations has also been investigated, see, e.g. [17].

The motivation for studying Jordan ∗-derivation is that these mappings appear naturally in the theory of the
representability of quadratic forms by bilinear forms. For the results concerning this theory, the reader is referred to
[9, 15, 16, 17, 19], where further references can be found. Similar to what was stated above, an ∗-derivation can also
be defined from an ∗-ring R into an R-bimodule M. Let R be an ∗-ring and let M be an R-bimodule. An additive
mapping f : R → M is called a generalized ∗-derivation (resp. generalized Jordan ∗-derivation) if there exists an
∗-derivation (resp. Jordan ∗-derivation) d : R → M such that f(xy) = f(x)y∗+xd(y) (resp. f(x2) = f(x)x∗+xd(x))
for all x, y ∈ R.

In 2006, Nakajima [13] introduced a new type of generalized derivations as follows. Let R be a ring and let M be
an R-bimodule. A biadditive mapping β : R×R → M is called a Hochschild 2-cocycle if

xβ(y, z)− β(xy, z) + β(x, yz)− β(x, y)z = 0

for all x, y, z ∈ R. The mapping β is called symmetric (resp. skew symmetric) if β(x, y) = β(y, x) (resp. β(x, y) =
−β(y, x)). An additive mapping f : R → R is called a generalized derivation (resp. generalized Jordan derivation)
with an associated Hochschild 2-cocycle β if f(xy) = f(x)y+ xf(y) + β(x, y) (resp. f(x2) = f(x)x+ xf(x) + β(x, x))
for all x, y ∈ R. If β = 0, then we reach an ordinary derivation (resp. Jordan derivation). For more examples and
details, see, e.g. [13].
There are many of works dealing with the commutativity of prime and semiprime rings admitting certain types of
derivations, see, e.g. [1, 2, 3, 4, 5, 7, 11] and references therein. Motivated by the above notions, we introduce
the notions of generalized ∗-derivations, generalized Jordan ∗-derivations and generalized Jordan triple ∗-derivations
with the associated Hochschild ∗-2-cocycles and it is proved that if R is a prime ∗-ring and f : R → R is a nonzero
generalized ∗-derivation with an associated Hochshcild ∗-2-cocycle β, then R is commutative. Furthermore, we present
some characterizations of generalized ∗-derivations. For instance, we prove the following result:
Let R be a ∗-ring having the unit element 1, containing the element 1

2 , and containing an invertible skew-Hermitian
ξ ∈ Z(R). If f : R → R is a generalized ∗-Jordan derivation with an associate Hochschild ∗-2-cocycle β, then there
exists a, b ∈ R such that

f(x) = xa− bx∗ +
ξ−1

(
β(x, ξ)− β(ξ, x)

)
2

,

for all x ∈ R.
Moreover, we show that every generalized Jordan ∗-derivations and generalized Jordan triple ∗-derivations with an
associated Hochshcild ∗-2-cocycle β are equivalent. Some other results are also presented.

2 Definitions and examples

Let R be an ∗-ring and let M be an R-bimodule. Let β : R×R −→ M be a biadditive map, that is, an additive
map on each components. The biadditive map β is called a Hochschild ∗-2-cocycle if

xβ(y, z)− β(xy, z) + β(x, yz)− β(x, y)z∗ = 0, (2.1)

for all x, y, z ∈ R. An ∗-2-cocycle β is called symmetric (resp. skew symmetric) if β(x, y) = β(y, x) (resp. β(x, y) =
−β(y, x)).

An additive map f : R → M is called a generalized ∗-derivation with an associated Hochschild ∗-2-cocycle β if

f(xy) = f(x)y∗ + xf(y) + β(x, y), (x, y ∈ R) (2.2)

and f is called a generalized Jordan ∗-derivation with an associated Hochschild ∗-2-cocycle β if

f(x2) = f(x)x∗ + xf(x) + β(x, x), (x ∈ R). (2.3)
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If β = 0, then we get the usual notions of ∗-derivations and Jordan ∗-derivations, respectively. Also, a generalized
Jordan triple ∗-derivation with an associated Hochschild ∗-2-cocycle β is an additive mapping f : R −→ R satisfying

f(xyx) = f(x)y∗x∗ + xf(y)x∗ + xyf(x) + xβ(y, x) + β(x, yx) (2.4)

for all x, y ∈ R. In the following, we present some examples of such generalized ∗-derivations.

Example 2.1. Let R be an ∗-ring and let M be an R-bimodule.

