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Abstract

The effect of surface roughness on the peristaltic motion of a non-Newtonian Jeffery fluid down a non-uniform inclined
channel was carried out, and the analysis has been investigated in two-dimensional channel Cartesian co-ordinates
by using a low Reynolds number and a long-wavelength approximation, the governing equations (continuity, motion,
and temperature) were modelled and then simplified. Mathematica 11.3 was used to find an analytical solution for
the fluid flow i.e. fluid velocity, temperature, pressure gradient, pressure rise, and flow streamlines. The impact of
interesting included parameters on axial velocity, stream function, temperature, pressure gradient, and pressure rise
is graphically described.
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1 Introduction

Peristaltic transport has piqued researchers’ interest for nearly five decades due to its physiological and industrial
implications; as a result, a substantial study has been conducted in this field to understand the process of peristaltic
pumping in engineering and physiological applications [6, 20, 27]. Material (slurry, solid-liquid mixture, or two im-
miscible liquids) is transferred from one point to another via peristaltic transport, which involves a continuous wave
of area contraction and expansion over the length of an expandable duct or tube [6]. It involves the movement of
matter in many body organs, including food in the gastrointestinal tract, urine transport to the bladder by the ureter,
fluid in the cervical canal, ova transportation from the ovary to the uterus, fluid flow in the ductus differences, lymph
movement in lymphatic vessels, and blood flow in small blood vessels [20]. The above mechanism is employed in
a variety of practical applications, including a heart-lung machine used during bypass surgery and a hemodialysis
system. This pumping mechanism is also used to pump caustic chemicals, solidus liquids, slurry, and other fluids that
require fluid isolation from the pump’s moving elements [27]. The considerable literature on the subject of peristaltic
transport can provide in-depth information on the issue. Latham [15] conducted the first investigation in this field,
which was further extended by Shapiro et al. [26] and literature on peristaltic flows of various non-Newtonian fluids
[10, 11, 12, 16, 17, 18, 28, 29, 32] and the references therein can be found.

∗Corresponding author
Email addresses: as.20.22@grad.uotechnology.edu.iq (Neeran Ammar), hayat.A.Ali@uotechnology.edu.iq (Hayat A. Ali)

Received: March 2022 Accepted: May 2022

http://dx.doi.org/10.22075/ijnaa.2022.27621.3671


118 Ammar, Ali

The study of non-Newtonian fluids has gotten a lot of interest because of its vast engineering and industrial
applications, such as in physiology, fibre technology, material processing, shampoos, nuclear and chemical industries,
oil reservoir engineering, and foodstuffs [1]. The nonlinear rheological properties of the non-Newtonian fluid are one
of the essential aspects of its interest. Different models of non-Newtonian have been identified, among these models is
Jeffrey fluid. It is a more straightforward linear model that relies on time derivatives rather than convected derivatives.
Moreover, Jeffery’s linear viscoelastic behaviour makes it more favorite in the polymer industries, blood flow and fluid
mechanics. Further Jeffery fluid considers a generalization of a Newtonian fluid i.e. Newtonian fluids reconsider as a
special type of Jeffery’s fluid [7]. Many researchers explored the significance linking of the peristalsis mechanism and
Jeffery fluid under various conditions. Lakshminarayana et al. [14] calculated the slip and heat transfer impact on the
peristaltic flow of Jeffrey fluid in the porous medium through a vertical asymmetric channel. Hayat et al. [13] studied
the peristaltic flow of MHD Jeffrey fluid in a curved channel, where the Soret and Dufour impact and convective
conditions were discussed. Reddy et al. [24] examined the impact of several forces on the peristaltic flow of Jeffrey
nanofluid in an asymmetric channel. Vajravelu et al. [30] analyzed the peristaltic flow of Jeffery fluid in an inclined
asymmetric channel. The properties of the Jeffrey fluid model for peristaltic chyme flow in the small intestine with
a magnetic field were explored by Akbar et al. [3]. Akbar et al. [4] investigate the numerical solution of Williamson
nanofluid flow in an asymmetric channel. The influence of the produced magnetic field and heat transfer on the
peristaltic motion of a Jeffrey fluid in an asymmetric channel was discussed by Akram and Nadeem [5]. Ramesh [23]
looked into the Jeffrey fluid and noted the effects of joule heating and viscosity dissipation. He proposed the exact
solution under the influence of boundary slip conditions for plane Couette flow, generalized Couette flow, and plane
Poiseuille flow. Abbasi et al. [2] investigated the MHD Jeffrey nanofluid. Mohammed R. Salman and Hayat A. Ali
[25] investigate the heat transfer in an inclined tapered asymmetric porous channel for peristaltic flow of Jeffrey fluid
with slip boundary conditions.

