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Abstract

The initial-boundary value problem for a plate equation with a nonlocal source and singular nonlocal damping terms
is considered. By using the multiplier method and weighted integral inequalities, we prove that the energy decays
exponentially when the damping term has a certain singular nonlinearity. The results of this paper improve the earlier
results.
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1 Introduction

Analysis of the dynamic behavior of structures under nonlocal source and singular nonlocal damping terms is of
great importance, both from the point of view of fundamental research and engineering applications, because almost
all structures and their elements are subjected to it at various stages during manufacturing and installation, when
used in normal and extreme conditions. Physical phenomena arising in the event of these impact, are diverse and
include structural changes in materials, contact effects and propagation of nonstationary waves. To solve the problems
of dynamic interaction in the scientific literature, various approaches and methods have been proposed, a review of
which can be found.

In this paper, we consider the initial boundary value problem for the plate equation with singular nonlocal damping
and nonlocal nonlinear source terms

utt +∆2
xu+ α(t)h(

∫
Ω

|∇xu|2dx)g(ut) + f(

∫
Ω

|u|pdx)|u|p−2u = 0 in Ω× (0,+∞), (1.1)

u(x, t) = 0 on x ∈ ∂Ω, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)
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where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary ∂Ω, h(s) = s−l, l ≥ 0, f(s) = sρ, ρ ≥ 0, α and g
are given functions to be specified later.

Recently, Narciso[17] consider the well-posedness, stability and long-time behavior of solutions to the following
nonlocal nonlinear plate equation

utt +∆2
xu+M(

∫
Ω

|∇xu|2dx)|ut|γut + f(

∫
Ω

|u|ρ+2dx)|u|ρu = h(x), (1.4)

where γ, ρ > 0, f(s) ≥ 0 is nonlinear source coefficient and M(s) > 0 corresponds to a nonlocal damping coefficient.
This kind of nonlocal dissipative effect, namely M(

∫
Ω
|∇xu|2dx)ut, was introduced by Lange and Perla Menzala [9]

for the beam equation

utt +∆2
xu+M(||∇xu||22)ut = 0 in Rn (1.5)

and subsequently studied by Cavalcanti et al. [2] in another context. When the Kirchhoff function M is nondegenerate,
that is, there exists m0 > 0 such that M(s) ≥ m0 for all s ≥ 0, then a full damping is in place and the exponential
decay follows trivially [3]. For the related study on this topic, one can see also [5, 6, 7, 10, 11, 14, 18, 25, 24, 23, 27]
and reference therein, where global existence and long-time behavior of solutions of the problem were proved..

When the Kirchhoff function M is degenerate, that is, M can be zero at zero, in [3] the authors considered the case
M(s) = s for s ≥ 0, where well-posedness results are discussed, as well as the exponential stability of the solutions.
Pucci and Saldi [19] extended the results in [3]. They considered the question of the asymptotic stability of solutions
of Kirchhoff systems, governed by the fractional p-Laplacian operator, with an external force and nonlinear degenerate
nonlocal damping terms. Very recently, by potential well theory, Zhang et.al [26] showed the asymptotic stability of
energy in presence of a degenerate damping of polynomial type M(s) = sl when the initial energy is small. Also, They
firstly derive some sufficient conditions on initial data which lead to finite time blow-up.

As far as we know, another kind of nonlocal fractional damping is given by

M(||∇xu||2)(−∆xut)
θ, 0 ≤ θ ≤ 1. (1.6)

There exists a huge literature regarding hyperbolic equations which involves nonlocal fractional damping term M > 0.
For the related study on this topic, one can see [4, 12, 13, 20, 21, 22] and references therein. The majority of these
papers deal with the global existence and long-time behavior of solutions for the following equation

utt + a∆2
xu− ϕ(||∇xu||22)∆xu+M(||∇xu||22)(−∆x)

θut + f(u) = h. (1.7)

As a matter of fact, to our best knowledge, there is no stability result for wave models with degenerate nonlocal
damping such as ||∇xu||22(−∆x)

θut since the traditional multipliers do not work for this kind of degenerate nonlocal
damping term.

Our goal in this paper is to examine the asymptotic stability of the energy for problem (1.1)-(1.3). The nonlocal
damping term given by ||∇xu||−lg(ut) are different from those in above mentioned papers. Motivated by a method
introduced by Martinez [15] to study the decay rate of solutions to the wave equation utt −∆xu+ g(ut) = 0, we give
an explicit energy decay estimates of the solutions to the problem (1.1)-(1.3).