(1) Let f : R → M be a generalized ∗-derivation associated with a ∗-derivation d. Then the mapping β : R×R →
M defined by β(x, y) = x(d − f)(y) is a Hochschild ∗-2-cocycle and also f is a generalized ∗-derivation with the
associated mapping β.

(2) Let f : R −→ M is left ∗-centralizer, that is, f is additive and f(xy) = f(x)y∗. We can write f(xy) =
f(x)y∗ + xf(y) − xf(y) for all x, y ∈ R. If we define a mapping β : R × R → M by β(x, y) = −xf(y). So, f is a
generalized ∗-derivation with the associated Hochschild ∗-2-cocycle β.

(3) Let f : R → M be an ∗ − (I, τ) derivation, that is, τ : R → R is a ring homomorphism of R and f(xy) =
f(x)y∗ + τ(x)f(y), where I is the identity mapping on R. Then the map β : R × R → M defined by β(x, y) =
(τ(x)− x)f(y) is a Hochschild ∗-2-cocycle. Hence, we have

f(xy) = f(x)y∗ + xf(y) + β(x, y),

for all x, y ∈ R, then f is a generalized ∗-derivation with the associated mapping β.

(4) Let d : R → R be an ∗-derivation and T : R → R be a left centralizer, that is, T is additive and T (xy) = T (x)y,
then Td is a generalized ∗-derivation associated with the Hochschild ∗-2-cocycle β : R×R → R defined by

β(x, y) = T (x)d(y)− xT (y), (x, y ∈ R).

3 Main Results

We begin our results with the following proposition that states the biadditivity of β is obtained from the additivity
of f .

Proposition 3.1. Let R be an ∗-ring, let f : R → R be an additive mapping and let β : R×R → R be a mapping.
If f and β satisfy f(xy) = f(x)y∗ + xf(y) + β(x, y) for all x, y ∈ R, then β is a biadditive mapping.

Proof . For each x, y, z ∈ R, we have

f(x(y + z)) = f(x)(y + z)∗ + xf(y + z) + β(x, y + z)

= f(x)y∗ + f(x)z∗ + xf(y) + xf(z) + β(x, y + z),

which means that
f(x(y + z)) = f(x)y∗ + f(x)z∗ + xf(y) + xf(z) + β(x, y + z).

On the other hand, since f is an additive mapping, we have the following expressions:

f(x(y + z)) = f(xy) + f(xz)

= f(x)y∗ + xf(y) + β(x, y) + f(x)z∗ + xf(z) + β(x, z).

Comparing the last two equations regarding f(x(y + z)), we get that

β(x, y + z) = β(x, y) + β(x, z).

Similarly, we can prove that β(x+ y, z) = β(x, z) + β(y, z). It means that β is a biadditive mapping on R, as desired.
□

As observed, biadditivity of the mapping β depends on additivity of the mapping f .
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Lemma 3.2. [20, Lemma 1.3] Let R be a semiprime ring and let a[x, y] = 0 for all x, y ∈ R and for some a ∈ R.
Then a ∈ Z(R).

In the next theorem, we are going to prove that if R is a semiprime ∗-ring and f is a generalized ∗-derivation with
an associated Hochschild ∗-2-cocycle β, then f maps R into Z(R).

Theorem 3.3. Let R be a semiprime ∗-ring. If f : R → R is a generalized ∗-derivation associated with a Hochschild
∗-2-cocycle β, then f(R) ⊆ Z(R).

Proof . For all x, y, z ∈ R, we have

f(xyz) = f((xy)z)

= f(xy)z∗ + xyf(z) + β(xy, z)

= f(x)y∗z∗ + xf(y)z∗ + β(x, y)z∗ + xyf(z) + β(xy, z) (3.1)

On the other hand, we have

f(xyz) = f(x(yz))

= f(x)z∗y∗ + xf(yz) + β(x, yz)

= f(x)z∗y∗ + xf(y)z∗ + xyf(z) + xβ(y, z) + β(x, yz) (3.2)

Comparing (3.1) and (3.2) with the fact that β ia a Hochshcild ∗-2-cocycle, we get that f(x)[y∗, z∗] = 0 and so
f(x)[y, z] = 0 for all x, y, z ∈ R. Using the above lemma, we get that [f(x), z] = 0 for all x, z ∈ R. This means that f
maps R into Z(R), as desired. □

An immediate consequence of the above theorem is as follows:

Corollary 3.4. Let A be a C∗-algebra. If f : A → A is a generalized ∗-derivation associated with a Hochshcild
∗-2-cocycle β, then f(A) ⊆ Z(A).

Proof . It is evident that every C∗-algebra is semisimple and hence it is semprime. see, e.g. [8]. □

Here, we present another result of this paper.

