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APPROXIMATELY GENERALIZED ADDITIVE FUNCTIONS
IN SEVERAL VARIABLES

H. KHODAEI1∗ AND TH.M. RASSIAS2

Abstract. The goal of this paper is to investigate the solution and stability in
random normed spaces, in non–Archimedean spaces and also in p–Banach spaces
and finally the stability using the alternative fixed point of generalized additive
functions in several variables.

1. Introduction and preliminaries

In 1940, Ulam gave a talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of unsolved problems. The stability
problem of functional equations originated from a question of Ulam [74] concerning
the stability of group homomorphisms.

In 1941, Hyers [32] considered the case of approximately additive functions f :
X −→ Y such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X and for some ε > 0, where X and Y are Banach spaces. Then there
exists a unique additive function A : X −→ Y such that

‖f(x)− A(x)‖ ≤ ε

for all x ∈ X.
Aoki [5] and Rassias [56] provided a generalization of the Hyers theorem for ad-

ditive and linear functions, respectively, by allowing the Cauchy difference to be
unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : X → Y be a function from a normed
vector space X into a Banach space Y subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ X, where ε and p are constants with ε > 0 and p < 1. Then there exists
a unique additive function A : X → Y satisfying

‖f(x)− A(x)‖ ≤ ε‖x‖p/(1− 2p−1) (1.2)
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for all x ∈ X. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.
Also, if for each fixed x ∈ X the function t 7→ f(tx) is continuous in t ∈ R, then A
is linear.

The above Theorem has provided a lot of influence during the last three decades
in the development of a generalization of the Hyers–Ulam stability concept. This
new concept is known as generalized Hyers–Ulam stability or Hyers–Ulam–Rassias
stability of functional equations (see [14, 33]). Furthermore, a generalization of
Rassias theorem was obtained by Gǎvruta, who replaced ε(‖ x ‖p + ‖ y ‖p) by a
general control function ϕ(x, y) ; cf. [21]–[27].

It was shown by Rassias [57] that the norm defined over a real vector space X is
induced by an inner product if and only if for a fixed integer n ≥ 2

n‖ 1

n

n∑
i=1

xi‖2 +
n∑
i=1

‖xi −
1

n

n∑
j=1

xj‖2 =
n∑
i=1

‖xi‖2

for all x1, ..., xn ∈ X (see also [4, 37]). During the last three decades a number
of papers and research monographs have been published on various generalizations
and applications of the generalized Hyers–Ulam stability to a number of functional
equations and functions (see [13]–[28], [34, 36, 39, 41] and [59]–[66]). We also refer
the readers to the books [1, 14, 33, 38, 58].

Now, we consider the general n-dimensional additive functional equation for n ≥ 2
and then investigate the stability in random normed spaces and in non-Archimedean
spaces, moreover, the stability for functions from quasi-normed spaces into p–Banach
spaces and finally the stability by using the alternative fixed point, of an n-dimensional
additive functional equation as follows:

n∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

n∑
in−k+1=in−k+1

)f(
n∑

i=1,i6=i1,...,in−k+1

aixi −
n−k+1∑
r=1

airxir)

+ f(
n∑
i=1

aixi) = 2n−1a1f(x1)

(1.3)

where a1, ..., an ∈ Z − {0} with a1 6= ±1. As a special case, if n = 2 in (1.3), then
the functional equation (1.3) reduces to

f(a1x1 − a2x2) + f(a1x1 + a2x2) = 2a1f(x1)

also by putting n = 3 in (1.3), we obtain

2∑
i1=2

3∑
i2=i1+1

f(
3∑

i=1,i6=i1,i2

aixi −
2∑
r=1

airxir) +
3∑

i1=2

f(
3∑

i=1,i6=i1

aixi − ai1xi1)

+ f(
3∑
i=1

aixi) = 22a1f(x1)

that is,

f(a1x1 − a2x2 − a3x3) + f(a1x1 − a2x2 + a3x3) + f(a1x1 + a2x2 − a3x3)

+ f(a1x1 + a2x2 + a3x3) = 22a1f(x1)
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Throughout this paper, assume that a1, ..., an are nonzero fixed integers with
a1 6= ±1.

2. Generalized additive functions in several variables

Let both X and Y be real vector spaces. We here present the solution of (1.3).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.3) if and
only if f : X → Y is additive.

Proof. Let f satisfies (1.3). Setting xi = 0 (i = 1, ..., n) in (1.3), we have

n∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...
n∑

in−k+1=in−k+1

)f(0) + f(0) = 2n−1a1f(0)

that is,

2∑
i1=2

3∑
i2=i1+1

...
n∑

in−1=in−2+1

f(0) +
3∑

i1=2

4∑
i2=i1+1

...
n∑

in−2=in−3+1

f(0) + ...+
n∑

i1=2

f(0)

+ f(0) = 2n−1a1f(0)

that is,

(

(
n− 1
n− 1

)
+

(
n− 1
n− 2

)
+ ...+

(
n− 1

1

)
+ 1)f(0) = 2n−1a1f(0) (2.1)

on the other hand, we have the relation

1 +
n−1∑
i=1

(
n− 1
i

)
=

n−1∑
i=0

(
n− 1
i

)
= 2n−1

hence, it follows from (2.1) that 2n−1(a1−1)f(0) = 0 and since a1 6= ±1, so f(0) = 0.
Putting xi = 0 (i = 3, ..., n) in (1.3) and then using f(0) = 0, we get

f(a1x1 − a2x2) + (

(
n− 2

1

)
f(a1x1 − a2x2) +

(
n− 2
n− 2

)
f(a1x1 + a2x2))

