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Abstract

Air traffic management is a sensitive and stressful job with various daily problems and obstacles. The aircraft landing
problem is one of the most important issues addressed currently in flight surveillance. This issue has several optimal
local points. Gradient-based algorithms cannot produce an optimal solution in a reasonable time to solve this problem.
Meta-heuristic algorithms are used to solve such problems. Since landing earlier or later than the scheduled time will
lead to higher costs for each aircraft, this article aims at minimizing the time deviation from the originally scheduled
landing time of each flight. The Gray Wolf Algorithm is a new meta-heuristic algorithm inspired by wolf behaviour.
However, it has a problem with global and local searches. To solve this problem, the fitness of each wolf is assigned
a weight and the new member is obtained using those weights. In addition, in order to increase the local and global
search capability of the algorithm, if a condition with a probability of 0.3 is met, a random search is performed around
the position of the best wolf. Otherwise, by setting a condition with a probability of 0.1, a global search is performed
as the mutation operator around a selected wolf. This improves the algorithm’s ability to search globally and locally.
In order to evaluate this algorithm in solving the problem, its result is compared with the algorithms of particle swarm
optimization, firefly and the common Gray Wolf. The results show a very high performance of this algorithm compared
to other similar algorithms.
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1 Introduction

Over the last few decades, aviation has grown exponentially. Therefore, the air traffic control and landing schedule
of each aircraft have become very important. Airport authorities need to be able to strike a balance between airline
satisfaction and passenger satisfaction in order to attract airlines, reduce costs, and increase revenue. The most
important goal of the ALP (Aircraft Landing Problem) is to minimize the early and late arrival times based on the
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predetermined time in the flight schedule. Because the early arrival or late arrival of any aircraft will lead to an
increase in costs of fuel and passenger dissatisfaction. In this problem, in addition to this goal, the order of landing
of aircraft should be considered according to the size and weight and observing the minimum separation distance
required to maintain flight safety. If these conditions are not met, there is a possibility of an accident for consecutive
aircraft. Therefore, proper scheduling of the landing of each aircraft is crucial. Aircraft scheduling management is an
NP-hard problem. Traditional gradient-based methods are not suitable for solving this problem due to falling in local
optimizations. Therefore, there is a need to use methods based on random and intelligent methods. So far, various
methods have been proposed in the research literature to solve this problem. In [25], a CPLEX method has been
introduced to solve the aircraft landing problem with respect to minimizing early and late arrival times. In [24] a
real-time scheduling method for landing aircraft based on cellular automation has been proposed. Salehipour et al. [17]
used the simulated annealing method to solve the aircraft landing problem. They solved this problem for 100 aircraft.
[28] provides an overview of computational techniques in the aviation landing problem in which the methods proposed
in the research literature include problem modelling, evolutionary algorithms, intelligent algorithms and other methods
for solving aircraft landing problem are presented. [8] reviews the research literature on the aircraft landing problem
and discusses the advantages and disadvantages of each method. Zheng et al. proposed a hybrid simulated annealing
and reduced variable neighbourhood (RVN) search to solve an aircraft scheduling and parking [27]. [7] considers a
two-stage stochastic programming approach for aircraft landing problems was considered for airport runway scheduling
under the uncertainty of arrival time on a single runway. The first stage determines the sequence of aircraft weight
class. In the second stage, the delay time of all aircraft was considered. To solve this problem, a sample average
approximation (SAA) algorithm is developed. In [10, 11, 12] a multi-objective genetic algorithm with non-dominated
sorting was used to solve the problem of aircraft landing problem. In these articles, in addition to minimizing aircraft
delays, other objectives were considered, including minimizing fuel costs and other costs due to early and late aircraft
arrival. In [21], the NSGA-II multi-objective optimization algorithm was used for aircraft arrival and departure
schedules on multiple runways. This article aims at minimizing the delay time of flights and idle time of the runways
considering also the relevant constraints. In [14], an optimal data-splitting algorithm was used for aircraft scheduling
on a single runway to maximize throughput. In [20], a novel heuristic approach called adaptive large neighbourhood
search was introduced to solve solving aircraft landing problems with a single runway. Genetic algorithms were used
to solve aircraft landing problems in [3, 19]. The Ant Colony algorithm was used to solve aircraft scheduling problems
in [1, 23]. Lee et al. [13] solved the problem of aircraft sequencing and scheduling problem under the uncertainty of
arrival and departure delays using a novel efficient artificial bee colony algorithm. In [26], Zhang et al. (2020) aim to
solve the aircraft landing problem (ALP) considered a multi-objective optimization problem. They used an Imperialist
Competitive Algorithm (ICA) to solve the ALP. In 2016, Benell et al. [2] presented the issue of dynamic scheduling
of aircraft landings. In [5], the researchers propose a heuristic approach based on optimistic planning to solve the
aircraft landing problem. model the ALP as an environment of states, actions, transitions and costs, then explore
the resulting search tree so as to identify a near-optimal sequence of actions within a limited time budget. They
investigate a baseline model based on linear regression, and two different machine learning (ML) models trained on a
large number of optimized solutions. These models can quickly and accurately estimate the cheapest-sequence cost,
which helps the search to identify a near-optimal branch more efficiently. The aircraft maintenance routing problem
was presented for each operational aircraft using a reinforcement learning-based algorithm in [16]. Evaluation of this
method showed that it could produce high-quality solutions in large and medium-scale aerial databases.