Theorem 3.5. Let R be a prime ∗-ring. If f : R → R is a nonzero generalized ∗-derivation associated with a
Hochshcild ∗-2-cocycle β, then R is commutative.

Proof . Since f is nonzero, there exists x0 ∈ R such that f(x0) ̸= 0. According to the proof of Theorem 3.3, we have
f(x0)[y, z] = 0 for all y, z ∈ R. Replacing y by yt in the previous equation and the using it, we arrive at

f(x0)y[t, z] = 0

for all y, t, z ∈ R. The primeness of R forces that [t, z] = 0 for all t, z ∈ R which means that R is commutative, as
required. □

Corollary 3.6. Let R be a prime ∗-ring. If R admits a nonzero ∗-derivation or a nonzero ∗-left centralizer or a
nonzero ∗-(I,τ)-derivation (as in Example 2.1), then R is commutative.

Remark 3.7. We can define a generalized reverse ∗-derivation f : R → R associated with a revers Hochschild
∗-2-cocycle β : R×R → R as an additive mapping satisfying

f(xy) = f(y)x∗ + yf(x) + β(x, y),

for all x, y ∈ R, where β is a biadditive mapping satisfying the following revers Hochschild ∗-2-cocycles property:

β(xy, z)− β(y, z)x∗ + β(x, yz)− yβ(x, z) = 0

for all x, y, z ∈ R. We can establish Theorems 3.3 and 3.5 for the above-mentioned generalized reverse ∗-derivations
and we leave it to the interested reader.
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In the following, we present some consequences about the commutativity of algebras. Let R be an ∗-ring. For
every a, b ∈ R, ab∗ − ba is denoted by [a, b]∗. Indeed, we have [a, b]∗ = ab∗ − ba

Theorem 3.8. Let A be a semiprime Banach ∗-algebra such that dim(rad(A)) ≤ 1. If there exists an element z ∈ A
such that [z, a]∗ ∈ Z(A) for all a ∈ A, then there is an ideal I of A such that z ∈ I ⊆ Z(A).

Proof . Using [z, a]∗ ∈ Z(A) for all a ∈ A, we get that za − az ∈ Z(A) for all self-adjoint (Hermitian) elements
a ∈ A. Let a be an arbitrary element of A. We know that there are two self-adjoint elements a1, a2 ∈ A such that
a = a1 + ia2. Hence, we have

za− az = z(a1 + ia2)− (a1 + ia2)z = (za1 − a1z) + i(a2z− za2) ∈ Z(A),

which means that [z, a] ∈ Z(A) for all a ∈ A. It is evident that the linear mapping dz : A → A defined by
dz(a) = [z, a] = za − az is a derivation which maps into Z(A). It follows from [12, Theorem 7] that dz(A) ⊆ rad(A).
By hypothesis, dim(rad(A)) ≤ 1 and it follows from [14, Proposition 2.1] that dz = 0. Therefore, we get that z ∈ Z(A).
Using this fact and the assumption that [z, a]∗ = za∗ − az ∈ Z(A) for all a ∈ A, we get that z(a∗ − a) ∈ Z(A) for all
a ∈ A. Let a be an arbitrary element of A. So, there are two self-adjoint elements a1, a2 ∈ A such that a = a1 + ia2.
Since z(a∗ − a) ∈ Z(A) for all a ∈ A, we obtain that za2 ∈ Z(A) for all a2 ∈ SA. This yields that zA ⊆ Z(A). Since
z ∈ Z(A) and also zA ⊆ Z(A), we can thus deduce that there exists an ideal I of A such that z ∈ I ⊆ Z(A), as
desired. □

An immediate corollary reads as follows:

Corollary 3.9. Let A be a C∗-algebra. If there exists an element z ∈ A such that [z, a]∗ ∈ Z(A) for all a ∈ A, then
there is an ideal I of A such that z ∈ I ⊆ Z(A).

Proof . It is a well-known fact that every C∗-algebra is semisimple. □

Theorem 3.10. Let A be a unital semiprime ∗-algebra such that dim(Z(A)) ≤ 1. If there exists an element z ∈ A
such that [z, a]∗ ∈ Z(A) for all a ∈ A, then z = 0 or A is commutative and dim(A) = 1.