+ ...+ (

(
n− 2
n− 3

)
f(a1x1 − a2x2) +

(
n− 2

2

)
f(a1x1 + a2x2))

+ (

(
n− 2
n− 2

)
f(a1x1 − a2x2) +

(
n− 2

1

)
f(a1x1 + a2x2))

+ f(a1x1 + a2x2) = 2n−1a1f(x1)

that is,

(1 +
n−2∑
i=1

(
n− 2
i

)
)(f(a1x1 + a2x2) + f(a1x1 − a2x2)) = 2n−1a1f(x1) (2.2)

for all x1, x2 ∈ X. It follows from (2.2) and
∑n−2

i=0

(
n− 2
i

)
= 2n−2 that

f(a1x1 + a2x2) + f(a1x1 − a2x2) = 2a1f(x1) (2.3)
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for allx1, x2 ∈ X. Setting x2 = 0 in (2.3), gives f(a1x1) = a1f(x1) for all x1 ∈ X.
Replacing x2 by a1

a2
x2 in (2.3) and then using f(a1x1) = a1f(x1), we get

f(x1 + x2) + f(x1 − x2) = 2f(x1) (2.4)

for all x1, x2 ∈ X. Putting x2 = x1 in (2.4) to get f(2x1) = 2f(x1) for all x1 ∈ X.
Replacing x1 and x2 by x1 + x2 and x1 − x2 in (2.4), respectively, and then using
f(2x1) = 2f(x1), we obtain that

f(x1 + x2) = f(x1) + f(x2) (2.5)

for all x1, x2 ∈ X, which implies that f is additive.
Conversely, suppose that f is additive, thus f satisfies (2.5). Putting x1 = x2 = 0

in (2.5), we get f(0) = 0. Setting x2 = x1 in (2.5), we have f(2x1) = 2f(x1) for
all x1 ∈ X. Putting x2 = −2x1 in (2.5) and then using f(2x1) = 2f(x1), we obtain
f(−x1) = −f(x1). Letting x2 = x1 and x2 = 2x1 in (2.5), respectively, we obtain
that f(2x1) = 2f(x1) and f(3x1) = 3f(x1) for all x1 ∈ X. So, f(mx1) = mf(x1) for
any integer m. Replacing x2 by −x2 in (2.5) and using the oddness of f, we have

f(x1 + x2) + f(x1 − x2) = 2f(x1) (2.6)

for all x1, x2 ∈ X. Replacing x1 and x2 by a1x1 and a2x2 in (2.6), respectively, then
by using the identity f(mx1) = mf(x1), we obtain

f(a1x1 + a2x2) + f(a1x1 − a2x2) = 2a1f(x1) (2.7)

for all x1, x2 ∈ X. Now, we are going to prove our assumption by induction on n ≥ 2.
It holds on n = 2; see equation (2.7). Assume that it holds on the case where n = p;
that is, we have

p∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

p∑
ip−k+1=ip−k+1

)f(

p∑
i=1,i6=i1,...,ip−k+1

aixi −
p−k+1∑
r=1

airxir)

+ f(

p∑
i=1

aixi) = 2p−1a1f(x1)

for all x1, ..., xp ∈ X. It follows from condition (2.5) that

f(

p∑
i=1

aixi + ap+1xp+1) + f(

p∑
i=1

aixi − ap+1xp+1) = 2f(

p∑
i=1

aixi) (2.8)

for all x1, ..., xp+1 ∈ X. Replacing xp by −xp in (2.8), we obtain

f(

p−1∑
i=1

aixi − apxp + ap+1xp+1) + f(

p−1∑
i=1

aixi − apxp − ap+1xp+1)

= 2f(

p−1∑
i=1

aixi − apxp)

(2.9)
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for all x1, ..., xp+1 ∈ X. Adding (2.8) to (2.9), we have

f(

p−1∑
i=1

aixi − apxp − ap+1xp+1) + f(

p−1∑
i=1

aixi − apxp + ap+1xp+1)

+ f(

p−1∑
i=1

aixi + apxp − ap+1xp+1) + f(

p−1∑
i=1

aixi + apxp + ap+1xp+1)

= 2[f(

p−1∑
i=1

aixi + apxp) + f(

p−1∑
i=1

aixi − apxp)]

for all x1, ..., xp+1 ∈ X. By using the above method, for xp−1 until x2, we infer that

p+1∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

p+1∑
ip−k+2=ip−k+1+1

)f(

p+1∑
i=1,i6=i1,...,ip−k+2

aixi −
p−k+2∑
r=1

airxir) + f(

p+1∑
i=1

aixi)

= 2[

p∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

p∑
ip−k+1=ip−k+1

)f(

p∑
i=1,i6=i1,...,ip−k+1

aixi −
p−k+1∑
r=1

airxir) + f(

p∑
i=1

aixi)]

for all x1, ..., xp+1 ∈ X. Now, by the case n = p, we lead to

p+1∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

p+1∑
ip−k+2=ip−k+1+1

)f(

p+1∑
i=1,i6=i1,...,ip−k+2

aixi −
p−k+2∑
r=1

airxir)

+ f(

p+1∑
i=1

aixi) = 2[2p−1a1f(x1)]

for all x1, ..., xp+1 ∈ X, so (1.3) holds for n = p + 1. This complete the proof of the
theorem. �

3. Approximately additive functions in random normed spaces

The aim of this section is to investigate the stability of the given general n-
dimensional additive functional equation (1.3), in random normed spaces.