It is also worth mentioning that the initial boundary value problem of the wave equation with singular nonlinearities
of the form

utt − uxx + |u|−rg(ut) + |u|−αu = 0 (1.8)

was studied by [1, 16].

The contents of this paper is organized as follows. In Sect. 2, we prepare some material needed in our proof and
state the energy functional. In Sect. 3, we state and prove our main result.

2 Preliminaries

First assume the following hypotheses:

(A1) α : R+ −→ R+ is a nonincreasing function of class C1(R+) satisfying∫ +∞

0

α(τ)dτ = +∞. (2.1)
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(A2) h(s) = s−l, l ≥ 0.

(A3) f(s) = sρ, ρ ≥ 0.

(A4) g : R −→ R is a nondecreasing function of class C(R) such that: there exist positive constants ci, i = 1, 2, 3, 4
such that g(y)y ≥ 0, c1|y|m ≤ |g(y)| ≤ c2|y|θ, m ≥ 1,m ≥ θ ≥ 1

m , for |y| ≤ 1, and c′1|y| ≤ |g(y)| ≤ c′2|y|r, 1 ≤ r ≤ n
n−2 ,

for |y| ≥ 1.

Now, we introduce the energy functional

E(t) =
1

2
||ut(t)||2 +

1

2
||∆xu(t)||2 +

1

p(ρ+ 1)
||u||p(ρ+1)

p . (2.2)

Multiplying (1.1) by ut and integrating over Ω, we get

d

dt
E(t) = −σ(t)||∇xu(t)||−2l

∫
Ω

g(ut)utdx ≤ 0. (2.3)

We denote C0 the best constant of Poincar’e inequality
∫
Ω
|u|2dx ≤ C0

∫
Ω
|∇xu|2dx.

Finally, we present the following lemma by Martinez [15] which plays important role in our proof.

Lemma 2.1 [8, 15] Let E : R+ → R+ be a non-increasing function and ϕ : R+ → R+ a strictly increasing function
of class C2 such that ϕ(0) = 0 and ϕ(t) → +∞ as t → +∞. Assume that there exist σ ≥ 0 and ω > 0 such that∫ +∞

S

Eσ+1(s)ϕ′(s)ds ≤ 1

ω
Eσ(0)E(S),∀S ≥ 0.

Then E has the following decay properties

E(t) ≤ E(0)exp(1− ωϕ(t)), ∀t ≥ 0, if σ = 0,

E(t) ≤ E(0)(
1 + σ

1 + ωσϕ(t)
)

1
σ , ∀t ≥ 0 if σ > 0.

3 Energy decay rate of solutions

In this section, we give our main result.

Theorem 3.1 Assume that (u0, u1) ∈ V × L2(Ω) and (A1)-(A4) hold, then there exists K > 0 such that the
solution energy of the problems (1.1)-(1.3) satisfies the following decay rates

E(t) ≤ C(E(0))exp(1−
∫ t

0

α(s)ds), ∀t ≥ 0, if m = 1,

E(t) ≤ (
C(E(0))∫ t

0
α(s)ds

)
2

m−1 , ∀t ≥ 0 if m > 1.

Proof Denote ϕ(t) =
∫ t

0
α(s)ds, then ϕ(t) ∈ C2(R+, R+) is a strictly increasing function such that ϕ(0) = 0 and

ϕ(t) → +∞ as t → +∞. Multiplying equation (1.1) by ϕ′(t)E(t)q(t)u(t) and integrating the equation over Ω× (S, T )
for 0 < S ≤ T < +∞, where q is a positive constant which will be specified later, we have

0 = [ϕ′(t)Eq

∫
Ω

uutdx]|TS −
∫ T

S

[ϕ′(t)qEq−1E′ + ϕ′′(t)Eq]

∫
Ω

uutdxdt

−
∫ T

S

ϕ′(t)Eq

∫
Ω

|ut|2dxdt+
∫ T

S

ϕ′(t)Eq

∫
Ω

|∆xu|2dxdt

+

∫ T

S

ϕ′(t)α(t)Eq

∫
Ω

u||∇xu||−2lg(ut)dxdt+

∫ T

S

ϕ′(t)Eq||u||pρp
∫
Ω

|u|pdxdt.
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Then, we deduce that

2

∫ T

S

ϕ′(t)Eq+1dt =

∫ T

S

ϕ′(t)Eq(||ut||2 + ||∆xu||2 +
2

p(ρ+ 1)
||u||p(ρ+1)

p )dt

= −[ϕ′(t)E(t)q
∫
Ω

uutdx]|TS + 2

∫ T

S

E(t)qϕ′(t)||ut||2dt

+

∫ T

S

[ϕ′(t)qE(t)q−1E′ + ϕ′′(t)E(t)q]