Proof . According to the proof of Theorem 3.8, the linear mapping dz : A → A defined by dz(a) = [z, a] = za − az
is a derivation mapping into Z(A). We are assuming that dim(Z(A) ≤ 1 and it follows from [14, Proposition 2.1]
that dz = 0 and therefore, z ∈ Z(A). Reusing Theorem 3.8, we know that there exists an ideal I of A such that
z ∈ I ⊆ Z(A). If dim(Z(A)) = 0, then z = 0. Now, suppose that dim(Z(A)) = 1. Since I is an ideal of A and is a
subset of Z(A), dim(I) = 0 or dim(I) = 1. If dim(I) = 0, then z = 0. If dim(I) = 1, then I = Z(A). Since A is
unital, A = I and consequently, A is commutative and dim(A) = 1, as desired. □

Corollary 3.11. Let A be a semiprime ∗-algebra. If there exists an element z ∈ A such that [z, a]∗ = 0 for all a ∈ A,
then z = 0.

Theorem 3.12. Let A be a Banach algebra such that dim(rad(A)) ≤ 1. If [[[[b, a], a], a]a] ∈ rad(A) for all a, b ∈ A,
then A is commutative.

Proof . Suppose that A is a noncommutative Banach algebra. For any b ∈ A, the linear mapping db : A → A defined
by db(a) = [b, a] is a continuous derivation. It follows from [18, Theorem 2] that db(A) ⊆ rad(A) and since we are
assuming that dim(rad(A)) ≤ 1, [14, Proposition 2.1] implies that db(a) = 0 for all a ∈ A. Since b is an arbitrary
element of A, the algebra A is commutative, a contradiction. Hence, A must be commutative. □

There is a consequence of the previous theorem as follows:

Theorem 3.13. Let A be a noncommutative Banach algebra. If [[[[b, a], a], a]a] ∈ rad(A) for all a, b ∈ A, then
dim(rad(A)) > 1. In this case, A is not a semisimple Banach algebra.

In [5, Lemma 2], Brešar and Vukman proved that any Jordan ∗-derivation on a 2-torsion free ∗-ring is a Jordan
triple ∗-derivation. The following lemma presents some properties of the new notion of generalized Jordan ∗-derivations
and it is especially an extension for [5, Lemma 2].
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Lemma 3.14. Let f : R −→ M be a generalized Jordan ∗-derivation with an associated Hochschild ∗-2-cocycle β
and let M be a 2-torsion free R-bimodule. Then the following relations hold for all x, y, z ∈ R:

(i)f(xy + yx) = f(x)y∗ + xf(y) + β(x, y) + f(y)x∗ + yf(x) + β(y, x);

(ii)f(xyx) = f(x)y∗x∗ + xf(y)x∗ + xyf(x) + xβ(y, x) + β(x, yx);

(iii)f(xyz + zyx) = f(x)y∗z∗ + xf(y)z∗ + xyf(z) + xβ(y, z) + β(x, yz)

+f(z)y∗x∗ + zf(y)x∗ + zyf(x) + zβ(y, x) + β(z, yx).

Proof .

(i) We know that f(x2) = f(x)x∗ + xf(x) + β(x, x) holds for all x ∈ R. So, we have

f(xy + yx) = f((x+ y)2)− f(x2)− f(y2)

= f(x+ y)(x+ y)∗ + (x+ y)f(x+ y) + β(x+ y, x+ y)

−f(x)x∗ − xf(x)− β(x, x)− f(y)y∗ − yf(y)− β(y, y)

= f(x)x∗ + f(x)y∗ + f(y)x∗ + f(y)y∗ + xf(x) + yf(x)

+xf(y) + yf(y) + β(x, y) + β(x, x) + β(y, x) + β(y, y)

−f(x)x∗ − xf(x)− β(x, x)− f(y)y∗ − yf(y)− β(y, y)

= f(x)y∗ + xf(y) + β(x, y) + f(y)x∗ + yf(x) + β(y, x).

(ii) Replacing y by xy + yx in (i) and using the assumption that β is a Hochschild ∗-2-cocycle (see (2.1)), we have

2f(xyx) = f(x(xy + yx) + (xy + yx)x)− f(x2y + yx2)

= f(x)(xy + yx)∗ + xf(xy + yx) + β(x, xy + yx) + f(xy + yx)x∗

+(xy + yx)f(x) + β(xy + yx, x)− f(x2)y∗ − x2f(y)− β(x2, y)

−f(y)x∗2 − yf(x2)− β(y, x2)

= f(x)y∗x∗ + f(x)x∗y∗ + x
[
f(x)y∗ + xf(y) + β(x, y) + f(y)x∗

+yf(x) + β(y, x)
]
+ β(x, xy) + β(x, yx) +

[
f(x)y∗ + xf(y)

+β(x, y) + f(y)x∗ + yf(x) + β(y, x)
]
x∗ + xyf(x) + yxf(x)

+β(xy, x) + β(yx, x)−
[
f(x)x∗ + xf(x) + β(x, x)

]
y∗ − x2f(y)

−β(x2, y)− f(y)x∗2 − y
[
f(x)x∗ + xf(x) + β(x, x)

]
− β(y, x2)

= 2f(x)y∗x∗ + 2xf(y)x∗ + 2xyf(x)

+
[
xβ(x, y)− β(x2, y) + β(x, xy)− β(x, x)y∗

]
−
[
yβ(x, x)− β(yx, x) + β(y, x2)− β(y, x)x∗

]
+
[
xβ(y, x) + β(x, yx) + β(xy, x) + β(x, y)x∗

]
.