In the sequel we adopt the usual terminology, notations and conventions of the
theory of random normed spaces, as in [10, 47, 44, 71, 72]. Throughout this paper,
let ∆+ is the space of distribution functions that is,

∆+ : = {F : R ∪{−∞,∞} → [0, 1] : F is left− continuous,

non− decreasing on R, F (0) = 0 and F (+∞) = 1}

and the subset D+ ⊆ ∆+ is the set,

D+ = {F ∈ ∆+ : l−F (+∞) = 1}

where, l−f(x) denotes the left limit of the function f at the point x. The space ∆+

is partially ordered by the usual point-wise ordering of functions, i.e., F ≤ G if and
only if F (t) ≤ G(t) for all t ∈ R. The maximal element for ∆+ in this order is the
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distribution function given by

ε0(t) =

{
0, if t ≤ 0,

1, if t > 0.

Definition 3.1. ([71]) A function T : [0, 1] × [0, 1] −→ [0, 1] is a continuous
triangular norm (briefly, a t–norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t–norms are TP (a, b) = ab, TM(a, b) = min(a, b)
and TL(a, b) = max(a+ b− 1, 0) (the  Lukasiewicz t-norm).

Recall (see [29], [30]) that if T is a t–norm and {xn} is a given sequence of numbers
in [0, 1], T ni=1xi is defined recurrently by

T ni=1xi =

{
x1, if n = 1,

T (T n−1
i=1 xi, xn), if n ≥ 2.

T∞i=nxi is defined as T∞i=1xn+i.
It is known ([30]) that for the  Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞∑
n=1

(1− xn) <∞.

Definition 3.2. ([72]) A Random Normed space (briefly, RN-space) is a triple
(X,µ, T ), where X is a vector space, T is a continuous t–norm, and µ is a function
from X into D+ such that, the following conditions hold:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) µαx(t) = µx(
t
|α|) for all x ∈ X, α 6= 0;

(RN3) µx+y(t+ s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 3.3. Let (X,µ, T ) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and
λ > 0, there exists positive integer N such that µxn−x(ε) > 1− λ whenever n ≥ N .

(2) A sequence {xn} in X is called Cauchy if, for every ε > 0 and λ > 0, there
exists positive integer N such that µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N .

(3) A RN-space (X,µ, T ) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X. A complete RN-space is said to be
random Banach space.

Theorem 3.4. ([71]) If (X,µ, T ) is a RN-space and {xn} is a sequence such that
xn → x, then limn→∞ µxn(t) = µx(t) almost everywhere.

The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random op-
erator equations. The RN-spaces may also provide us the appropriate tools to study
the geometry of nuclear physics and have important application in quantum parti-
cle physics. The generalized Hyers-Ulam stability of different functional equations
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in random normed spaces, RN-spaces and fuzzy normed spaces has been recently
studied in, Alsina [3], Mirmostafaee, Mirzavaziri and Moslehian [50, 51, 52], Miheţ
and Radu [44]-[47], Miheţ, Saadati and Vaezpour [48, 49], Baktash et. al [8] and
Saadati et. al. [70].

From now on, we use the following abbreviation for a given function f :

Df(x1, .., xn) :=
n∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...
n∑

in−k+1=in−k+1

)f(
n∑

i=1,i6=i1,...,in−k+1

aixi −
n−k+1∑
r=1

airxir)

+ f(
n∑
i=1

aixi)− 2n−1a1f(x1).

Theorem 3.5. Let X be a real linear space, (Y,Λ, T ) be a complete RN-space and
ξ : Xn → D+ (n ∈ N, n ≥ 2 and ξ(x1, ..., xn) is denoted by ξx1,...,xn) be a function
such that

lim
m→∞

ξam
1 x1,...,am

1 xn(|a1|mt) = 1 (3.1)

for all x1, ..., xn ∈ X, t > 0 and

lim
m→∞

T∞`=1(ξam+`−1
1 x,0,...,0(2

n−`−1|a1|m+`−1t)) = 1 (3.2)

for all x ∈ X and all t > 0. Suppose that f : X → Y is a function satisfying

ΛDf(x1,...,xn)(t) ≥ ξx1,...,xn(t) (3.3)

for all x1, ..., xn ∈ X and t > 0. Then there exists a unique additive function A :
X → Y such that

Λf(x)−A(x)(t) ≥ T∞`=1(ξa`−1
1 x,0,...,0(2

n−`−1|a1|`t)) (3.4)

for all x ∈ X and t > 0.

Proof. Putting x1 = x and xi = 0 (i = 2, ..., n) in (3.3), we obtain that

Λ(∑n
k=2

(∑k
i1=2

∑k+1
i2=i1+1 ...

