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Abstract

Solitary waves are interesting phenomena arising in various fields of physics, chemistry, and biology. Nonlinear contin-
uous and discrete models supporting wave solutions of solitary behaviour have received increasing attention in recent
years. Some examples of such integrable systems include Korteweg de-Vries (KdV) equation, the nonlinear Schrödinger
(NLS) equation, and the Manakov system (MS). In this paper, we propose a discrete nonlocal version of the nonlinear
Manakov system which admits spatial and temporal PT-symmetry. PT-symmetry property gives relevance to various
fields in physics and has received a lot of attention in the studies of integrable nonlinear equations. In this work, the
time evolution of solitary and periodic wave solutions in the proposed system has been numerically investigated. Suit-
able initial conditions have been considered to construct bright and dark solitons. The variational iteration method
(VIM) was used to simulate the solution of the system. The error measurement of the simulation demonstrates the
efficiency of the numerical method in constructing the different types of wave solutions.

Keywords: integrable systems, PT-symmetry, solitons, nonlocal discrete Manakov system, approximate solution,
variational iteration method
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1 Introduction

Integrable nonlinear evolutionary equations play an important role in the field of mathematical physics, including
nonlinear wave propagation, plasma physics, Bose-Einstein condensates, nonlinear optics and ocean waves [56]. In
addition to the property of complete solvability, integrable systems exhibit another interesting mathematical feature
of having an infinite number of constants of motion according to the validity of an infinite number of conservation
laws [5]. A special class of solutions that might arise from such an integrable system is the solitary wave also called
a soliton. Solitons have been observed experimentally in many fields such as physics, chemistry and biology. The
solitary wave phenomena might be attributed to a special balance between wave steepening and other physical effects
such as dispersion and diffraction [5].

Integrable mathematical models are often local equations, which means that the development of the solution
depends only on the value of the local solution and its local spatial and temporal derivatives, for example, the
Korteweg de-Vries (KdV) equation, the Sine-Gordon (SG) equation, and the nonlinear Schrödinger (NLS) equation
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[28, 55]. However, many nonlocal integrable models have also been proposed and the investigation of the dynamics of
such nonlocal systems is an active topic of research [56].

A special class of local and nonlocal systems is when the dynamics of the solution are symmetric in time and
space, which is referred to as parity-time (PT)-symmetric. Integrable systems satisfying the PT-symmetry have both
physical and mathematical perspectives and have attracted considerable attention in recent years (see [9, 11, 15, 18,
22, 26, 27, 32, 37, 41, 42, 43, 48]).

An interesting example of integrable nonlocal systems is the nonlocal nonlinear Schrödinger (NNLS) equation
proposed by Ablowitz and Musslimani in the form [3]:

iQt (x, t) +Qxx (x, t) + 2σQ2 (x, t)Q∗ (−x, t) = 0, i =
√

(−1), σ = ±1 (1.1)

where Q (x, t) is a complex-valued function of the two real variables x and t, the symbol ∗ represents complex
conjugation. The case when (σ = 1) in equation (1.1) is called as focusing case, while the case (σ = −1) is referred to
as the defocusing case. The solution states at distant locations x and −x are directly coupled in this equation. The
nonlinear term in the NNLS equation represents a self-induced potential that can be written in the form W (x, t) =
Q (x, t)Q∗ (−x, t), which satisfies the PT-symmetry condition W (x, t) = W∗ (−x, t). This means that equation
(1.1) remains invariant under the replacements x → −x and t → −t after taking the complex conjugate [4]. This
gives relevance to the field of PT-symmetric quantum mechanics, PT-symmetric optics, and other applications of
PT-symmetric physics that are currently subject to much research activity [8, 14, 26].