Since xβ(y, x) + β(x, yx) = β(xy, x) + β(x, y)x∗ and M is 2-torsion free, we obtain equation (2).

(iii) Replacing x by x+ z in (ii), we have

f((x+ z)y(x+ z)) = f(x+ z)y∗(x+ z)∗ + (x+ z)f(y)(x+ z)∗ + (x+ z)yf(x+ z)

+(x+ z)β(y, x+ z) + β(x+ z, y(x+ z))
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and so,

f(xyx) + f(xyz + zyx) + f(zyz) = f(x)y∗x∗ + f(z)y∗x∗ + f(x)y∗z∗ + f(z)y∗z∗

+xf(y)x∗ + zf(y)x∗ + xf(y)z∗ + zf(y)z∗

+xyf(x) + zyf(x) + xyf(z) + zyf(z)

+xβ(y, x) + zβ(y, x) + xβ(y, z) + zβ(y, z)

+β(x, yx) + β(x, yz) + β(z, yx) + β(z, yz)

Using equation (ii), we get the required result. □

In the following theorem, we present a characterization of a generalized ∗-Jordan derivation with an associated
Hochschild ∗-2-cocycle.

Theorem 3.15. Let R be a unital ∗-ring containing the element 1
2 , and let ξ be an invertible skew-Hermitian element

of Z(R). If f : R → R is a generalized ∗-Jordan derivation with an associated Hochschild ∗-2-cocycle β, then there
exist the elements a, b ∈ R such that

f(x) = xa− bx∗ +
ξ−1

(
β(x, ξ)− β(ξ, x)

)
2

,

for all x ∈ R.

Proof . Using Lemma 3.14(ii), we have

f(ξ) = f(ξξ−1ξ)

= f(ξ)− ξ2f(ξ−1) + f(ξ) + ξβ(ξ−1, ξ) + β(ξ,1).

Thus
f(ξ−1) = ξ−2f(ξ) + ξ−1β(ξ−1, ξ) + ξ−2β(ξ,1). (3.3)

According to Lemma 3.14(iii) and equation (3.3), we have

2f(x) = f(ξxξ−1 + ξ−1xξ)

= −ξ−1f(ξ)x∗ − f(x) + xξ−1f(ξ) + xβ(ξ−1, ξ) + xξ−1β(ξ,1)

+ξβ(x, ξ−1) + β(ξ, xξ−1)− ξ−1f(ξ)x∗ − β(ξ−1, ξ)x∗ − ξ−1β(ξ,1)x∗

−f(x) + xξ−1f(ξ) + ξ−1β(x, ξ) + β(ξ−1, xξ) (3.4)

Since β is a Hochschild ∗-2-cocycle mapping, we have

ξβ(x, ξ−1) + β(ξ, xξ−1) = β(ξx, ξ−1)− ξ−1β(ξ, x) (3.5)

β(ξx, ξ−1) = β(xξ, ξ−1)

= xβ(ξ, ξ−1) + β(x,1) + ξ−1β(x, ξ) (3.6)

β(ξ−1, xξ) = β(ξ−1, ξx)

= β(ξ−1, ξ)x∗ + β(1, x)− ξ−1β(ξ, x) (3.7)

Using (3.5) ,(3.6) and (3.7) in the above relation (3.4), we have

2f(x) = −ξ−1f(ξ)x∗ − f(x) + xξ−1f(ξ) + xβ(ξ−1, ξ) + xξ−1β(ξ,1)

+xβ(ξ, ξ−1) + β(x,1) + ξ−1β(x, ξ)− ξ−1β(ξ, x)− ξ−1f(ξ)x∗

−β(ξ−1, ξ)x∗ − ξ−1β(ξ,1)x∗ − f(x) + xξ−1f(ξ) + ξ−1β(x, ξ)

+β(ξ−1, ξ)x∗ + β(1, x)− ξ−1β(ξ, x)
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By relations ξ−1β(ξ,1) = β(1,1) and β(x,1) = xβ(1,1) and so β(1, x) = β(1,1)x∗, we have