∑n
in−k+1=in−k+1

)
f(a1x) + f(a1x)− 2n−1a1f(x)

)(t)

≥ ξx,0,...,0(t)

for all x ∈ X and t > 0, that is,

Λ
(

n− 1
n− 1

+

n− 1
n− 2

+...+

n− 1
1

+1)f(a1x)−2n−1a1f(x)

(t) ≥ ξx,0,...,0(t)

for all x ∈ X and t > 0. It follows from last inequality that

Λ
(1+

∑n−1
`=1

n− 1
`

)f(a1x)−2n−1a1f(x)

(t) ≥ ξx,0,...,0(t)

for all x ∈ X and t > 0, hence by using the relation 1+
∑n−1

`=1

(
n− 1
`

)
= 2n−1, gives

Λ2n−1f(a1x)−2n−1a1f(x)(t) ≥ ξx,0,...,0(t)

for all x ∈ X and t > 0. So

Λ f(a1x)
a1

−f(x)
(t) ≥ ξx,0,...,0(2

n−1|a1|t) ≥ ξx,0,...,0(2
n−2|a1|t)
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for all x ∈ X and t > 0, which implies that

Λ f(a`+1
1 x)

a`+1
1

−
f(a`

1x)

a`
1

(t) ≥ ξa`
1x,0,...,0

(2n−1|a1|`+1t) (3.5)

for all x ∈ X, t > 0 and ` ∈ N. It follows from (3.5) and (RN3) that

Λ f(a2
1x)

a2
1

−f(x)
(t) ≥ T (Λ f(a2

1x)

a2
1

− f(a1x)
a1

(
t

2
),Λ f(a1x)

a1
−f(x)

(
t

2
))

≥ T (ξa1x,0,...,0(2
n−2|a1|2t), ξx,0,...,0(2n−2|a1|t))

≥ T (ξa1x,0,...,0(2
n−3|a1|2t), ξx,0,...,0(2n−2|a1|t))

for all x ∈ X and t > 0. Thus

Λ f(am
1 x)

am
1

−f(x)
(t) ≥ Tm`=1(ξa`−1

1 x,0,...,0(2
n−`−1|a1|`t)) (3.6)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {f(am
1 x)

am
1
},

we replace x with am
′

1 x in (3.6) to find that

Λ
f(am+m′

1 x)

am+m′
1

−
f(am′

1 x)

am′
1

(t) ≥ Tm`=1(ξam′+`−1
1 x,0,...,0

(2n−`−1|a1|m
′+`t))

for all x ∈ x and all t > 0. Since the right hand side of the inequality tends to 1 as

m′ and m tend to infinity, the sequence {f(am
1 x)

am
1
} is a Cauchy sequence. Therefore,

one can define the function A : X → Y by

A(x) := lim
m→∞

1

am1
f(am1 x)

for all x ∈ X. Now, if we replace x1, ..., xn with am1 x1, ..., a
m
1 xn in (3.3), respectively,

it follows that

ΛDf(am
1 x1,...,am

1 xn)

am
1

(t) ≥ ξam
1 x1,...,am

1 xn(|a1|mt) (3.7)

for all x1, ..., xn ∈ x and all t > 0. By letting m→∞ in (3.7), gives DA(x1, ..., xn) =
0 thus A satisfies (1.3). Hence by Theorem 2.1, the function A : X → Y is additive.

To prove (3.4) take the limit as m→∞ in (3.6).
Finally, to prove the uniqueness of the additive function A subject to (3.4), let us
assume that there exists a additive function A′ which satisfies (3.4). Since A(am1 x) =
am1 A(x) and A′(am1 x) = am1 A

′(x) for all x ∈ X and m ∈ N, from (3.4) it follows that

ΛA(x)−A′(x)(t) = ΛA(am
1 x)−A′(am

1 x)
(|a1|mt)

≥ T (ΛA(am
1 x)−f(am

1 x)
(|a1|m−1t),Λf(am

1 x)−A′(am
1 x)

(|a1|m−1t))

≥ T (T∞`=1(ξam+`−1
1 x,0,...,0(2

n−`−1|a1|m+`−1t))

, T∞`=1(ξam+`−1
1 x,0,...,0(2

n−`−1|a1|m+`−1t)))

(3.8)

for all x ∈ X and all t > 0. By letting m→∞ in (3.8), we find that A = A′. �
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4. Approximately additive functions in non-Archimedean spaces

In 1897, Hensel [31] has introduced a normed space which does not have the
Archimedean property. It turned out that non-Archimedean spaces have many nice
applications [42, 75, 67, 76].

A non-Archimedean field is a field K equipped with a function (valuation) | . |
from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and |r + s| ≤
max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. An
example of a non-Archimedean valuation is the function | . | taking everything but
0 into 1 and |0| = 0. This valuation is called trivial.

Definition 4.1. Let X be a vector space over a scalar field K with a non–
Archimedean non-trivial valuation | . |. A function ‖ . ‖ : X → R is a non–
Archimedean norm (valuation) if it satisfies the following conditions:

(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).
Then (X, ‖ . ‖) is called a non–Archimedean space.

Remark 4.2. Thanks to the inequality

‖xm − xl‖ ≤ max{‖x+1 − x‖ : l ≤  ≤ m− 1} (m > l)

a sequence {xm} is Cauchy if and only if {xm+1 − xm} converges to zero in a non–
Archimedean space. By a complete non–Archimedean space we mean one in which
every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A
key property of p-adic numbers is that they do not satisfy the Archimedean axiom:
”for x, y > 0, there exists n ∈ N such that x < ny.”

Example 4.3. Let p be a prime number. For any nonzero rational number x = a
b
pnx

such that a and b are integers not divisible by p, define the p-adic absolute value
|x|p := p−nx . Then | . | is a non-Archimedean norm on Q. The completion of Q with
respect to | . | is denoted by Qp which is called the p-adic number field.