∫
Ω

uutdxdt

−
∫ T

S

ϕ′(t)α(t)E(t)q||∇xu||−2l

∫
Ω

ug(ut)dxdt−
p(ρ+ 1)− 2

p(ρ+ 1)

∫ T

S

ϕ′(t)E(t)q||u||p(ρ+1)
p dt

≤ −[ϕ′(t)E(t)q
∫
Ω

uutdx]|TS + 2

∫ T

S

E(t)qϕ′(t)||ut||2dt

+

∫ T

S

[ϕ′(t)qE(t)q−1E′ + ϕ′′(t)E(t)q]

∫
Ω

uutdxdt

−
∫ T

S

ϕ′(t)α(t)E(t)q||∇xu||−2l

∫
Ω

ug(ut)dxdt. (3.1)

Using Holder’s inequality, Poincare’s inequality, the fact that E(t) is non-increasing and non-negative function on R+

and ϕ′(t) is a bounded nonnegative function on R+ (and we denote by α0 its maximum), we have

| − ϕ′(t)[Eq

∫
Ω

uutdx]|TS | ≤ E(S)q[ϕ′(t)||u||||ut|||t=S + ϕ′(t)||u||||ut|||t=T ]

≤ α0E(S)q(E(T ) + E(S)) ≤ C1E(S)q+1, (3.2)

and

|
∫ T

S

[(ϕ′(t)qEq−1E′ + ϕ′′(t)Eq)

∫
Ω

uutdx]dt|

≤
∫ T

S

|(ϕ′(t)qEq−1E′ + ϕ′′(t)Eq)|(||u||2 + ||ut||2)dt

≤ C2

∫ T

S

Eq(−E′(t))dt+ C3

∫ T

S

Eq+1(−ϕ′′(t))dt

≤ C2E(S)q
∫ T

S

(−E′)dt+ C3E(S)q+1

∫ T

S

(−ϕ′′(t))dt ≤ C4E(S)q+1. (3.3)

Then, we conclude from (3.1), using the estimations (3.2) and (3.3), that

2

∫ T

S

ϕ′(t)Eq+1dt ≤ C5E(S)q+1 + 2

∫ T

S

ϕ′(t)E(t)q||ut||2dt

−
∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω

ug(ut)dxdt. (3.4)

Now, we denote
Ω1 = {x ∈ Ω, |ut| ≤ 1},Ω2 = {x ∈ Ω, |ut| ≥ 1},

then we have

2

∫ T

S

ϕ′(t)Eq||ut||2dt = 2

∫ T

S

ϕ′(t)Eq

∫
Ω1

|ut|2dxdt+ 2

∫ T

S

ϕ′(t)Eq

∫
Ω2

|ut|2dxdt, (3.5)

and ∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

ug(ut)dxdt

=

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

ug(ut)dxdt+

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω2

ug(ut)dxdt. (3.6)
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Using assumption (A3), Holder’s inequality and (2.3), we get

2

∫ T

S

ϕ′(t)Eq

∫
Ω1

|ut|2dxdt = 2

∫ T

S

ϕ′(t)Eq

∫
Ω1

u
2

m+1

t (um
t )

2
m+1 dxdt

≤ 2

∫ T

S

ϕ′(t)Eq

∫
Ω1

(utg(ut))
2

m+1 dxdt

≤ 2

∫ T

S

ϕ′(t)
m−1
m+1Eq||∇xu||

4l
m+1

∫
Ω

(α(t)||∇xu||−2lutg(ut))
2

m+1 dxdt

≤ 2

∫ T

S

ϕ′(t)
m−1
m+1Eq||∇xu||

4l
m+1 (−E′)

2
m+1 dt

≤ C6

∫ T

S

ϕ′(t)
m−1
m+1EqE

2l
m+1 (−E′)

2
m+1 dt

≤ C7ϵ
−m+1

2
1

∫ T

S

(−E′)dt+ C8ϵ
m+1
m−1

1

∫ T

S

ϕ′(t)Eq m+1
m−1+

2l
m−1 dt, (3.7)

and

2

∫ T

S

ϕ′(t)Eq

∫
Ω2

|ut|2dxdt ≤ 2

∫ T

S

ϕ′(t)Eq

∫
Ω2

utg(ut)dxdt

≤ C9

∫ T

S

Eq||∇xu||2lα(t)||∇xu||−2l

∫
Ω

utg(ut)dxdt

≤ C10

∫ T

S

Eq+l(−E′)dt. (3.8)