4f(x) = x
(
2ξ−1f(ξ) + β(ξ−1, ξ) + β(ξ, ξ−1) + 2β(1,1)

)
−(2ξ−1f(ξ))x∗ + 2ξ−1

(
β(x, ξ)− β(ξ, x)

)
,

Considering a = 2ξ−1f(ξ)+β(ξ−1,ξ)+β(ξ,ξ−1)+2β(1,1)
4 and b = ξ−1f(ξ)

2 , we see that

f(x) = xa− bx∗ +
ξ−1

(
β(x, ξ)− β(ξ, x)

)
2

,

as desired. □

An immediate consequence of the previous theorem is as follows:

Corollary 3.16. Suppose that all the conditions of Theorem 3.15 are fulfilled and additionally β is a symmetric
mapping. Then f(x) = xa− bx∗ for all x ∈ R and for some a, b ∈ R.

Lemma 3.17. [5, Lemma 3] Let R be a noncommutative prime ∗-ring. If a ∈ R is such that ax∗ = xa for all x ∈ R,
then a = 0.

Theorem 3.18. Let R be a noncommutative prime ∗-ring. If f : R → R is a generalized ∗-Jordan derivation with
an associated Hochschild ∗-2-cocycle β, then [f(c), x]∗ = β(x, c)− β(c, x) for all c ∈ Z(R) ∩H(R) and all x ∈ R.

Proof . Let c ∈ Z(R) ∩H(R). According to Lemma (3.7)(iii), we have

f(xcy + ycx) = f(x)cy∗ + xf(c)y∗ + xcf(y) + xβ(c, y) + β(x, cy)

+f(y)cx∗ + yf(c)x∗ + ycf(x) + yβ(c, x) + β(y, cx) (3.8)

Also, since c ∈ Z(R), we have

f(cxy + yxc) = f(c)x∗y∗ + cf(x)y∗ + cxf(y) + cβ(x, y) + β(c, xy)

+f(y)x∗c+ yf(x)c+ yxf(c) + yβ(x, c) + β(y, xc) (3.9)

By Hochschild ∗-2-cocycle property, we have

xβ(c, y) + β(x, cy) = β(xc, y) + β(x, c)y∗ (3.10)

cβ(x, y) + β(c, xy) = β(cx, y) + β(c, x)y∗ (3.11)

Comparing the expressions (3.8) and (3.9) and using relations (3.10) and (3.11), we get that

(f(c)x∗ − xf(c) + β(c, x)− β(c, x))y∗ = y(f(c)x∗ − xf(c) + β(c, x)− β(x, c)),

for all x, y ∈ R. Now, using Lemma 3.17, we arrive at

f(c)x∗ − xf(c) + β(c, x)− β(x, c) = 0

Therefore, [f(c), x]∗ = β(x, c)− β(c, x). □

In [16, Theorem 2.1], Semrl proved that the notions of Jordan ∗-derivations and Jordan triple ∗-derivations on a
real Banach ∗-algebra are equivalent. In the following theorem, we obtain a generalization for this theorem.

Theorem 3.19. Let A be a real Banach ∗-algebra, let f : A −→ A be an additive mapping and let β : A×A −→ A
be a Hochschild ∗ − 2−cocycle. The following statements are equivalent:

(i) f is a generalized Jordan ∗-derivation with an associated mapping β,

(ii) For any invertible element a ∈ A,

f(a) = −af(a−1)a∗ − aβ(a−1, a)− β(a,1), (3.12)
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(iii) For all a, b ∈ A,
f(aba) = f(a)b∗a∗ + af(b)a∗ + abf(a) + aβ(b, a) + β(a, ba). (3.13)

Proof . (ii) ⇒ (i).

If a is invertible and ∥a∥ < 1, then we know that 1+ a,1− a and 1− a2 are invertible. We show that for such an
a we have

f(a2) = f(a)a∗ + af(a) + β(a, a).

Indeed,

f(a) + a−1f(a)a∗−1 = f(a)− f(a−1)− a−1β(a, a−1)− β(a−1,1)

= f(a−1(a2 − 1))− a−1β(a, a−1)− β(a−1,1)

= −a−1(a2 − 1)f((a2 − 1)−1a)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1))

−β(a−1(a2 − 1),1)− a−1β(a, a−1)− β(a−1,1)

We use equation (3.12) and also the following equation

(a2 − 1)−1a = (a− 1)−1 − (a2 − 1)−1, (3.14)

to calculate f((a− 1)−1) and f((a2 − 1)−1). So, we have

f(a) + a−1f(a)a∗−1 = −a−1(a2 − 1)f((a− 1)−1 − (a2 − 1)−1)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1))