Surface roughness, often known as roughness, is a characteristic of surface texture. The deviations in the direction
of a real surface’s normal vector from its ideal form are used to quantify it. The surface is rough if these variances are
considerable; the surface is smooth if they are minimal. Roughness is often thought of as the high-frequency, short-
wavelength component of a measured surface in surface metrology. In practice, however, knowing both the amplitude
and frequency is frequently required to confirm that a surface is suitable for a certain application. Roughness is critical
in establishing how an actual thing interacts with its surroundings. Rough surfaces wear faster and have greater
friction coefficients than smooth surfaces in tribology. Because abnormalities on the surface can act as nucleation
sites for cracks or corrosion, roughness is often a strong predictor of a mechanical component’s performance. In
general, cross-scale descriptors such as surface factuality, rather than scale-specific descriptors, provide more relevant
predictions of mechanical interactions at surfaces, such as contact stiffness [33] and static friction [9]. Nikolai V.
Priezjev investigates the effect of molecular-scale surface roughness on slip behaviour in a flow of simple fluids driven
by a constant force [22]. The fracture surface roughness that happens under mode is explained by Van Dam and
De Pater [31]. To measure and compare the fractal dimension of the surface roughness profiles formed by laboratory
hydraulic fracturing, Abbas Movassagh et al [19] used four fractal methods: compass, box-counting, variation, and
roughness-length. Several natural rock fracture surfaces for which JRC has already been established are used to test
the fractal model for fracture surfaces. The impact of scaling behaviour implied by a fractal is examined, as well as
the relationship between fractal characterization and JRC. The nature of the fracture aperture space is described and
examined [21].

To our knowledge, there has been no effort done to discuss the impact of surface roughness reactions on the
peristaltic motion of a non-Newtonian fluid characterized by Jeffery fluid flows through a non-uniform inclined channel
which is practical in blood flow through stenosis arteries. The flow governing equations represented by continuity,
movement, and temperature are mathematically constructed in a rectangle coordinates system. The long wavelength
and low Reynolds number assumptions were employed to simplify the system into a system of differential equations
which were solved analytically via the Mathematica program. The physical impact of various flow parameters on the
velocity field, temperature, pressure gradient, pressure rise, and trapping phenomena are discussed graphically.

2 Problem Flow Mathematical Formulation

Let us consider the peristaltic flow of a non-Newtonian Jeffrey fluid through the non-uniform channel. The channel
wall is supposed to have sinusoidal-shaped roughness. Assuming that the rectangular coordinate for the fixed frame
is (X̃, Ỹ )

The geometry of the wall surface is given as
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H̃(X̃, t̃) = d(X̃) + b1 sin

(
2π

L1
(X̃ − ct̃)

)
− b2 cos

4

(
πX̃

λ̃1

)
(2.1)

With

d(X̃) = a+ ḰX̃ (2.2)

Figure 1: Geometry of the flow channel

where a is the half channel width at entry, b1 represent the amplitude, b2 is the roughness height, L1 is the
wavelength, λ̃1 is the pitch, c is the wave propagation velocity, Ḱ is the non-uniformity parameter, t̃ is the time and
X̃ is the axial variable.

The following equations governing the fluid flow in the laboratory frame of reference

The continuity equation has the form:

∂Ũ
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+

∂Ṽ
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= 0 (2.3)

and the momentum equations are
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∂Ỹ
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Also, the energy equation has the form
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(
∂Ũ
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where Ũ , Ṽ , ρ, T̃ , P̃ , Cp,K, g, ϑ are the laboratory frame velocity components, the fluid density, the temperature
field, the pressure, the constant pressure specific heat, the electrical conductivity, gravitational acceleration, heat
source and S̃X̃X̃ , S̃X̃Ỹ , S̃Ỹ X̃ , S̃Ỹ Ỹ represent the components of the extra stress tensor of Jeffery fluid which are derived
as follows [25].

