Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2931-2937

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2022.27803.3719

A nilpotency criterion for finite groups by the sum of element orders

Maghsoud Jahani^a, Yadollah Marefat^{a,*}, Hasan Refaghat^b, Bahram Vakili Fasaghandisi^a

(Communicated by Ehsan Kozegar)

Abstract

Let G be a finite group and $\psi(G) = \sum_{g \in G} o(g)$, where o(g) denotes the order of $g \in G$. We give a criterion for nilpotency of finite groups G based on the sum of element orders of G. We prove that if $\psi(G) > \frac{13}{21}\psi(C_n)$ then G is a nilpotent group.

Keywords: Finite group, element orders sum, nilpotent group, simple group

2020 MSC: 20D10, 20D05

1 Introduction

In this article, all groups are finite. If G is a group of order n, then $\psi(G)$ denotes the sum of orders of all elements of G. More generally, if X is a subset of G, then $\psi(X)$ denotes the sum of the orders of all elements of X. Moreover, the cyclic group of order n is denoted by C_n .

In 2009, Amiri, Jafarian and Isaacs proved that, If G is a non-cyclic group of order n, then $\psi(G) < \psi(C_n)$ (see [3]). Thus C_n can be characterized by the order n and the value ψ . Following this publication, in several paper it is proved that certain classes of finite groups G can be characterized using the $\psi(G)$ (see [1, 2, 7, 8, 9, 12, 13, 14, 15]).

Second maximum value of ψ for groups of order n was discussed in several papers, for example [10, 11] and [16]. In [5], an exact upper bound for the ψ value in non-cyclic finite groups is given.

Theorem 1.1. [5] If G is a non-cyclic group of order n, then

$$\psi(G) \le \frac{7}{11} \psi(C_n).$$

Moreover, the equality holds if n = 4k and (k, 2) = 1, and $G = (C_2 \times C_2) \times C_2$.

In [6], the authors give two new criteria for solvability of finite groups and put forward a conjecture.

Email addresses: ma.jahani@iau.ac.ir (Maghsoud Jahani), marefat@iaushab.ac.ir/ marefat@email.com (Yadollah Marefat), h.refaghat@iaut.ac.ir (Hasan Refaghat), bvakil@iaushab.ac.ir (Bahram Vakili Fasaghandisi)

Received: May 2022 Accepted: July 2022

^aDepartment of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran

^bDepartment of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

^{*}Corresponding author

Theorem 1.2. [6] If G is a finite group of order n and

$$\psi(G) > \frac{1}{6.68}\psi(C_n),$$

then G is solvable.

Conjecture 1.3. [6] If G is a group of order n, and

$$\psi(G) > \frac{211}{1617} \psi(C_n),$$

then G is solvable.

In [4], the authors proved this conjecture. The aim of this paper is to prove the following criteria for nilpotency of finite groups.

Theorem 1.4. If G is a finite group of order n and

$$\psi(G) > \frac{13}{21}\psi(C_n),$$

then G is a nilpotent group.

2 Basic preliminary results

Lemma 2.1. [3] Let $P \in Syl_p(G)$ and assume that $P \subseteq G$ also P is cyclic. Then

$$\psi(G) \le \psi(P)\psi(G/P).$$

Moreover, $\psi(G) = \psi(G/P)\psi(P)$ if and only if P is central in G.

Proposition 2.2. [1] If G and H are finite groups. then

$$\psi(G \times H) \le \psi(G)\psi(H),$$

with equality if and only if gcd(|H|, |G|) = 1.

Lemma 2.3. [4] Let G be a finite group of order $n = \prod_{i=1}^k p_i^{\alpha_i}$, where p_1, p_2, \ldots, p_k are distinct primes. Let $\frac{r}{s}\psi(C_n) < \psi(G)$, for some integers r, s. Then there exists a cyclic subgroup $\langle x \rangle$ such that:

$$[G:\langle x\rangle] < \frac{s}{r} \cdot \frac{p_1+1}{p_1} \dots \frac{p_k+1}{p_k}$$

Proposition 2.4. [5] Let $p_1 < p_2 < \ldots < p_t = p$ be prime divisors of n and denote the corresponding Sylow subgroups of C_n by P_1, P_2, \ldots, P_t . Then

$$\psi(C_n) = \prod_{i=1}^t \psi(P_i) \ge \frac{2}{p+1} n^2.$$

Proposition 2.5. Let G be a finite group and suppose that there exists $x \in G$ such that $[G : \langle x \rangle] < p$, where p is the largest prime divisor of |G|. Then G has a normal cyclic Sylow p-subgroup.