−β(a−1(a2 − 1),1)− a−1β(a, a−1)− β(a−1,1)

= a−1(a+ 1)f(a− 1)(a∗ + 1)a∗−1

+a−1(a+ 1)β((a− 1), (a− 1)−1)(a∗2 − 1)a∗−1

+a−1(a2 − 1)β((a− 1)−1,1)(a∗2 − 1)a∗−1

−a−1f(a2 − 1)a∗−1

−a−1β((a2 − 1), (a2 − 1)−1)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1,1)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1))

−β(a−1(a2 − 1),1)− a−1β(a, a−1)− β(a−1,1)

It follows from (3.12) that f(1) = −β(1,1) and so we have

f(a) + a−1f(a)a∗−1 = a−1(a+ 1) (f(a) + β(1,1)) (a∗ + 1)a∗−1

+a−1(a+ 1)β((a− 1), (a− 1)−1)(a∗2 − 1)a∗−1

+a−1(a2 − 1)β((a− 1)−1,1)(a∗2 − 1)a∗−1

−a−1
(
f(a2) + β(1,1)

)
a∗−1

−a−1β((a2 − 1), (a2 − 1)−1)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1,1)(a∗2 − 1)a∗−1

−a−1(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1))

−β(a−1(a2 − 1),1)− a−1β(a, a−1)− β(a−1,1) (3.15)



2164 Bakhti, Abbasspour Tabadkan, Hosseini

Multiplying (3.15) from the left by a and the right by a∗, we get that

af(a)a∗ + f(a) = (a+ 1) (f(a) + β(1,1)) (a∗ + 1)

+(a+ 1)β((a− 1), (a− 1)−1)(a∗2 − 1)

+(a2 − 1)β((a− 1)−1,1)(a∗2 − 1)− (f(a2) + β(1,1))

−β((a2 − 1), (a2 − 1)−1)(a∗2 − 1)

−(a2 − 1)β((a2 − 1)−1,1)(a∗2 − 1)

−(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1))a∗

−aβ(a−1(a2 − 1),1)a∗ − β(a, a−1)a∗ − aβ(a−1,1)a∗ (3.16)

Putting z = 1 in the Hochschild ∗-2-cocycle property (see (2.1)), we have

xβ(y,1) = β(xy,1) (3.17)

and so,

(a2 − 1)β((a2 − 1)−1a, a−1(a2 − 1)) + β(a2 − 1,1)

= β(a2 − 1, (a2 − 1)−1a)(a∗2 − 1)a∗−1 + β(a, a−1(a2 − 1)). (3.18)

Substituting (3.17) and (3.18) in (3.16), we get that

af(a)a∗ + f(a) = af(a)a∗ + af(a) + f(a)a∗ + f(a) + (a+ 1)β(1,1)(a∗ + 1)

+(a+ 1)β((a− 1), (a− 1)−1)(a∗2 − 1) + β((a+ 1),1)(a∗2 − 1)

−f(a2)− β(1,1)− β((a2 − 1), (a2 − 1)−1)(a∗2 − 1)

−β(1,1)(a∗2 − 1)− (β(a, a−1(a2 − 1))

+β(a2 − 1, (a2 − 1)−1a)(a∗2 − 1)a∗−1)a∗

−β(a, a−1)a∗ − aβ(a−1,1)a∗

Using (3.14) and relation above, we deduce that

0 = af(a) + f(a)a∗ + (a+ 1)β(1,1)(a∗ + 1) + (a+ 1)β(a− 1, (a− 1)−1)(a∗2 − 1)

+β(a,1)(a∗2 − 1) + β(1,1)(a∗2 − 1)− f(a2)− β(1,1)

−β((a2 − 1), (a2 − 1)−1)(a∗2 − 1)− β(1,1)(a∗2 − 1)− β(a, a−1(a2 − 1))a∗

−β(a2 − 1, (a− 1)−1 − (a2 − 1)−1)(a∗2 − 1)− β(a, a−1)a∗ − aβ(a−1,1)a∗

= af(a) + f(a)a∗ − f(a2) + (a+ 1)β(1,1)(a∗ + 1) + β(a,1)(a∗2 − 1)

+β(1,1)(a∗2 − 1) +
(
(a+ 1)β(a− 1, (a− 1)−1)− β(a2 − 1, (a− 1)−1)

)
(a∗2 − 1)

−β(1,1)− β(a, a− a−1)a∗ − β(a, a−1)a∗ − aβ(a−1,1)a∗ (3.19)