S̃ij =
1

(1 + λ1)
(γ̇ + λ2γ̈) (2.7)

γ̇ = ∇V + (∇V )T (2.8)

γ̈ =
∂γ̇

∂t̃
+ (V.∇)γ̇ where (V.∇) =

∂Ũ

∂X̃
+

∂Ṽ

∂Ỹ
(2.9)

S̃ij represents the extra stress tensor (λ1, λ2)is the Jeffrey parameters, γ̇ is the shear rate and dots over the
quantities indicate differentiation concerning time, and γ̈ is the second invariant strain tensor.

The associated relevant boundary conditions in the dimensional mathematical form are given below

Ũ = 0 at Ỹ = H̃,
∂Ũ

∂Ỹ
= 0, at Ỹ = 0 (2.10)

[
T̃ = T̃C at Ỹ = 0

T̃ = T̃W at Ỹ = H̃

]
(2.11)

resistivity, T̃C is the temperature at the centre of the channel, T̃W is the temperature at the wall, and α is the
angle of inclination.

Introducing the following dimensionless transformations for facilitating the governing equations of the motion, as
follows:
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Ũ
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Ṽ

cδ
, X =

X̃

L1
, Y =

Ỹ
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Compensate Eq. (2.11) into Eqs. (2.1)—(2.10), leads to simplifying the equations into the following form
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Moreover, the instantaneous flow rate between the centre line and the wall is determined by

Qo(X, t) =

∫ H(X)

0

Ũ(Ỹ )dỸ (2.22)

Suppose that Qo(X, t) periodic in (X − t), and using the dimensionless quantity listed in Eq. (2.11), the dimen-
sionless form of flow flux is [8]

q(X, t) = Q+ ϕ sin 2π(X − t) (2.23)

where Re is the Reynolds number, U and V are the velocity components for (X,Y ) directions, δ is the wavenumber,
TC is the temperature at the centre of the channel, TW is the temperature at the wall, Pr is the Prandtl number, θH is
the dimensionless in the case of uniform heat flux, θT is the dimensionless in the case of uniform surface temperature,
EcH is the Eckert number in the case of uniform heat flux, EcT is the Eckert number in the case of uniform surface
temperature, and K is the thermal conductivity, Q̃ is the time-mean flow over one period of the wave, and q(X, t) is
the flow rate in the wave frame.

Adopting the assumption of long-wavelength δ ≪ 1 and low Reynolds number Eqs. (2.14)—(2.20) reduced to the
forms
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combined with the dimensionless boundary conditions:

U = 0 at Y = h,
∂U
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= 0 at Y = 0 (2.28)

[
θH = 0, θT = 1 at Y = 0
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]
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µ
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, and SXX = SY Y = 0 (2.30)
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3 Solution of the problem

The system of motion and temperature Eqs. (2.23), (2.25) and (2.26) are solved analytically with the help of
MATHEMATIC under suitable boundary conditions in Eqs. (2.27), and (2.28).

The explicit expressions for the solutions of U, θT and θH respectively are
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Then from Eq. (2.23), we get the gradient of pressure dp
dX as follows

dp

dX
=

−3q(X, t)

(1 + λ1)h3
+

Re sin(α)

Fr
(3.1)

and the dimensionless pressure rise ∆P across the channel of unit length is given as

∆P =

∫ 1

0

dp

dX
dX. (3.2)

4 Graphical Results and Discussion

In this section, we have presented the graphical results and the physical interpretation of various flow interesting
parameters on velocity profile, temperature distribution, pressure gradient and pressure rise.