[22] proposes an optimization model for the integrated aircraft flight scheduling and routing problem, which allows
a simultaneous determination of the departure time of each flight trip and assignment of a set of aircraft located at
different airports to perform all flight trips. This model envisages that each flight trip is covered by its own particular
aircraft type or a larger aeroplane. In addition, departure and arrival times of each flight trip are within a flexible
time window in its aircraft’s route and origin/destination airports, and the number of aeroplanes firstly distributed in
the base airports is fully accounted for in the model. The model not only can effectively minimize weighted operation
costs for the number of aeroplanes and the total idle time for adjacent flight trips covered by an aircraft, but also can
maximize the number of transported passengers. This model has been able to obtain a feasible flight trip timetable.
The model is applied to a case study to design the integrated aircraft flight scheduling and routing plan for a real
airline in China.

In [4] dynamic feasible programming was proposed to optimize long-term aircraft maintenance programming. The
validation of this model was done based on a European database.

[15] studies a branch-and-bound embedded genetic algorithm for resource-constrained project scheduling problems
with a resource transfer time of aircraft moving assembly line. It aims to minimize the makespan of the project
while respecting precedence relations and resource constraints. Several experimental tests revealed that the proposed
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algorithm outperformed other existing algorithms in finding high-quality solutions. In [18] the maintenance task
scheduling problem for an aircraft fleet was studied with a hybrid simulation-optimization approach. the maintenance
tasks delegated to a shop should be scheduled in such a way that sufficient aircraft are available on time to meet the
demand of planned missions. A robust formulation has been proposed so that the duration of the maintenance task
is subject to unstructured uncertainty due to environmental and human factors. Experimental results confirmed the
satisfactory performance of the proposed method in the face of uncertain scenarios.

Considering the aforementioned material, various methods have been applied in the research to solve the aircraft
landing problem. Nevertheless, most of these articles have used small-scale data. In addition, no research has been done
on the aircraft landing problem (ALP) at Mashhad International Airport. This article considers the aircraft landing
problem (ALP) at this airport. This is a problem of deciding when to land each aircraft at the airport at a specific time
so that each aircraft lands within a predetermined time window and the landing conditions of each aircraft are set. To
maintain flight safety, each aircraft should have a minimum separation distance from its preceding aircraft. Based on
these conditions and circumstances, the goal is to minimize the earliest possible time for landing and the latest possible
time for landing. This goal can be considered as the absolute value of the difference between the predicted landing
time and the predetermined landing time and then it can be minimized using appropriate optimization methods. This
article considers the aircraft landing problem at Shahid Hasheminejad Airport in Mashhad. It should be noted that
in this article, a static mode is considered. This means that the results are obtained offline for a specific period.
Therefore, the goal is to optimize the landing schedule of each aircraft according to its size and weight so that there
is no time interference for aircraft landing. Since this is a complex problem, and improved Gray Wolf intelligent
optimization algorithm has been proposed to solve it.