A generalization of equation (1.1) is the two-component vector nonlocal nonlinear Schrödinger (VNNLS) equation,
also called the nonlocal Manakov system (NMS) [24, 45, 46, 47], which has the formula:

iQt (x, t) +Qxx (x, t) + 2σ [Q (x, t)Q∗ (−x, t) + P (x, t)P∗ (−x, t)]Q (x, t) = 0
iPt (x, t) + Pxx (x, t) + 2σ [Q (x, t)Q∗ (−x, t) + P (x, t)P∗ (−x, t)]P (x, t) = 0

, σ = ±1 (1.2)

where x is the spatial variable and t is the temporal variable and both are real. The two componentsQ (x, t) , P (x, t)
are two complex fields. The local Manakov system (MS) can be obtained by replacing the nonlocal fields Q∗ (−x, t) ,
P∗ (−x, t) by Q∗ (x, t) , P∗ (x, t), respectively [33]. The NMS possess self-induced potential W (x, t) = Q (x, t)
Q∗ (−x, t) + P (x, t)P∗ (−x, t) and obeys the PT-symmetry condition. A number of studies have been published on
the dynamics of solitons for the NMS [45, 49, 58, 59, 60]. In [45], the inverse scattering transform (IST) is used to
provide a breathing one-soliton solution.

In 2014, Ablowitz and Musslimani [4] also suggested a discrete version of the NNLS equation (1.1) as a system of
differential-difference equation given as:

iQn,t + (Qn+1 − 2Qn +Qn−1) + σQnQ∗
−n (Qn+1 +Qn−1) = 0, σ = ±1 (1.3)

where Qn is a complex function, here the index n is an integer representing the spatial variable on an infinite
discrete space lattice, while t is the time variable. This system is integrable and hence, can be treated using the
inverse scattering transform [4]. Sometimes equation (1.3) is also referred to as the integrable discrete nonlocal
nonlinear Schrödinger (IDNNLS) equation [2, 4, 30]. Some of the important properties of the IDNNLS equation are
contrasted with the integrable discrete nonlinear Schrödinger (IDNLS) equation in which the nonlocal nonlinear term

QnQ∗
−n is replaced by the local nonlinear term |Qn|2 [4]. The IDNNLS equation is also a discrete PT-symmetric

model [10], the nonlinear self-induced potential Wn = QnQ∗
−n guarantees that the equation is invariant under the

combined symmetry of parity and time as shown in classical optics [35].

Following the generalization of the NNLS equation (1.1) to the NMS (1.2) in the continuous case, we can suggest
a nonlocal discrete Manakov system (NDMS) as a coupled two-component IDNNLS equation of the form:

iQn,t + (Qn+1 − 2Qn +Qn−1) + σ
(
QnQ∗

−n + PnP∗
−n

)
(Qn+1 +Qn−1) = 0

iPn,t + (Pn+1 − 2Pn + Pn−1) + σ(QnQ∗
−n + PnP∗

−n) (Pn+1 + Pn−1) = 0
, σ = ±1 (1.4)

where Qn, Pn are two complex functions, n is an integer variable while t is a real variable. System (1.4) possess
self-induced potential Wn (t) = Qn (t)Q∗

−n(t) + Pn(t)P∗
−n(t) and it can be easily shown that Wn (t) = W∗

−n(t). This
means that the NDMS (1.4) remains invariant under the replacements n → −n and t → −t after taking the complex
conjugate which obeys the PT-symmetry condition.
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The solutions of the IDNNLS equation (1.3) has been explored in [4, 16, 21, 30, 31]. In this paper, we perform a
numerical simulation for the solutions of the NDMS (1.4) using the variational iteration method (VIM).

The paper is organized as follows; in section two we briefly describe the VIM. In section three, suitable initial
conditions are discussed to construct the solution of the NDMS via the iterative formula of the VIM. Section four
is a description of the measurement tool for the numerical error of the approximation. A detailed description of the
approximated solution for solitary and periodic wave solutions is presented in section five. The last section is a brief
summary and conclusion of our study.

2 The Method of Variational Iteration

In 1999, Ji-Huan He introduced the variational iteration method (VIM) [19] to treat general nonlinear systems.
Soon after, it has been widely utilized to solve ordinary and partial differential equations. The method has been
verified to be efficient in solving both linear and nonlinear equations [12, 50, 51]. Here we introduce the VIM method’s
general idea; consider a general nonlinear system:

L U (t) +N U (t) = F (t) (2.1)

Here, F (t) is an analytic function, while L and N are linear and nonlinear operators, respectively. A correcting
functional can be written as follows [6, 12, 29, 34, 36, 38, 39, 51, 57]:

Uk+1 (t) = Uk (t) +

∫ t

0

λ (τ)
[
L Uk (τ) +N Ũk (τ)−F (τ)