4.1 Velocity Profile

Figures 2(a)-(d) depict the axial velocity profile U(y) in the y-direction for a nonuniform channel due to the effects
of the volume of Jeffrey fluid parameter λ1, flow rate Q, amplitude ratio Φ and the roughness parameter Φ1. Figures
2(a)-(d) show that for non-uniform channels, the maximum velocity is obtained at the centerline and decreases as the
channel approaches the wall. Figure 2(a) is plotted to describe the effect of λ1 on velocity profile. The figure appears
that there is no effect of λ1 on velocity profile. Figures 2(b), 2(c) and 2(d) are prepared to see the variation of Q, Φ
and Φ1 respectively on velocity profile. It can be noticed that a rise in Q lead to an increment in velocity. Along the
channel length, there is an elevation impact Φ on u(y), whereas the central region of the channel decreases along the
length of the channel, near the middle of the non-uniform channel. The velocity of the fluid rises via a steady increase
in the roughness parameter Φ1 value, while diminishing the effect for Φ1 indicating near the channel walls.
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Figure 2: Velocity profile for different values of (a) Jeffrey fluid parameter λ1 (b) flow rate Q (c) amplitude ratio Φ (d) roughness parameter
Φ1 and for fixed values of parameters {Fr = 1.2, Re = 0.5, x = 0.4, α = 0.3, t = 0.1, L1 = 2.1}

4.2 Temperature distribution

Figures 3 and 4 show how the amplitude ratio Φ and surface roughness parameters Φ1 affect the temperature
distribution for various values of the surface roughness and all other parameters, whereas Figures 5 and 6 show how
Jeffrey fluid parameter λ1 and the Eckert number affects the temperature distribution for various values of the surface
roughness and all other parameters. The preceding analysis was completed under two conditions: uniform heat flux
θH(y) and uniform surface θT (y) temperature. The change in θH(y) for various values Φ is seen in Figure 3(a). θH(y)
moves from a maximum value on the right side of the channel wall to a minimum value on the left side of the channel
wall as Φ increases, Figure 3(b) depicts the variance in θT versus y for various values of Φ. As we can see, the value
of θT (y) increase as the value Φ increases, till reaches stable values near the central part of the non-uniform channel.
Figures 4(a) and 4(b) demonstrate the temperature profile for various values of surface roughness parameters for
both the uniform heat flux and uniform surface temperature boundary conditions discussed previously. Two different
reactions of surface roughness impact on θH(y) are seen, i.e. moving from a maximum value on the left side of the
region (0.7 ≤ y ≤ 1.4) of the channel wall to a significant dip of the right side of the region (1.5 ≤ y ≤ 2.5) of
the channel wall, whereas the effect of surface roughness on θT (y) have the same impact from the left side While
the difference on the right side is merely a minor drop, Figures 5(a), and (b) demonstrate the effect of Jeffrey fluid
parameter λ1 on both θH(y) and θT (y) which can see from Figure 5(a) that the effect of λ1 on θH(y) is the same as
the effect Φ which means moves from a maximum value on the right side of the channel wall to a minimum value on
the left side of the channel wall as λ1 increases also Figure 5(b) has the same effect of λ1 on θT (y) which means the
value of λ1 increase as the value of θT (y) rises, and there is no influence of λ1 in the centre of the non-uniform channel.
As seen in Figure 6(a) there are two impacts of Ec on θH(y) where we can notice that there is a slight rise is almost
non-existent from the left side while a clear decrease can be observed on the right side of θH(y) on the non-uniform
channel wall. Figure 6(b) clarifies a raise in EcT causing a rise in the θT (y).
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Figure 3: Temperature profile with various values of Φ at {Fr = 1.5, Re = 1.5, x = 0.2, α = 0.1, λ1 = 0.2, ϵ = 0.1, Q = 0.3, Φ1 =
1.2, t = 0.1, L1 = 2.1, P r = 1., EcT = 1.1, B = 0.1} (a) uniform heat flux condition (b) uniform surface temperature

Figure 4: Temperature profile with various values of Φ1 at {Fr = 1.5, Re = 1.5, x = 0.25, α = 0.1, λ1 = 0.4, ϵ = 0.31, Q = 1.3, Φ =
2.1, t = 0.1, L1 = 1.1, P r = 0.42, EcT = 0.42, B = 0.3} (a) uniform heat flux condition (b) uniform surface temperature

Figure 5: Temperature profile with various values of λ1 at {Fr = 1.5, Re = 1.5, x = 0.1, α = 0.1, ϵ = 0.3, Q = 1.3, Φ = 1.3, Φ1 =
1.2, t = 0.1, L1 = 2.1, P r = 1., EcT = 1.1, B = 0.01}: (a) uniform heat flux condition; (b) uniform surface temperature