Note that if p > 3, then |2n| = 1 in for each integer n.
Arriola and Beyer [6] investigated stability of approximate additive functions f :
Qp → R. They showed that if f : Qp → R is a continuous function for which there
exists a fixed ε :

|f(x+ y)− f(x)− f(y)| ≤ ε

for all x, y ∈ Qp, then there exists a unique additive function T : Qp → R such that

|f(x)− T (x)| ≤ ε

for all x ∈ Qp. Additionally in 2007, Moslehian and Rassias [54] proved the gen-
eralized Hyers–Ulam stability of the Cauchy functional equation and the quadratic
functional equation in non–Archimedean normed spaces.

Theorem 4.4. Let G is an additive group, X is a complete non–Archimedean space
and ψ : Gn → [0,∞) be a function such that

lim
m→∞

1

|a1|m
ψ(am1 x1, ..., a

m
1 xn) = 0 (4.1)
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for all x1, ..., xn ∈ G, and

ψ̃(x) := lim
m→∞

max{ 1

|a1|`
ψ(a`1x, 0, ..., 0) : 0 ≤ ` < m} (4.2)

for each x ∈ G, exists. Suppose that f : G→ X is a function satisfying

‖Df(x1, ..., xn)‖ ≤ ψ(x1, ..., xn) (4.3)

for all x1, ..., xn ∈ G. Then there exists a additive function A : G→ X such that

‖f(x)− A(x)‖ ≤ 1

|2n−1a1|
ψ̃(x) (4.4)

for all x ∈ G. Moreover, if

lim
→∞

lim
m→∞

max{ 1

|a1|`
ψ(a`1x, 0, ..., 0) :  ≤ ` < m+ } = 0

then A is the unique additive function satisfying (4.4).

Proof. Putting x1 = x and xi = 0 (i = 2, ..., n) in (4.3), we get

‖f(x)− 1

a1

f(a1x)‖ ≤ 1

|2n−1a1|
ψ(x, 0, ..., 0) (4.5)

for all x ∈ G. Replacing x by am−1
1 x in (4.5), we have

‖ 1

am−1
1

f(am−1
1 x)− 1

am1
f(am1 x)‖ ≤ 1

|2n−1am1 |
ψ(am−1

1 x, 0, ..., 0) (4.6)

for all x ∈ G. It follows from (4.6) and (4.1) that the sequence { 1
am
1
f(am1 x)} is

Cauchy. Since X is complete, we conclude that { 1
am
1
f(am1 x)} is convergent. So one

can define the function A : X → Y by

A(x) := lim
m→∞

am1 f(
x

am1
)

for all x ∈ G. It follows from (4.5) and (4.6) by using induction that

‖f(x)− 1

am1
f(am1 x)‖ ≤ 1

|2n−1a1|
max{ 1

|a1|
ψ(a1x, 0, ..., 0) : 0 ≤  < m} (4.7)

for all m ∈ N and all x ∈ G. By taking m to approach infinity in (4.7) and using
(4.2), we obtain (4.4). By (4.1) and (4.3), we get

‖DA(x1, ..., xn)‖ = lim
m→∞

1

|a1|m
‖Df(am1 x1, ..., a

m
1 xn)‖

≤ lim
m→∞

1

|a1|m
ψ(am1 x1, ..., a

m
1 xn) = 0

for all x1, ..., xn ∈ G. Therefore the function A : G→ X satisfies (1.3). By Theorem
2.1, the function A : X → Y is additive.
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If A′ is another additive function satisfying (4.4), then

‖A(x)− A′(x)‖ = lim
→∞

1

|a1|
‖A(a1x)− A′(a1x)‖

≤ lim
→∞

1

|a1|
max{ ‖A(a1x)− f(a1x)‖, ‖f(a1x)− A′(a1x)‖ }

≤ 1

|2n−1a1|
lim
→∞

lim
m→∞

max{ 1

|a1|`
ψ(a`1x, 0, ..., 0) :  ≤ ` < m+ } = 0

for all x ∈ G, so A = A′. This completes the proof of the uniqueness of A. �

Corollary 4.5. Let η : [0,∞) → [0,∞) be a function satisfying
(i) η(|a1|t) ≤ η(|a1|)η(t) for all t ≥ 0;
(ii) η(|a1|) < |a1|.

Suppose that ε > 0 and G be a normed space and let f : G→ X satisfying

‖Df(x1, ..., xn)‖ ≤ ε
n∑
i=1

η(‖xi‖)

for all x1, ..., xn ∈ G. Then there exists a unique additive function A : G→ X such
that

‖f(x)− A(x)‖ ≤ ε

|2n−1a1|
η(‖x‖)

for all x ∈ G.

Proof. Defining ψ : G×G→ [0,∞) by ψ(x1, ..., xn) := ε
∑n

i=1 η(‖xi‖), we have

lim
m→∞

1

|a1|m
ψ(am1 x1, ..., a

m
1 xn) ≤ lim

m→∞
(
η(|a1|)
|a1|

)mψ(x1, ..., xn) = 0

for all x1, ..., xn ∈ G. We have

ψ̃(x) := lim
m→∞

max{ 1

|a1|`
ψ(a`1x, 0, ..., 0) : 0 ≤ ` < m} = ψ(x, 0, ..., 0)

and

lim
→∞

lim
m→∞

max{ 1

|a1|`
ψ(a`1x, 0, ..., 0) :  ≤ ` < m+ } = lim

→∞

1

|a1|
ψ(a1x, 0, ..., 0) = 0

for all x ∈ G. �

Remark 4.6. The classical example of the function η is the function η(t) = tp for
all t ∈ [0,∞), where p > 1 with the further assumption that |a1| < 1.