]
dτ (2.2)

where λ represents the Lagrange multiplier [38], which can be determined using variational theory. The index k

indicates to the kth iteration of the method, while Ũk specifies the constrained variation δŨk = 0. Let λ be the optimal
Lagrange multiplier and U0 be a function representing the initial condition, then the successive approximation Uk+1

for k ≥ 0 can be constructing according to the VIM as follows [34, 36]:

Uk+1 (t) = Uk (t) +

∫ t

0

λ (τ) [L Uk (τ) +N Uk (τ)−F (τ)] dτ (2.3)

3 Approximate Solutions

The behavior of the approximate solution is highly influenced by the selection of the initial condition. Here, a
number of initial conditions are selected to construct the approximate solution of the NDMS (1.4) based on the analysis
of similar integrable systems. The exact solutions of the NNLS equation are found in the references [5, 20, 21, 24, 31, 55].
The close form of a single soliton solution can be defined for the continuous NNLS equation (1.1) and if we consider
the shape of the soliton’s amplitude, then the soliton form can be generally described by the formula:

Q (x, t) = Aei(α1x+β1t+γ1)φ (α2x+ β2t+ γ2) (3.1)

where x and t are real variables, A , αj , βj , γj ( j = 1, 2 ) are real constants, A and φ describe, respectively,
the highest absolute value and the shape of the wave amplitude after some normalization. The exponential part is
related to the frequency and phase of the wave. Furthermore, the form of the single soliton solution for the continuous
nonlocal Manakov system (CNMS) (1.2) was also given in [17, 24, 45], and as above can also be described as follows:

Q (x, t) = A1e
i(α1x+β1t+γ1)φ (α2x+ β2t+ γ2)

P (x, t) = A2e
i(α1x+β1t+γ1)φ (α2x+ β2t+ γ2)

(3.2)

where x and t are real variables, αj , βj , γj ( j = 1, 2 ) are real parameters, and A1,A2 are the maximum
absolute values of the amplitudes. Moreover, a form of the single soliton solution for the discrete nonlocal NLS
equation (DNNLS) (1.3) has been given in [2, 16, 24, 25, 30], and can also be described in the formula:

Qn (t) = Aei(α1n+β1t+γ1)φ (α2n+ β2t+ γ2) (3.3)
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where n is an integer variable while t is a real variable, whereas, A , αj , βj , γj ( j = 1, 2 ) are as in (3.1).
Following from the formulas (3.1), (3.2) and (3.3), we select initial conditions for NDMS (1.4) in the form:

Qn (0) = A1e
i(α1n+γ1)φ (α2n+ γ2)

Pn (0) = A2e
i(α1n+γ1)φ (α2n+ γ2)

(3.4)

where n is an integer variable, Aj , αj , γj ( j = 1, 2 ) are the same as in (3.2), and φ is a function that describes
the initial shape of the wave. Regarding periodic and solitary wave solutions, we consider three cases. The first case
considers a constant function φ leading to periodic-wave solutions of constant amplitude. The second case considers φ
as a hyperbolic secant related to the bright-soliton solution with a fast decaying boundary. The last case considers φ
as a hyperbolic tangent leading to a dark-soliton solution with a non-zero constant boundary (see [7, 13, 40, 52, 53]).

Recall that the nonlocal discrete Manakov system NDMS considered here is written as:

iQn,t + (Qn+1 − 2Qn +Qn−1) + σ
(
QnQ∗

−n + PnP∗
−n

)
(Qn+1 +Qn−1) = 0

iPn,t + (Pn+1 − 2Pn + Pn−1) + σ(QnQ∗
−n + PnP∗

−n) (Pn+1 + Pn−1) = 0
(3.5)

Here, Q∗
−n ,P∗

−n are the nonlocal complex conjugates of Qn ,Pn, respectively. According to an equation of the
VIM, correction functionals for system (3.5) can be defined in the formula:

Qn,k+1(t) = Qn,k(t) +

∫ t

0

λ1(τ)

 i
dQn,k(τ)

dτ +
(
Q̃n+1,k(τ)− 2Q̃n,k(τ) + Q̃n−1,k(τ)

)
+σ

(
Q̃n,k(τ)Q̃∗

−n,k(τ) + P̃n,k(τ)P̃∗
−n,k(τ)