Since β is a Hochschild ∗-2-cocycle, we have

(a+ 1)β(a− 1, (a− 1)−1)− β(a2 − 1, (a− 1)−1) = β(a+ 1, a− 1)(a∗ − 1)−1 − β(a+ 1,1) (3.20)

and also
β(1, a) = β(1,1)a∗ (3.21)
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Substituting (3.20) and (3.21) in (3.19), we have

0 = af(a) + f(a)a∗ − f(a2) + aβ(1,1)(a∗ + 1) + β(1,1)(a∗ + 1)

+β(a,1)(a∗2 − 1) + β(1,1)(a∗2 − 1) + β(a, a)(a∗ + 1) + β(1, a)(a∗ + 1)

−β(a,1)(a∗ + 1)− β(1,1)(a∗ + 1)− β(a,1)(a∗2 − 1)− β(1,1)(a∗2 − 1)

−β(1,1)− β(a, a)a∗ + β(a, a−1)a∗ − β(a, a−1)a∗ − aβ(a−1,1)a∗

= af(a) + f(a)a∗ − f(a2) + β(a, a)a∗ + β(a, a) + β(1, a)a∗ + β(1, a)

−β(1,1)a∗2 + β(1,1)− β(1,1)− β(a, a)a∗ − β(1,1)a∗

Then
f(a2) = f(a)a∗ + af(a) + β(a, a). (3.22)

Now, let a be an invertible element with ∥a∥ > 1 and let n be a positive number such that ∥ a
n∥ < 1. It follows

from (3.22) that

f(
a2

n2
) = f(

a

n
)(
a∗

n
) +

a

n
f(

a

n
) + β(

a

n
,
a

n
)

and hence,

f(a2) = f(a)a∗ + af(a) + β(a, a).

Finally, let a be an arbitrary element of A. Then, there exists a positive number n such that ∥ a
n∥ < 1. It follows that

n−1(n1− a) = 1− a
n is invertible and so is n1− a. We have the following expressions:

f(a2)− 2nf(a)− n2β(1,1) = f(a− n)2

= f(a− n)(a− n)∗ + (a− n)f(a− n) + β(a− n, a− n)

= (f(a) + nβ(1,1))(a− n)∗ + (a− n)(f(a) + nβ(1,1))

+β(a, a)− β(n, a)− β(a, n) + β(n, n)

= f(a)a∗ − f(a)n+ nβ(1,1)a∗ − n2β(1,1) + af(a)

−nf(a) + naβ(1,1)− n2β(1,1) + β(a, a)− β(n, a)

−β(a, n) + β(n, n)

= f(a)a∗ − 2nf(a) + nβ(1, a) + af(a) + nβ(a,1)

+β(a, a)− β(n, a)− nβ(a,1)− n2β(1,1)

Therefore, we have

f(a2) = f(a)a∗ + af(a) + β(a, a), (a ∈ A),

which means that f is a generalized Jordan ∗-derivation with an associated mapping β, as desired.

(i) ⇒ (iii).

Replacing a by a+ b in f(a2) = f(a)a∗ + af(a) + β(a, a), we get that

f(ab) + f(ba) = f(a)b∗ + af(b) + β(a, b) + f(b)a∗ + bf(a),+β(b, a) (3.23)

for all a, b ∈ A. Considering µ = f(a(ab+ ba) + (ab+ ba)a) and using (3.23), we arrive at

µ = f(a)(b∗a∗ + a∗b∗) + af(ab+ ba)

+f(ab+ ba)a∗ + (ab+ ba)f(a)

+β(a, ab+ ba) + β(ab+ ba, a)

= 2abf(a) + a2f(b) + af(a)b∗ + 2af(b)a∗

+baf(a) + bf(a)a∗ + 2f(a)b∗a∗ + f(b)a∗2

+f(a)a∗b∗ + aβ(a, b) + aβ(b, a) + β(a, b)a∗

+β(b, a)a∗ + β(ab, a) + β(ba, a) + β(a, ab) + β(a, ba).
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On the other hand,

µ = 2f(aba) + f(a2b+ ba2)

= 2f(aba) + f(a2)b∗ + a2f(b) + β(a2, b)

+f(b)a∗2 + bf(a2) + β(b, a2)

= 2f(aba) + f(a)a∗b∗ + af(a)b∗ + β(a, a)b∗

+a2f(b) + β(a2, b) + f(b)a∗2

+bf(a)a∗ + baf(a) + bβ(a, a) + β(b, a2)

Comparing the two expressions obtained for µ and using the assumption that β is a Hochschild ∗ − 2−cocycle, we
arrive at (3.13).

(iii) ⇒ (ii). Taking b = a−1 in (3.13), we achieve the required result. □
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