2 Describing the Problem

From the moment the aircraft enters the airport radar range, the air traffic control tower must allocate a landing
time to increase airport efficiency and minimize delays. In this article, it is assumed that the airport is a single
runway. The allotted landing time is bounded by the earliest landing time and the latest landing time known as the
time window. The earliest possible time for each aircraft to land is considered, based on the maximum speed at which
each aircraft can fly at that speed, depending on its type. The latest possible time is determined by the amount of
fuel that allows the flight to be in the flight phase.

The assigned landing time will change depending on the flight path, size and speed of each aircraft, so the landing
time may be longer. To maintain flight safety, the time between the landing of a particular aircraft and the landing of
each subsequent aircraft must be greater than a specified minimum separation, which depends on the size and weight
of the aircraft involved. For example, an aircraft following a Boeing 747 (which is large in size and weight) requires a
greater minimum separation distance compared with the time when an aircraft is following an MD aircraft (which is
considered average in terms of aircraft size and weight). The reason for this is the wake turbulence that occurs behind
an aircraft due to the aerodynamic shape of the aircraft wings and the cracking of the air layers. This turbulence
leads to serious aerodynamic instability in a closely following aircraft. Therefore, this is the minimum separation time
required between flights to create and maintain flight safety.

The landing time of each aircraft is within the limits of a time window depending on the characteristics and
capabilities of the aircraft. When an aircraft can land directly, even after arriving at the airport, while flying at the
highest speed allowed, it is the earliest landing time. The latest landing time (upper range) is when an aircraft can
fly at the speed at the most effective fuel consumption level, and maintain that speed for as long as possible. Among
these goals, minimizing landing delays is of paramount importance.

In the aircraft landing problem, in the airport air traffic control space, a series of items such as separate schedules,
the latest possible landing time, the earliest possible landing time and the cost function are considered. To solve this
problem, considering the safe landing conditions of the aircraft, a cost function is introduced in which the goal is
to minimize the difference between the pre-determined time and the time predicted by the proposed algorithm. To
minimize this cost function, an improved Gray Wolf optimization algorithm is used.

2.1 Decision Variables

This section introduces the decision variables in aircraft landing problem (ALP). Decision variables in [10] have
been used to formulate the main equations of the problem.

SLTi: The landing time for each aircraft i predicted by trajectory synchronizer equipment after entering the
aircraft into the radar range. This time is obtained by the proposed Gray Wolf algorithm.
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ELTi: The expected (or target) landing time of aircraft i, based on the assigned time slot which is normally
specified in flight plan, considering the type of aircraft.

TELTi: Aircraft type i in size category based on three different types of aircraft in small, medium and large.

∆ij : The minimum time separation between aircraft i and j, if aircraft i land before aircraft j.

eai: The allowed earliness for aircraft i to land before ELTi, from the moment the wheels touch the ground to
reach the parking lot (including moving along taxiways).

dai: The allowed lateness for aircraft i to land after ELTi, from the moment the wheels touch the ground to reach
the parking lot (including moving along taxiways).

Ei: Aircraft earliness, meaning how much earlier than the predetermined time the aircraft has landed. If it is zero,
it means that the aircraft landed later than the preset time. It can be calculated by the following formula:

Ej = max(ELTi − SLTj , 0)

Tj : Aircraft lateness, meaning how much later the aircraft has landed. If it is zero, it means that the aircraft
landed earlier than the preset time. This variable is calculated as follows:

Tj = max(SLTi − ELTj , 0)

Xij : If aircraft i land before aircraft j, this value is 1, and if aircraft i land after aircraft j, this value will be zero.