)(
Q̃n+1,k(τ) + Q̃n−1,k(τ)

)  dτ

Pn,k+1(t) = Pn,k(t) +

∫ t

0

λ2(τ)

 i
dPn,k(τ)

dτ +
(
P̃n+1,k(τ)− 2P̃n,k(τ) + P̃n−1,k(τ)

)
+σ

(
Q̃n,k(τ)Q̃∗

−n,k(τ) + P̃n,k(τ)P̃∗
−n,k(τ)

)(
P̃n+1,k(τ) + P̃n−1,k(τ)

)  dτ

(3.6)

where, λ1 and λ2 represents the general Lagrange multipliers. The stationary conditions of the correction func-
tionals in (3.6) are given by:

1 + iλ1 (τ) |τ=t = 0, λ̇1 (τ) |τ=t = 0

1 + iλ2 (τ) |τ=t = 0, λ̇2 (τ) |τ=t = 0
(3.7)

Hence, the Lagrange multipliers can be obtained to be:

λ1 (τ) = i
λ2 (τ) = i

(3.8)

The iterative formula for k ≥ 0 is induced by substituting (3.8) into (3.6) and getting:

Qn,k+1(t) = Qn,k(t) +

∫ t

0

λ1(τ)

[
i
dQn,k(τ)

dτ + (Qn+1,k(τ)− 2Qn,k(τ) +Qn−1,k(τ))

+σ
(
Qn,k(τ)Q∗

−n,k(τ) + Pn,k(τ)P∗
−n,k(τ)

)
(Qn+1,k(τ) +Qn−1,k(τ))

]
dτ

Pn,k+1(t) = Pn,k(t) +

∫ t

0

λ2(τ)

[
i
dPn,k(τ)

dτ + (Pn+1,k(τ)− 2Pn,k(τ) + Pn−1,k(τ))

+σ
(
Qn,k(τ)Q∗

−n,k(τ) + Pn,k(τ)P∗
−n,k(τ)

)
(Pn+1,k(τ) + Pn−1,k(τ))

]
dτ

(3.9)

Which will be used to construct the approximate solutions in section 5.

4 Error Measurement

This section is concerned with the least squares weighted function (LSWF) that will be used to measure the
numerical simulation’s error. Consider the non-homogeneous system:

Dz(x, t) = g(x, t) (4.1)
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where D denotes is a differential operator. Any exact solution z (x, t) defined on a real interval x ∈ I = [a, b] and
t ≥ 0 satisfies equation (4.1). Now, if we consider Z (x, t) as an approximate solution then equation (4.1) will not be
completely satisfied. The residual error R (x, t) created by the approximation at a given point (x, t) in the domain
can be given by:

R (x, t) = DZ (x, t)− g (x, t) (4.2)

The method of LSWF is used to calculate the total error induced by the residual of the approximate solution
Z (x, t) over the domain, (see [1, 23, 44, 54]). Over the discretized time range t = tl, ( l = 0, 1, . . . ,M), the LSWF
can be computed for each integer n as follows:

LSWF =

∑M
l=0 |R (n, tl)|2

M+ 1
(4.3)

The formula (4.3) will be used to measure and analyze the approximation error at each of the space lattice points.

5 Numerical Results

The approximate solution of the NDMS (3.5) obtained from the VIM is shown and discussed in this section. Bright-
soliton and dark-soliton in addition to the periodic-wave have been considered in the following three subsections.
MATLAB R2021a program was used to carry out the numerical computations and visualization.

5.1 Bright-Soliton Solutions

Here, we consider the focusing case σ = +1. To construct a bright-soliton solution of the NDMS, we select the
initial conditions in equations (3.4) to be in the form:

Qn (0) = A1e
i(α1n+γ1) sech (α2n+ γ2)

Pn (0) = A2e
i(α1n+γ1) sech (α2n+ γ2)

(5.1)

where, A1,A2 are scalar constants, and αj , γj ( j = 1, 2 ) are real constants. Hence, the approximate solutions
can be induced from the iterative formula (3.9) after substituting the initial condition (5.1) as follows:

Qn,0(t) = A1e
i(α1n+γ1) sech (α2n+ γ2)

Pn,0(t) = A2e
i(α1n+γ1) sech (α2n+ γ2)