Figure 6: Temperature profile with various values of Ec at {Fr = 1.5, Re = 1.5, x = 0.4, α = 0.1, λ1 = 0.2, ϵ = 0.1, Q = 1.3, Φ =
1.1, Φ1 = 0.3, t = 0.1, L1 = 1.1, P r = 1.2, B = 0.3}:(a) uniform heat flux condition; (b) uniform surface temperature
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4.3 pressure gradient dp/dx

Figures 7(a)-(d) show the impact of the parameters Reynolds number Re, the angle inclination of channel α, the
flow rate Q and roughness parameter Φ1 on the pressure gradient dp/dx behaviour. As seen in Figures 7(a), and 7(b),
the rising values of Re and α cause an increase in the magnitude of dp/dx along the whole length of the channel. In
addition, the influence of Q on the magnitude of dp/dx in Figure 7(c) demonstrates the reduction in dp/dx magnitude
due to an increase in the value of Q. However, Figure 7(d) shows that there is no influence of Φ1 on dp/dx in the
centre region, but the sides show a decrease in dp/dx values with an enormous deal of Φ1.

Figure 7: pressure gradient dp/dx with various values of (a) the Reynolds number Re (b) the angle inclination of channel α (c) the flow rate
Q (d) roughness parameter Φ1 and for fixed values of parameters {Fr = 1.2, y = 0.4, λ1 = 1.3, ϵ = 0.3, Φ = 1.3, t = 0.01, L1 = 0.61}

4.4 pressure rise (∆P )

Figures 8(a)-(d) show the pressure rise vs flow rate for different values of the roughness parameter for non-uniform
channels. These figures illustrate a linear relationship between pressure rise and flow rate. To employ the peristaltic
wave as a pump, it is widely known that pressure rise should occur in the direction of flow (∆P > 0, Q > 0) while
the retrograde pumping achieved for (∆pλ > 0, Q < 0). For all magnitudes of the surface roughness parameter and
various Froude number Fr, the magnitude of the pressure rise and retrograde flow reduce linearly with an increase in
Fr as seen in Figure 8(a). The Reynolds number Re has a significant impact on the pressure rise. Figure 8(b) shows
that at greater levels magnitudes of Re a magnitude of the pressure rise (peristaltic and retrograde flow) is visualized
as a fast augment. Figures 8(c) and 8(d) depict the variation in pressure rise against flow rate at different values of
Jeffrey fluid parameter λ1 and surface roughness parameters Φ1, respectively. It is evident from Figures 8(c) that an
increase in Jeffrey fluid parameter λ1, the peristaltic flow enhances for (∆P > 0, Q > 0), whereas dumping in the
retrograde pumping region (∆pλ > 0, Q < 0) is noticed. The situation will be reversed in Figure 8(d) with an increase
in the value of the surface roughness parameter Φ1. Furthermore, a free pumping (∆P = 0) appears for ascending
values of λ1 and Φ1.
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Figure 8: pressure rise (∆P ) with various values of (a) Froude number Fr (b)Reynolds number Re (c) Jeffrey fluid parameter λ1 (d)
roughness parameter Φ1 and for fixed values of parameters {y = 0.4, α = 0.01, λ1 = 1.3, ϵ = 0.3, x = 0.3, Φ = 1.3, t = 0.01, L1 =
0.61, L = 0.61}

4.5 Trapping Phenomena

The phenomena of trapping (bolus generated owing to streamline splitting) are well-known in peristaltic inves-
tigations. The trapped fluid within the bolus is forced forward by the peristaltic wave. Figures 9,10,11,12,13 are
presented to illustrate the behaviour of different parameters on streamlines via non-uniformity of the wall ϵ, flow rate
Q, amplitude ratio Φ, roughness parameter Φ1 and wavelength L1. The action of non-uniformity of the wall ϵ on the
trapped bolus is recorded in Figure 9. The magnitude of the trapping bolus diminished in size, and more bolus and
streamlines were created. Figure 10 demonstrates that when the value of Q increases, the amplitude of the trapped
bolus increases which is normal because of increasing in fluid moving while the number of bolus remains constant,
Figure 11 shows flow behaviour as a function of amplitude ratio Φ variation, in which the amplitude of the trapped
bolus increases while the number of bolus remains constant. Figure 12 shows the effect of the roughness parameter
Φ1 on the trapped bolus. Which have the same effect Φ and Q. The size of the trapped bolus decreases as the effect
of wavelength L1 on the flow increases as seen in Figure 13.