2.2 Cost function

As mentioned, the goal is to assign a landing schedule for each aircraft so that the objective function of this problem
is minimized in the face of given conditions. The constraints of this problem are considered according to the earliest
possible time and the latest possible time for landing. Optimization of the absolute value between the predicted
landing time and the predetermined time and consideration of the mentioned conditions may help solve the problem.
By minimizing this objective according to paper [10], we will also achieve the goal of minimizing the earliness and
lateness of aircraft. As a result, additional fuel costs and other costs (such as parking costs) incurred by aircraft late
arrival or early arrival are reduced. According to the above explanations, the cost function can be defined as follows:

min

n∑
i=1

|SLTi − ELTi| (2.1)

where n is the number of aircrafts whose landing scheduling is determined by this cost function. There are several
operational restrictions on ALP. Considering the real world, the most practical ones for use in a band are mentioned.
In general, all scheduled landing times (SLT) should be determined and calculated based on the following restrictions.

� Runway Use Restrictions: Each runway can be used by only one aircraft at the same time. Thus, aircraft i land
before aircraft j or vice versa.

Xij +Xji = 1, ∀ij = 1, 2, ..., n (2.2)

In this relation, if aircraft i land before j, Xij = 1, Xji = 0, and if aircraft j land before i, then: Xij = 0, Xji = 1.

This condition implies that under no circumstances will a specific landing time be allotted to two aircraft. In
the event of such a problem, the program re-calculates another time for the aircraft to land until this condition
is met.

� Guarantee limit for minimum separation distance: An aircraft following another aircraft should be in a safe
distance from the other aircraft to avoid wake turbulence created by the aircraft ahead of it.

(SLTi − SLTj) ≥ ∆ij (2.3)

Here, SLTi is the predicted landing time for the ith aircraft and SLTj is the expected landing time for the
jth aircraft. The expression ∆ij indicates the minimum separation required for a safe landing between aircraft
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i and j. This condition depends on the size and weight of the aircraft i and j. Given these constraints and
formulations mentioned above, the aircraft landing problem is considered an NP-hard optimization problem, so
the complexity of this problem, makes finding the optimal solution difficult, even for medium-sized samples. In
addition, it is very important to have a flexible schedule based on an acceptable time.

There are two states with regard to the problem. A static case in which the number of aircraft, the constraints
and the corresponding time must be predefined in the table. In the latter case, which is dynamic, the rules of
updating are constantly applied and it is possible to manage a new aircraft outside the schedule. Different cost
functions related to these two cases can be applied. In this article, the static case is considered. It is also assumed
that there is one flight path. The following is a description of the scheduling structure using the improved Gray
Wolf algorithm.

2.3 Scheduling structure

The proposed approach tries to provide the optimal schedule using the improved Gray Wolf optimization algorithm.
Scheduling by the Gray Wolf algorithm requires a structure to provide scheduling. This structure is the basis of all
calculations performed in this algorithm. Therefore, first, the structure is introduced. To schedule, a set containing n
aircraft with an array of length n is used, where the contents of each cell will be a number that is the landing time of
aircraft i. To clarify, assume that a set of 10 aircraft is available for scheduling. A schedule for this data set can be
shown as Table 1.

Table 1: An example of ten aircraft scheduling

1 10.12
2 10.21
3 10.30
4 10.18
5 10.24
6 10.37
7 10.40
8 10.33
9 10.50
10 10.45

For example, in this landing table, the aircraft number 7 is scheduled for 10.40. Obviously, this structure can help
to create different schedules.

3 Scheduling with improved Gray Wolf algorithm

In the proposed method, the improved gray wolf algorithm is used for scheduling. The Gray wolf algorithm (GWO)
is a meta-heuristic algorithm inspired by the hierarchical structure and social behavior of wolves while hunting. This
algorithm is population-based, has a simple configuration process, and can easily be generalized to large-scale problems
[9]. The Gray Wolf algorithm was introduced by Mirjalili et al [9], in 2014. According to the results obtained in [9],
this algorithm has shown more exploitation ability compared to differential evolution (DE) algorithm and particle
swarm optimization (PSO) algorithm. The results also showed better performance in high local optima avoidance in
both constrained and non- constrained problems. Therefore, in this research, this algorithm has been considered.