Qn,1(t) = A1e
i(α1n+γ1) sech (α2n+ γ2) +A1tie

i(α1+α1n+γ1) sech (α2 + α2n+ γ2)

− 2A1tie
i(α1n+γ1) sech (α2n+ γ2) +A1tie

i(−α1+α1n+γ1) sech (−α2 + α2n+ γ2)

+ σti
[
A2

1e
2iα1n sech (α2n+ γ2) sech (−α2n+ γ2)

+A2
2e

2iα1n sech (α2n+ γ2) sech (−α2n+ γ2)
] [

A1e
i(α1+α1n+γ1) sech (α2 + α2n+ γ2)

+A1e
i(−α1+α1n+γ1) sech (−α2 + α2n+ γ2)

]
Pn,1(t) = A2e

i(α1n+γ1) sech (α2n+ γ2) +A2tie
i(α1+α1n+γ1) sech (α2 + α2n+ γ2)

− 2A2tie
i(α1n+γ1) sech (α2n+ γ2) +A2tie

i(−α1+α1n+γ1) sech (−α2 + α2n+ γ2)

+ σti
[
A2

1e
2iα1n sech (α2n+ γ2) sech (−α2n+ γ2)

+A2
2e

2iα1n sech (α2n+ γ2) sech (−α2n+ γ2)
] [

A2e
i(α1+α1n+γ1) sech (α2 + α2n+ γ2)

+A2e
i(−α1+α1n+γ1) sech (−α2 + α2n+ γ2)

]
Following the same procedure, higher iterations can lead to the approximate solution of higher accuracy.

Table 1 shows the error of the numerical solution measured using the LSWF for selected constants’ values. The
estimated error in the table demonstrates that the approximated solution calculated from the third iteration of the
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VIM is efficient in the time span t ∈ [0, 1]. The time evolution of the numerical bright-soliton wave solution is visualized
in Figure 1 and Figure 2. A slight shift in the solitary wave peak can be noticed in Figure 2 as a result of the time
progress.

Table 1: The absolute values of the approximate bright-soliton solution for the 3rd iteration at t = 1 and the
corresponding LSWF errors over 0 ≤ t ≤ 1, calculated for different values of n with the constants’ values A1 =
0.3, A2 = −0.1, α1 = α2 = 0.5 , γ1 = γ2 = 0 and σ = 1.

n |Qn,3 (t)| |Pn,3 (t)| E (Qn,3 (t)) E (Pn,3 (t))
-20 1.6464250e-05 5.4880834e-06 1.4501008e-14 1.6112230e-15
-15 2.0057554e-04 6.6858513e-05 2.1526301e-12 2.3918112e-13
-10 0.0024433 8.1441744e-04 3.4034045e-10 3.7815605e-11
-5 0.0292443 0.0097481 3.9776905e-06 4.4196560e-07
0 0.2719591 0.0906530 3.8372233e-05 4.2635816e-06
5 0.0818038 0.0272679 3.9626134e-06 4.4029036e-07
10 0.0066515 0.0022172 3.4033543e-10 3.7815046e-11
15 5.4599083e-04 1.8199695e-04 2.1526307e-12 2.3918118e-13
20 4.4817680e-05 1.4939227e-05 1.4501008e-14 1.6112230e-15

Figure 1: Absolute value of the approximate bright-soliton solution over the time period 0 ≤ t ≤ 1 and discrete lattice
−20 ≤ n ≤ 20, for the constants’ values: A1 = 0.3, A2 = −0.1, α1 = α2 = 0.5 , γ1 = γ2 = 0 and σ = 1.

Figure 2: Time-shots of the absolute value for the approximate bright-soliton solution at t = 0, 0.5 and 1, over
−20 ≤ n ≤ 20, with constants’ values: A1 = 0.3, A2 = −0.1, α1 = α2 = 0.5 , γ1 = γ2 = 0 and σ = 1.
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5.2 Dark-Soliton Solutions

Consider now the defocusing case σ = −1. To construct a dark-soliton solution of the NDMS, we select the initial
conditions in equations (3.4) to be in the form:

Qn (0) = A1e
i(α1n+γ1) tanh (α2n+ γ2)

Pn (0) = A2e
i(α1n+γ1) tanh (α2n+ γ2)