By the Holder’s inequality, the Sobolev embedding, the assumptions (A3) and (A4), and the expressions of E(t), we
get ∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

ug(ut)dxdt

≤
∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

ug(ut)dxdt

=

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

u(g(ut))
θ

θ+1 (g(ut))
1

θ+1 dxdt

≤ C11

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω1

u(g(ut)ut)
θ

θ+1 dxdt

≤ C12

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l||u||θ+1(

∫
Ω

g(ut)utdx)
θ

θ+1 dt

≤ C13

∫ T

S

ϕ′(t)α
1

θ+1 (t)Eq||∇xu||−2l||∇xu||1+
2lθ
θ+1 (

∫
Ω

α(t)||∇xu||−2lg(ut)utdx)
θ

θ+1 dt

≤ C14

∫ T

S

ϕ′(t)α
1

θ+1 (t)Eq||∇xu||−2l||∇xu||1+
2lθ
θ+1 (

∫
Ω

α(t)||∇xu||−2lg(ut)utdx)
θ

θ+1 dt

≤ C14

∫ T

S

ϕ′(t)α
1

θ+1 (t)EqE
θ+1−2l
2(θ+1) (−E′)

θ
θ+1 dt

≤ C15ϵ
− θ+1

θ
2

∫ T

S

(−E′)dt+ C16ϵ
θ+1
2

∫ T

S

Eq(1+θ)+ θ+1−2l
2 ϕ′(t)dt, (3.9)
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and ∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω2

ug(ut)dxdt

=

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω2

u(g(ut))
r

r+1 (g(ut))
1

r+1 dxdt

≤ C16

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l

∫
Ω2

u(g(ut)ut)
r

r+1 dxdt

≤ C17

∫ T

S

ϕ′(t)α(t)Eq||∇xu||−2l||u||r+1(

∫
Ω

g(ut)utdx)
r

r+1 dt

≤ C18

∫ T

S

ϕ′(t)α
1

r+1 (t)Eq||∇xu||−2l||∇xu||1+
2lr
r+1 (

∫
Ω

α(t)||∇xu||−2lg(ut)utdx)
r

r+1 dt

≤ C19

∫ T

S

ϕ′(t)α
1

r+1 (t)EqE
r+1−2l
2(r+1) (−E′)

r
r+1 dt

≤ C20ϵ
− r+1

r
3

∫ T

S

(−E′)dt+ C21ϵ
r+1
3

∫ T

S

Eq(r+1)+ r+1−2l
2 ϕ′(t)dt. (3.10)

Substituting the estimates (3.7)- (3.8) into (3.5) and the estimates (3.9)- (3.10) into (3.6), and then (3.4) can be
rewritten

2

∫ T

S

ϕ′(t)Eq+1dt ≤ C5E(S)q+1 + (C7ϵ
−m+1

2
1 + C15ϵ

− θ+1
θ

2 + C20ϵ
− r+1

r
3 )

∫ T

S

(−E′)dt

+ C8ϵ
m+1
m−1

1

∫ T

S

ϕ′(t)Eq m+1
m−1+

2l
m−1 dt+ C10

∫ T

S

Eq+l(−E′)dt

+ C16ϵ
θ+1
2

∫ T

S

Eq(1+θ)+ θ+1−2l
2 ϕ′(t)dt+ C21ϵ

r+1
3

∫ T

S

E(t)q(r+1)+ r+1−2l
2 ϕ′(t)dt. (3.11)

If r = θ = 1 + 2l, then we take q = 0 and choose ϵ1, ϵ2 and ϵ3 small enough, by the monotonicity of E(t), we deduce
from (3.11) that ∫ T

S

ϕ′(t)Edt ≤ C22E(S). (3.12)

If 0 < min{r, θ} < 1 + 2l, then we take q = min{ 1+2l−r
2r , 1+2l−θ

2θ } and choose ϵ1, ϵ2 and ϵ3 small enough, by the
monotonicity of E(t), we deduce from (3.11) that∫ T

S

ϕ′(t)Edt ≤ C23E(S). (3.13)

By (3.12) and (3.13), letting T → +∞, then, by Lemma 2.1, we get the result.

4 Conclusion

In this paper, we consider with the initial-boundary value problem for a plate equation with nonlocal source and
singular nonlocal damping terms. By using multiplier method and weighted integral inequalities, we give an explicit
energy decay estimates of the solutions when the damping term has a certain singular nonlinearity. The results of
this paper improves the earlier results. This method can also be applied to a system of plate equations with nonlocal
source and singular nonlocal damping terms.
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