Remark 4.7. We can formulate similar statements to Theorem 4.4 in which we
can define the sequence A(x) := limm→∞ am1 f( x

am
1

) under suitable conditions on the

function ψ then obtain similar result to Corollary 4.5 for p < 1.

5. Approximately additive functions in p–Banach spaces

We consider some basic concepts concerning p–normed spaces.
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Definition 5.1. (See [9, 68]). LetX be a real linear space. A function ‖ . ‖ : X → R
is a quasi-norm (valuation) if it satisfies the following conditions:

(QN1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(QN2) ‖λ. x‖ = |λ|.‖x‖ for all λ ∈ R and all x ∈ X;

(QN3) There is a constant M ≥ 1: ‖x + y‖ ≤ M(‖x‖ + ‖y‖) for all x, y ∈ X.
Then (X, ‖ . ‖) is called a quasi-normed space.

The smallest possibleM is called the modulus of concavity of ‖ . ‖. A quasi-Banach
space is a complete quasi-normed space.

A quasi-norm ‖ . ‖ is called a p–norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p–Banach space.
By the Aoki-Rolewicz Theorem [68], each quasi-norm is equivalent to some p–

norm (see also [9]). Since it is much easier to work with p–norms, henceforth we
restrict our attention mainly to p–norms. Moreover in [73], J. Tabor has investigated
a version of Hyers-Rassias-Gajda Theorem (see [20, 56]) in quasi-Banach spaces.

Our main result in this section is the following:

Theorem 5.2. Let ` ∈ {−1, 1} be fixed, X be a p–normed space, Y be a p–Banach
space and ϕ : Xn → [0,∞) be a function such that

lim
m→∞

1

|a1|m`
ϕ(am`1 x1, ..., a

m`
1 xn) = 0 (5.1)

for all x1, ..., xn ∈ X, and

ϕ̃(x) :=
∞∑

= 1−`
2

1

|a1|`p
ϕp(a`1 x, 0, ..., 0) <∞ (5.2)

for all x ∈ X (denoted (ϕ(x1, ..., xn))p by ϕp(x1, ..., xn)). Suppose that f : X → Y is
a function that satisfies

‖Df(x1, ..., xn)‖ ≤ ϕ(x1, ..., xn) (5.3)

for all x1, ..., xn ∈ X. Furthermore, assume that f(0) = 0 in (5.3) for the case ` = 1.
Then there exists a unique additive function A : X → Y such that

‖f(x)− A(x)‖ ≤ 1

2n−1|a1|
1+`
2

[ϕ̃(
x

a
1−`
2

1

)]
1
p (5.4)

for all x ∈ X.

Proof. For ` = 1, putting x1 = x and xi = 0 (i = 2, ..., n) in (5.3), we obtain

‖2n−1f(a1x)− 2n−1a1f(x)‖ ≤ ϕ(x, 0, ..., 0) (5.5)

for all x ∈ X. So

‖f(x)− 1

a1

f(a1x)‖ ≤ 1

2n−1|a1|
ϕ(x, 0, ..., 0) (5.6)
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for all x ∈ X. Replacing x by a1x in (5.6) and dividing by a1 and summing the
resulting inequality with (5.6), we get

‖f(x)− 1

a2
1

f(a2
1x)‖ ≤ 1

2n−1|a1|
(ϕ(x, 0, ..., 0) +

ϕ(a1x, 0, ..., 0)

|a1|
) (5.7)

for all x ∈ X. Hence

‖ 1

al1
f(al1x)− 1

am1
f(am1 x)‖p ≤ 1

2(n−1)p |a1|p
m−1∑
=l

1

|a1|p
ϕp(a1x, 0, ..., 0) (5.8)

for all nonnegative integers m and l with m > l and for all x ∈ X. It follows from
(5.1) and (5.8) that the sequence { 1

am
1
f(am1 x)} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { 1
am
1
f(am1 x)} converges. Therefore, one can define

the function A : X → Y by

A(x) := lim
m→∞

1

am1
f(am1 x)

for all x ∈ X. By (5.2) for ` = 1 and (5.3),

‖DA(x1, ..., xn)‖ = lim
m→∞

1

|a1|m
‖Df(am1 x1, ..., a

m
1 xn)‖

≤ lim
m→∞

1

|a1|m
ϕ(am1 x1, ..., a

m
1 xn) = 0

for all x1, ..., xn ∈ X. So DA(x1, ..., xn) = 0. By Theorem 2.1, the function A : X →
Y is additive. Moreover, letting l = 0 and passing the limit m→∞ in (5.8), we get
the inequality (5.4) for ` = 1.

Now, let A′ : X → Y be another additive function satisfying (1.3) and (5.4). So

‖A(x)− A′(x)‖p =
1

|a1|mp
‖A(am1 x)− A′(am1 x)‖p

≤ 1

|a1|mp
(‖A(am1 x)− f(am1 x)‖p + ‖A′(amx)− f(amx)‖p)

≤ 2

|a1|mp2(n−1)p|a1|p
ϕ̃(am1 x)

which tends to zero as m→∞ for all x ∈ X. So we can conclude that A(x) = A′(x)
for all x ∈ X. This proves the uniqueness of A.