3.1 Hierarchical structure and social behavior of gray wolves

Gray wolves are at the top of the food chain and have a social life. Grey wolves prefer to live in a pack whose size
is 5-12 on average. There are 4 main ranks in each pack, modeled as a pyramidal structure as shown in Figure 1:

1. Leader wolves are called alpha group, and they can be male or female. These wolves dominate the pack and
manage items such as resting places or hunting grounds.
In addition to the dominant behavior of alpha wolves, a kind of democratic structure is also seen in the group.

2. Beta wolves assist alpha wolves in the decision-making process and are also prone to being selected in their place.

3. Delta wolves: Lower than beta wolves and include old wolves, predators and baby wolves.
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Figure 1: Hierarchy of grey wolf (dominance decreases from top down).

4. Omega wolves: The lowest rank in the hierarchical structure has the least rights over the rest of the group. After
all, they eat and do not participate in the decision-making process.

The main phases of gray wolf hunting are as follows:

1. Tracking, chasing, and approaching the prey

2. Pursuing, encircling, and harassing the prey until it stops moving

3. Attack towards the prey

In this research, the hierarchical structure and social behavior of wolves during the hunting process are mathemat-
ically modeled and used to design an algorithm for optimization.

A. Hierarchical structure modeling (power pyramid)

Optimization is done using alpha, beta and delta wolves. A wolf, alpha, is assumed to be the main leader of the
algorithm, and a wolf, beta, and another one, delta, also participate in hunting. The other wolves are considered their
followers.

B. Modeling the process of encircling the prey

The following two modeling equations are used:

D = |CXp(t)−X(t)| , C = c1r2 (3.1)

where A, C are coefficient vectors, Xp is the spatial position vector of the prey, and X is the spatial position vector
of each wolf, and t indicates the current iteration.

X(t+ 1) = Xp(t)−AD, A = 2a(t)r1 − a(t) (3.2)

Where components of a decrease linearly from 2 to 0 over the course of iterations and r1, r2 are random vectors
in the range [0,1].

C. Modeling the process of hunting

Grey wolves have the ability to estimate the location of prey. For mathematical modeling, this process is performed
as follows:

In the initial search, we have no idea about the location of the prey. We suppose that the alpha, beta and delta
have better first-hand knowledge about the potential location of prey (optimum). The position of these three best
candidate solutions is determined using the following formulas:

Dα = |C1Xα(t)−X(t)| , X1 = Xα −A1Dα; (3.3)
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Dβ = |C2Xβ(t)−X(t)| , X2 = Xβ −A2Dβ ; (3.4)

Dδ = |C3Xδ(t)−X(t)| , X3 = Xδ −A3Dδ; (3.5)

X(t+ 1) =
X1 +X2 +X3

3
(3.6)

D. Modeling the process of attacking

Once the prey is surrounded by wolves and stops moving, the attack begins led by Alpha Wolf. In order to
mathematically model attacking the prey we decrease the value of vector a. Since A is a random vector in the interval
[−2a, 2a], if a decreases, the coefficient vector A also decreases.

If |A| < 1, the alpha wolf will approach the prey (and the rest of the wolves) and if |A| > 1 the alpha wolf will
move away from the prey (and the rest of the wolves).

The GWO algorithm obliges all wolves to update their position according to the position of alpha, beta and delta
wolves.

E. Searching (exploring) for the prey

The search process is exactly the opposite of the attack process, that is, while searching, wolves move away from
each other to search for prey (|A| > 1), but after tracking the prey, in the attack phase, the wolves approach each
other to attack prey. (|A| < 1). This process is called divergence when searching and convergence when attacking.

The role of C Vector: The C vector is considered as the effect of obstacles in nature that slow down wolves to
approach prey. C Vector provides random weights for prey and makes it more inaccessible to wolves. This vector,
unlike a, does not decrease linearly from 2 to 0.