Figure 9: Stream function with various values of non-uniformity of the wall ϵ = {1.3, 2.8} and for fixed values of parameters {Fr =
1.2, Re = 0.3, α = 0.3, λ1 = 0.3, Q = 1.3, Φ = 1.3, Φ1 = 1.2, t = 0.3, L1 = 1.1}
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Figure 10: Stream function with various values of flow rate Q = {1.3, 1.5} and for fixed values of parameters {Fr = 1.2, Re = 0.3, α =
0.3, λ1 = 0.3, ϵ = 1.3, Φ = 1.3, Φ1 = 1.2, t = 0.3, L1 = 1.1}

Figure 11: Stream function with various values of amplitude ratio Φ = {1.0, 1.5} and for fixed values of parameters {Fr = 1.2, Re =
0.3, α = 0.3, λ1 = 0.3, ϵ = 1.3, Q = 1.3, Φ1 = 1.3, t = 0.3, L1 = 1.1}

Figure 12: Stream function with various values of roughness parameter Φ1 = {1.0, 1.5} and for fixed values of parameters {Fr = 1.2, Re =
0.3, α = 0.3, λ1 = 0.3, ϵ = 1.5, Q = 1.3, Φ = 1.3, t = 0.3, L1 = 1.1}
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Figure 13: Stream function with various values of wavelength L1 = {1.1, 3.5} and for fixed values of parameters {Fr = 1.2, Re = 0.3, α =
0.3, λ1 = 0.3, ϵ = 1.5, Q = 1.3, Φ = 1.3, Φ1 = 1.3, t = 0.3}

5 Conclusion

The effect of surface roughness on the peristaltic motion of a non-Newtonian Jeffery fluid down a non-uniform
inclined channel is investigated in this work using a novel mathematical approach. The velocity field temperature,
pressure gradient, and pressure rise all have an identical solution. The findings of the research are summarized below.

1. Velocity has a parabolic distribution in nature, rising in the centre region of the channel, and the Jeffrey fluid
parameter λ1 does not affect Velocity. the influence of the flow rate, The increase in flow rate Q causes an
increase in activity in the central section of the channel and an increase in outcome near the walls.

2. The effect of the roughness parameter Φ1 causes the opposite behaviour. The influence of the roughness param-
eter results in an increasing action in the centre portion of the channel and a reduction near the walls, whereas
the effect of amplitude ratio Φ results in a decreasing action in the central part of the channel and an increase
near the walls. Reverse the roughness parameter’s effect.

3. The effect of Jeffrey fluid parameter and amplitude ratio shows that the temperature distribution θH(y), θT (y)
has the opposite behaviour. An increase in the right side of the channel and a decrease in the left side of the
channel walls. however, the effect of Φ1 on θH(y), θT (y) have the same impact from the left side of the channel
wall, but there is a difference in the size of the drop, as when the roughness parameter decreases by a high
percentage, and when the Eckert number increases, it decreases slightly.

4. Increasing Reynolds number Re and the angle inclination of channel α raises the magnitude of the pressure
gradient dp/dx, whereas it reduces as the flow rate Q and roughness parameter Φ1 increases,

5. Reynolds number Re increasing, the magnitude of the peristaltic pumping (∆P > 0, Q > 0) grows, but it
decreases as the Froude number Fr increases, while the opposite effect for Jeffrey fluid parameter λ1 and
roughness parameter Φ1 on the pumping and retrograde pumping is seen.

6. The size of the trapping bolus decreases upon an increment of non-uniformity of the wall ϵ, while increases in
number, however, remains unchanged in a number of boluses with decreases in The size of the trapping bolus
upon an increment of wavelength L1.

7. The trapped bolus enlarged in size and while unchanged in a number of boluses when flow rate Q, roughness
parameter Φ1 and amplitude ratio Φ enhances.
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