(5.2)

with the same constants’ values of the case of bright-soliton solution. The approximate solutions can be induced
from the iterative formula (3.9) after substituting the initial condition (5.2) as follows:

Qn,0(t) = A1e
i(α1n+γ1) tanh (α2n+ γ2)

Pn,0(t) = A2e
i(α1n+γ1) tanh (α2n+ γ2)

Qn,1(t) = A1e
i(α1n+γ1) tanh (α2n+ γ2) +A1tie

i(α1+α1n+γ1) tanh (α2 + α2n+ γ2)

− 2A1tie
i(α1n+γ1) tanh (α2n+ γ2) +A1tie

i(−α1+α1n+γ1) tanh (−α2 + α2n+ γ2)

+ σti
[
A2

1e
2iα1n tanh (α2n+ γ2) tanh (−α2n+ γ2)

+A2
2e

2iα1n tanh (α2n+ γ2) tanh (−α2n+ γ2)
] [

A1e
i(α1+α1n+γ1) tanh (α2 + α2n+ γ2)

+A1e
i(−α1+α1n+γ1) tanh (−α2 + α2n+ γ2)

]
Pn,1(t) = A2e

i(α1n+γ1) tanh (α2n+ γ2) +A2tie
i(α1+α1n+γ1) tanh (α2 + α2n+ γ2)

− 2A2tie
i(α1n+γ1) tanh (α2n+ γ2) +A2tie

i(−α1+α1n+γ1) tanh (−α2 + α2n+ γ2)

+ σti
[
A2

1e
2iα1n tanh (α2n+ γ2) tanh (−α2n+ γ2)

+A2
2e

2iα1n tanh (α2n+ γ2) tanh (−α2n+ γ2)
] [

A2e
i(α1+α1n+γ1) tanh (α2 + α2n+ γ2)

+A2e
i(−α1+α1n+γ1) tanh (−α2 + α2n+ γ2)

]
Following the same procedure, higher iterations can lead to the approximate solution of higher accuracy.

Table 2 shows the error of the numerical solution measured using the LSWF for selected constants’ values. The
estimated error in the table demonstrates that the approximated solution calculated from the third iteration of the
VIM is efficient in the time span t ∈ [0, 1]. The time evolution of the numerical dark-soliton wave solution is visualized
in Figure 3 and Figure 4. A slight shift in the solitary wave bottom can be noticed in Figure 4 as a result of the time
progress.

Table 2: The absolute values of the approximate dark-soliton solution for the 3rd iteration at t = 1 and the
corresponding LSWF errors over 0 ≤ t ≤ 1, calculated for different values of n with the constants’ values
A1 = 0.3, A2 = −0.1, α1 = α2 = 0.4, γ1 = γ2 = 0 and σ = −1.

n |Qn,3 (t)| |Pn,3 (t)| E (Qn,3 (t)) E (Pn,3 (t))
-20 0.2741852 0.0913951 7.5769094e-05 8.4187886e-06
-15 0.3018085 0.1006028 1.1530594e-05 1.2811771e-06
-10 0.3244254 0.1081418 4.8131533e-05 5.3479484e-06
-5 0.2654129 0.0884710 7.4597236e-05 8.2885808e-06
0 0.0823215 0.0274405 1.4968765e-04 1.6631961e-05
5 0.2851589 0.0950530 7.3969386e-05 8.2188208e-06
10 0.2729720 0.0909907 4.9776285e-05 5.5306987e-06
15 0.3328356 0.1109452 1.0034170e-05 1.1149077e-06
20 0.2880382 0.0960127 7.5137206e-05 8.3485784e-06
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Figure 3: Absolute value of the approximate dark-soliton solution over the time period 0 ≤ t ≤ 1 and discrete lattice
−20 ≤ n ≤ 20, for the constants’ values: A1 = 0.3, A2 = −0.1, α1 = α2 = 0.4, γ1 = γ2 = 0 and σ = −1.

Figure 4: Time-shots of the absolute value for the approximate dark-soliton solution at t = 0, 0.5 and 1, over
−20 ≤ n ≤ 20, with constants’ values: A1 = 0.3, A2 = −0.1, α1 = α2 = 0.4, γ1 = γ2 = 0 and σ = −1.