To sum up, the algorithm can be summarized as follows:

1. The fitness of all the solutions is calculated and the top three solutions are selected as alpha, beta and delta
until the end of the algorithm.

2. In each iteration, the top three solutions (alpha, beta, and delta wolves) are able to estimate the location of
prey, and this is done using equation (3.6) in each iteration.

3. In each iteration, after determining the position of alpha, beta and delta wolves, the rest of the solutions,
following these wolves, update their position.

4. In each iteration the vectors a (and consequently A) and C are updated.

5. At the end of the iterations, the position of the alpha wolf is considered as the optimal point.

4 Improved gray wolf algorithm

In [6], a modified gray wolf algorithm for multilevel thresholding is proposed in which the new position of wolves
in Equation (3.6) is calculated by weighting coefficients in Equation (4.1);

X⃗(t+ 1) = w1 · X⃗1 + w2 · X⃗2 + w3 · X⃗3 (4.1)

where w1, w2, w3 are the corresponding weights that are calculated by the following equations:

w1 =
f1
F
, w2 =

f2
F
, w3 =

f3
F

(4.2)

where f1, f2, f3 represent the value of the objective function of the problem. F = f1 + f2 + f3. In this study,
the main modification to GWO is the application of weighting coefficients (4.2) to the equation of updating search
agents. Since for each wolf a different fitness function is obtained, placing the weight as equation (4.2) will increase
the accuracy and precision of the algorithm.

In order to improve the global and local search of the algorithm, a series of random searches around the position
obtained from all three alpha, beta and delta wolves are performed according to Equation (4.1), that is, a random
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number is considered, if this number is greater than 0.4, equation (4.1) is executed, and if this number is between 0.1
and 0.4, the following equation is executed:

X⃗(t+ 1) = w1 · X⃗1 + w2 · X⃗2 + w3 · X⃗3 + (2randi(5)− 5) (4.3)

In Equation (4.3), an integer from one to 5 is calculated using the randi command. As a result, we will have a
number between −3 and 5 in parentheses.

Otherwise, if it is less than 0.1, Equation (13) is applied.

X⃗(t+ 1) = w1 · X⃗1 + w2 · X⃗2 + w3 · X⃗3 + (a)randn(1, nV ar) (4.4)

Here, randn is a random expression added to the new position and controlled by the algorithm search coefficient
a. When a is large, the focus is on global search, and when a is small, the focus is on local search. The performance
of this algorithm in air traffic flow management will be examined.

5 Discussion and conclusion

To conduct the experiments, the data set collected on the flights of Shahid Hasheminejad Airport in Mashhad
was used. Experiments on real data sets related to time flights from 3/5/2018 to 3/7/2018 are included. This data
set includes flight date, aircraft ID, origin, destination, flight register, aircraft type, flight altitude, aircraft size, flight
path, scheduled landing time, flight speed and so on. The size of this data is 4368. From this data set, data including
flight date, aircraft type, and scheduled landing time are required to be used in the aircraft landing problem.

Evaluations are made using the improved gray wolf algorithm on the cost function (1). To carry out the evaluations,
first 10% of the data is considered and for this amount of data, the results are obtained by methods of improved gray
wolf (IGWO), common gray wolf (GWO), particle swarm (PSO), and the firefly algorithm (FA). After recording the
results of the evaluation of each method, 20% of the data set is considered for evaluation and this time all four methods
for this amount of data are examined and the results are recorded.

This procedure continued until 100% of the data set was evaluated. All algorithms are run 20 times and the results
for the mean, best and worst cost function found are stored. The comparative results of the algorithms for different
data are shown in Table 2 and Figure 2.