Also, for ` = −1, it follows from (5.5) that

‖f(x)− a1f(
x

a1

)‖ ≤ 1

2n−1
ϕ(

x

a1

, 0, ..., 0)

for all x ∈ X. Hence

‖al1f(
x

al1
)− am1 f(

x

am1
)‖p ≤ 1

2(n−1)p

m−1∑
=l

|a1|pϕp(
x

a+1
1

, 0, ..., 0) (5.9)

for all nonnegative integers m and l with m > l and for all x ∈ X. It follows from
(5.9) that the sequence {amf( x

am )} is a Cauchy sequence for all x ∈ X. Since Y
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is complete, the sequence {amf( x
am )} converges. So one can define the function

A : X → Y by

A(x) := lim
m→∞

am1 f(
x

am1
)

for all x ∈ X. By (5.2) for ` = −1 and (5.3),

‖DA(x1, ..., xn)‖ = lim
m→∞

|a1|m‖Df(
x1

am1
, ...,

xn
am1

)‖ ≤ lim
m→∞

|a1|mϕ(
x1

am1
, ...,

xn
am1

) = 0

for all x1, ..., xn ∈ X. So DA(x1, ..., xn) = 0. By Theorem 2.1, the function A : X →
Y is additive. Moreover, letting l = 0 and passing the limit m → ∞ in (5.9), we
get the inequality (5.4) for ` = −1. The rest of the proof is similar to the proof of
previous section. �

Corollary 5.3. Let ε, λi (1 ≤ i ≤ n) be non-negative real numbers such that λi < 1
or λi > 1 (1 ≤ i ≤ n). Suppose that a function f : X → Y with f(0) = 0 satisfies

‖Df(x1, ..., xn)‖ ≤ ε
n∑
i=1

‖xi‖λi (5.10)

for all x1, ..., xn ∈ X. Then there exists a unique additive function A : X → Y such
that

‖f(x)− A(x)‖ ≤ ε

2n−1||a1|p − |a1|λ1p|
1
p

‖x‖λ1

for all x ∈ X.

Proof. In Theorem 5.2, put ϕ(x1, ..., xn) := ε
∑n

i=1 ‖xi‖
λi for all x1, ..., xn ∈ X. �

6. Approximately additive functions by using alternative fixed point

Baker [7] was the first author who applied the fixed point method in the study
of Hyers–Ulam stability (see also [2]). A systematic study of fixed point theorems
in nonlinear analysis is due to Isac and Rassias; cf. [35, 36]. Recently, Cădariu
and Radu [11] applied the fixed point method to the investigation of the Cauchy
additive functional equation [12, 55]. Using such a clever idea, they could present
a short, simple proof for the Hyers-Ulam stability of Cauchy and Jensen functional
equations (see also [18, 40, 53]).

We now introduce one of fundamental results of fixed point theory. For the proof,
refer to [43, 69]. For an extensive theory of fixed point theorems and other nonlinear
methods, the reader is referred to the book of Hyers, Isac and Rassias [33].

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on
X if and only if d satisfies:

(GM1) d(x, y) = 0 if and only if x = y;
(GM2) d(x, y) = d(y, x) for all x, y ∈ X;
(GM3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Note that the distinction between the generalized metric and the usual metric is
that the range of the former is permitted to include the infinity.

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a
Lipschitz condition with Lipschitz constant L if there exists a constant L ≥ 0 such
that

d(Tx, Ty) ≤ Ld(x, y)
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for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is
called a strictly contractive operator.

We recall the following theorem by Margolis and Diaz.

Theorem 6.1. Suppose that we are given a complete generalized metric space (Ω, d)
and a strictly contractive function T : Ω → Ω with Lipschitz constant L. Then for
each given x ∈ Ω, either

d(Tmx, Tm+1x) = ∞ for all m ≥ 0,
or other exists a natural number m0 such that

F d(Tmx, Tm+1x) <∞ for all m ≥ m0;
F the sequence {Tmx} is convergent to a fixed point y∗ of T ;
F y∗ is the unique fixed point of T in

Λ = {y ∈ Ω : d(Tm0x, y) <∞};
F d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

By using the idea of Cădariu and Radu, we will prove the stability of the general
n-dimensional additive functional equation (1.3).

Theorem 6.2. Let X be a real vector space and Y be a real Banach space. Suppose
that ` ∈ {−1, 1} be fixed and f : X → Y a function for which there exists a function
ϕ : Xn → [0,∞) that satisfying (5.1) and (5.3) for all x1, ..., xn ∈ X. If there exists
0 < L = L(`) < 1 such that the function x 7→ ψ(x) = ϕ( x

a1
, 0, ..., 0) has the property

ψ(x) ≤ L . |a1|` . ψ(
x

a`1
) (6.1)

for all x ∈ X. Then there exists a unique additive function A : X → Y such that

‖f(x)− A(x)‖ ≤ L
`+1
2

2n−1(1− L)
ψ(x) (6.2)

for all x ∈ X.

Proof. Let Ω be the set of all functions g : X → Y and introduce a generalized
metric on Ω as follows:

d(g, h) = dψ(g, h) = inf{K ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Kψ(x), x ∈ X}
It is easy to show that (Ω, d) is a generalized complete metric space [11].

Now we define a function T : Ω → Ω by T g(x) = 1
a`
1
g(a`1x) for all x ∈ X.