5.3 Periodic-Wave Solutions

Considering focusing case σ = +1, we can construct a periodic-wave solution of the NDMS by selecting initial
conditions with constant amplitude as follows:

Qn (0) = A1e
i(α1n+γ1)

Pn (0) = A2e
i(α1n+γ1)

(5.3)

where, A1,A2 are scalar constants, while a1 , γ1 are real constants. Then, the approximate solutions can be induced
from the iterative formula (3.9) after substituting the initial condition (5.3) as follows:

Qn,0(t) = A1e
i(α1n+γ1)

Pn,0(t) = A2e
i(α1n+γ1)

Qn,1(t) = A1e
i(α1n+γ1) +A1tie

i(α1+α1n+γ1) − 2A1tie
i(α1n+γ1) +A1tie

i(−α1+α1n+γ1)

+ σti
[
A2

1e
2iα1n +A2

2e
2iα1n

] [
A1e

i(α1+α1n+γ1) +A1e
i(−α1+α1n+γ1)

]
Pn,1(t) = A2e

i(α1n+γ1) +A2tie
i(α1+α1n+γ1) − 2A2tie

i(α1n+γ1) +A2tie
i(−α1+α1n+γ1)

+ σti
[
A2

1e
2iα1n +A2

2e
2iα1n

] [
A2e

i(α1+α1n+γ1) +A2e
i(−α1+α1n+γ1)

]
Following the same procedure, higher iterations can lead to the approximate solution of higher accuracy.
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Table 3. shows the error of the numerical solution measured using the LSWF for selected constants’ values. The
estimated error in the table demonstrates that the approximated solution is efficient in the time span t ∈ [0, 1]. The
time evolution of the numerical periodic wave solution is visualized in Figure 5 and Figure 6.

Table 3: The real part (Re) of the approximate periodic-wave solution for the 3rd iteration at t = 1 and the
corresponding LSWF errors over 0 ≤ t ≤ 1, calculated for different values of n with the constants’ values
A1 = 0.4, A2 = −0.3, α1 = 0.5 , γ1 = 0 and σ = 1.

n Re (Qn,3(t)) Re (Pn,3(t)) E (Re (Qn,3(t))) E (Re (Pn,3(t)))
-20 -0.2780198 0.2085149 1.9004996e-04 1.0690309e-04
-15 0.0128483 -0.0096362 1.7896421e-04 1.0066738e-04
-10 0.1865238 -0.1398929 7.4048927e-05 4.1652525e-05
-5 -0.3499268 0.2624451 1.9099512e-04 1.0743476e-04
0 0.4174657 -0.3130993 1.4841213e-04 8.3481827e-05
5 -0.2514621 0.1885965 1.8245350e-04 1.0263010e-04
10 -0.0114263 0.0085698 8.1624596e-05 4.5913832e-05
15 0.2044084 -0.1533063 1.7648627e-04 9.9273522e-05
20 -0.3641605 0.2731203 1.9852690e-04 1.1167138e-04

Figure 5: The real part of the approximate periodic-wave solution over the time period 0 ≤ t ≤ 1 and discrete lattice
−20 ≤ n ≤ 20, for the constants’ values: A1 = 0.4, A2 = −0.3, α1 = 0.5, γ1 = 0 and σ = 1.

Figure 6: Time-shots of the real part for the approximate periodic-wave solution at t = 0, 0.5 and 1, over−20 ≤ n ≤ 20,
with constants’ values: A1 = 0.4, A2 = −0.3, α1 = 0.5 , γ1 = 0 and σ = 1.
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6 Conclusion

In this work, a discrete version of the nonlocal Manakov system has been proposed and shown to satisfy the
PT-symmetry property which requires the invariance of the system under reversing time and position variables after
taking the complex conjugate. Three types of wave solutions have been simulated for the system using the variational
iteration method (VIM). By choosing appropriate initial conditions, the system shows to support bright and dark
solitons in addition to the periodic waves. The solitary waves translate over the space lattice as time progresses.
The error measurement of the simulation demonstrates the efficiency of the numerically computed time evolution of
the system in the explored range of time. Extending the time span can lead to increasing the simulation error due
to the fact that the approximated solutions constructed from the VIM are polynomials in the time variable. These
polynomials are unbounded with time; therefore, higher iteration is required to induce a good approximation of the
system solutions via the VIM technique.
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