Table 2: Comparative results of the cost function value obtained between IGWO, GWO, PSO, FA algorithms after 20 runs

Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IGWO
The best 1002 2007 3137 4074 5137 6107 7103 8255 9180 10325
Mean 1061 2085 3188 4143 5262 6211 7240 8265 9300 10372

The worst 1085 2142 3260 4238 5392 6345 7401 8301 9399 10412

GWO
The best 1415 2706 4127 5259 6873 8297 8796 10986 12204 13606
Mean 1422 2754 4203 5531 6968 8470 9766 11058 12437 13843

The worst 1451 2807 4300 5733 7084 8617 9902 11170 12661 13964

PSO
The best 1873 3748 5802 7382 9320 11191 13075 14737 16986 18708
Mean 1985 3839 5791 7540 9476 11391 13203 14881 17068 18824

The worst 2101 3931 5892 7672 9690 11429 13444 15078 17251 19031

FA
The best 1233 2614 3887 5146 6434 7633 8935 10238 11555 12849
Mean 1287 2645 3948 5212 6562 7725 9093 10300 11636 12924

The worst 1313 2681 3994 5312 6679 7849 9146 10335 11674 13082

The corresponding numbers in Table 2 indicate the time difference between the time predicted by different algo-
rithms and the time predefined in the schedule. According to Table 2, it can be seen that the proposed improved
gray wolf algorithm (IGWO), which has the best, Mean and worst cost function in 20 times of program running, has
achieved better results than other algorithms. For example, in the case of 10% of the data, the best value function of
cost obtained from the IGWO algorithm is 1061, which is a better result, compared to the GWO algorithm, with a
numeric value of 1415, PSO algorithm with a numeric value of 1873, and FA algorithm with a numeric value of 1287.
Moreover, in the case of 100% of the data, the proposed IGWO algorithm has a numerical value of 10372 in terms
of the Mean of best cost function in 20 times, which is a lower value compared to GWO algorithm, with a numerical
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value equal to 13843, PSO algorithm with a numerical value equal to 18824, and FA algorithm with a numerical value
equal to 12924.

Overall, it can be seen that all the numbers related to the value of the cost function obtained from the improved
Gray Wolf algorithm are lower than the other algorithms. Therefore, the high efficiency and performance of this
algorithm in solving the problem of flight scheduling is confirmed. Figure 2 shows a comparison curve for the Mean
cost function obtained from the algorithms for 100% of the data.

Figure 2: Mean curve of cost function in terms of data size using IGWO, GWO, PSO, FA algorithms

Figure 2 shows the points representing the Mean of the best cost found in terms of data size. For example, the point
[3 0.6] with a circle shape in this curve is related to the PSO optimization algorithm, that is, the value 5791 for this
algorithm which is obtained from Table 2. The star shaped points are related to the IGWO algorithm. Point shaped,
square shaped, and circle shaped points correspond to the FA, GWO, and PSO optimization algorithms, respectively.
For all the different data sizes, the proposed algorithm was able to obtain smaller values compared to point, square,
and circle points. According to Table 2, it can be seen that in general, the proposed improved Gray Wolf (IGWO)
algorithm has performed better in terms of the Mean cost function. Among other algorithms, the performance of the
firefly (FA) algorithm is better than the other two algorithms, but the running speed of this algorithm is low. Overall,
based on the results, it is concluded that the proposed improved Gray Wolf algorithm has performed better in terms
of cost function minimization in all cases related to different data sizes compared to other algorithms.

6 Conclusion and suggestions

In this article, an approach was presented to solve the aircraft landing problem (ALP) related to the real data
set of Shahid Hasheminejad Airport in Mashhad using an improved Gray Wolf algorithm. The proposed improved
Gray Wolf algorithm is designed to be able to schedule flights in such a way as to achieve the goal of minimizing the
difference between the predicted and scheduled time, taking into account the problem conditions. In order to increase
the efficiency of the algorithm, a mutation operator and a random search were performed around the best wolf. In
order to improve this algorithm, based on the amount of fitness obtained for each type of alpha, beta and delta wolves,
a weight was assigned to them and then a new position was obtained based on this weighting. Simulations were
performed on 10 percent to 100 percent of the data. In order to evaluate the performance of the proposed method,
the results were compared using particle swarm optimization, common Gray Wolf and firefly algorithms. The results
showed that the proposed algorithm had significant performance and efficiency compared to other similar algorithms.
As a suggestion, in future work, the proposed algorithm can be used in applications similar to the aircraft landing
problem.
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