Note that for all g, h ∈ Ω,

d(g, h) < K ⇒ ‖g(x)− h(x)‖ ≤ Kψ(x), for all x ∈ X,

⇒ ‖ 1

a`1
g(a`1x)− 1

a`1
h(a`1x)‖ ≤ 1

|a1|`
K ψ(a`1x), for all x ∈ X,

⇒ ‖ 1

a`1
g(a`1x)− 1

a`1
h(a`1x)‖ ≤ L K ψ(x), for all x ∈ X,

⇒ d(T g, T h) ≤ L K.

Hence we see that d(T g, T h) ≤ L d(g, h) for all g, h ∈ Ω, that is, T is a strictly
self-function of Ω with the Lipschitz constant L.
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Putting x1 = x and xi = 0 (i = 2, ..., n) in (5.3), we have (5.5) for all x ∈ X, thus,
by using (6.1) with the case ` = 1, we obtain that

‖f(x)− 1

a1

f(a1x)‖ ≤ 1

2n−1

1

|a1|
ϕ(x, 0, ..., 0) =

1

2n−1

1

|a1|
ψ(a1x) ≤ L

2n−1
ψ(x)

for all x ∈ X, that is, d(f, Tf) ≤ L
2n−1 <∞.

Also, if we substitute x = x
a1

in (5.5) and use (6.1) with the case ` = −1, then we
see that

‖f(x)− a1f(
x

a1

)‖ ≤ 1

2n−1
ψ(x)

for all x ∈ X, that is, d(f, Tf) ≤ 1
2n−1 <∞.

Now, from the fixed point alternative in both cases, it follows that there exists a
fixed point A of T in Ω such that

A(x) = lim
m→∞

1

am`1

f(am`1 x)

for all x ∈ X, since limm→∞ d(Tmf, A) = 0.
Also, if we replace x1, ..., xn with am`1 x1, ..., a

m`
1 xn in (5.3), respectively, and divide

by am`1 , then it follows from (5.1)that

‖DA(x1, ..., xn)‖ = lim
m→∞

1

|a1|m
‖Df(am1 x1, ..., a

m
1 xn)‖

≤ lim
m→∞

1

|a1|m
ϕ(am1 x1, ..., a

m
1 xn) = 0

for all x1, ..., xn ∈ X, so DA(x1, ..., xn) = 0. Thus the function A is additive.
According to the fixed point alterative, since A is the unique fixed point of T in

the set Λ = {g ∈ Ω : d(f, g) <∞}, A is the unique function such that

‖f(x)− A(x)‖ ≤ K ψ(x)

for all x ∈ X and K > 0. Again using the fixed point alterative, gives

d(f, A) ≤ 1

1− L
d(f, Tf) ≤ L

`+1
2

2n−1(1− L)

so we conclude that

‖f(x)− A(x)‖ ≤ L
`+1
2

2n−1(1− L)
ψ(x)

for all x ∈ X. This completes the proof. �

Corollary 6.3. Let X be a normrd space and Y be a Banach space. Let ε, λi (1 ≤
i ≤ n) be non-negative real numbers such that λi < 1 or λi > 1 (1 ≤ i ≤ n). Suppose
that f : X → Y is a function satisfying (5.10) for all x1, ..., xn ∈ X. Then there
exists a unique additive function A : X → Y such that

‖f(x)− A(x)‖ ≤ ε

2n−1||a1| − |a1|λ1|
‖x‖λ1 (6.3)

for all x ∈ X.
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Proof. In Theorem 6.2, put ϕ(x1, ..., xn) := ε
∑n

i=1 ‖xi‖
λi for all x1, ..., xn ∈ X.

Then the relation (5.1) is true for λi < 1 or λi > 1 and also the inequality (6.1)
holds with L = |a1|(λ1−1)`. Thus from (6.2), yields (6.3). �

Corollary 6.4. Assume that θ ≥ 0 is fixed. Let f : X → Y be a function such that

‖Df(x1, ..., xn)‖ ≤ θ

for all x1, ..., xn ∈ X, then there exists a unique addtive function A : X → Y such
that

‖f(x)− A(x)‖ ≤ θ

n2n−1(|a1| − 1)

holds for all x ∈ X.

Proof. Letting λ1 = 0, ε = θ
n

and applying corollary 6.3. �
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12. L. Cădariu and V. Radu, Fixed points and the stability of Jensens functional equation, Journal
of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, 7 pages, 2003.

13. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984)
76–86.

14. P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Pub-
lishing Company, New Jersey, Hong Kong, Singapore, London, 2002.

15. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem.
Univ. Hamburg. 62 (1992) 59–64.

16. M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic,
quadratic and additive functional equation in quasi–Banach spaces, Nonlinear Analysis.-TMA.
71 (2009) 5629–5643.



APPROXIMATELY GENERALIZED ADDITIVE FUNCTIONS... 39

17. M. Eshaghi Gordji and H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Qua-
dratic Functional Equations, Abstract and Applied Analysis Volume 2009, Article ID 923476,
11 pages.

18. M. Eshaghi Gordji, H. Khodaei and C. Park, A fixed point approach to the Cauchy-Rassias
stability of general Jensen type quadratic-quadratic mappings, (To appear).

19. V.A. Faizev, Th.M. Rassias and P.K. Sahoo, The space of (ψ, γ)–additive mappings on semi-
groups, Trans. Amer. Math. Soc. 354 (11) (2002) 4455–4472.

20. Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991) 431–434.
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