Proof. Since $[G:\langle x\rangle]< p$, thus $\langle x\rangle$ contains a cyclic Sylow p-subgroup P of G. Since $\langle x\rangle\leq N_G(P)$, we have $|G:N_G(P)|< p$. It follows that $N_G(P)=G$. \square

Lemma 2.6. [5] Let G be a finite group of order n satisfying $G = P \rtimes F$, where P is a cyclic p-group for some prime p, |F| > 1 and gcd(p, |F|) = 1. Then the following statements hold:

- 1. Each element of F acts on P trivially or fixed-point-freely.
- 2. If $x \in F$, o(x) = m and $u \in P$, then m is the least positive integer satisfying $(ux)^m \in P$.
- 3. If $u \in P$ and $x \in C_F(P)$, then o(ux) = o(u)o(x).
- 4. If $u \in P$ and $x \in F \setminus C_F(P)$, then o(ux) = o(x).
- 5. Let $Z = C_F(P)$. Then

$$\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F).$$

Theorem 2.7. [5] If $H \leq C_n$, then $\psi(H) \leq \frac{\psi(C_n)}{3}$, if n is odd, then $\psi(H) \leq \frac{\psi(C_n)}{7}$.

Lemma 2.8. Let G be a group of order n satisfying $G = P \rtimes F$, where P is a cyclic p-group, p > 3 is the largest prime divisor of |G|, and F is a nilpotent subgroup of G. If G is not nilpotent, then

$$\psi(G) \le \frac{13}{21} \psi(C_n).$$

Proof. Notice that n=|P||F| and $\gcd(|P|,|F|)=1$. Hence $\psi(C_n)=\psi(P)\psi(C_{|F|})$. If F is a cyclic subgroup of G then $\psi(P)\psi(F)=\psi(C_n)$, otherwise $\psi(P)\psi(F)\leq \psi(P)\left(\frac{7}{11}\psi(C_{|F|})\right)\leq \frac{7}{11}\psi(C_n)$, by Theorem 1.1. We suppose that $C_F(P)=Z$. We have Z< F. First suppose that F is a cyclic subgroup of G, then by Lemma 2.6(5), we have

$$\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F) = \psi(P)\psi(F) \left(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}\right) = \psi(C_n) \left(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)}\right).$$

Notice that P is a cyclic p-subgroup and $p \geq 5$, hence

$$\frac{|P|}{\psi(P)} = \frac{|P|(p+1)}{p|P|^2+1} \leq \frac{p+1}{p^2} = \frac{1}{p} + \frac{1}{p^2} \leq \frac{6}{25} \leq \frac{1}{4}.$$

If F is cyclic, then $\frac{\psi(Z)}{\psi(F)} \leq \frac{1}{3}$, by Theorem 2.7. Therefore

$$\psi(G) \le \psi(C_n) \left(\frac{1}{3} + \frac{1}{4}\right) \le \frac{7}{12} \psi(C_n) < \frac{13}{21} \psi(C_n).$$

Now, we assume that F is not cyclic. Then Lemma 2.6(5) implies that

$$\begin{split} \psi(G) &= \psi(P)\psi(Z) + |P|\psi(F \setminus Z) < \psi(P)\psi(Z) + |P|\psi(F) \\ &\leq \psi(P)\psi(C_{|Z|}) + |P| \left(\frac{7}{11}\psi(C_{|F|})\right) \\ \psi(P)\psi(C_{|F|}) \left(\frac{\psi(C_{|Z|})}{\psi(C_{|F|})} + \frac{7}{11}\frac{|P|}{\psi(P)}\right) \\ &= \psi(C_n) \left(\frac{\psi(C_{|Z|})}{\psi(C_{|F|})} + \frac{7}{11}\frac{|P|}{\psi(P)}\right). \end{split}$$

Similarly,

$$\frac{\psi(C_{|Z|})}{\psi(C_{|F|})} \leq \frac{1}{3} \quad \text{ and } \quad \frac{|P|}{\psi(P)} \leq \frac{1}{4},$$

which implies that

$$\psi(G) \le \left(\frac{1}{3} + \frac{1}{4} \cdot \frac{7}{11}\right) \psi(C_n) < \frac{13}{21} \psi(C_n).$$

Theorem 2.9. [7] Let G be a finite group and p be the largest prime divisor of |G|. Suppose that G contains a cyclic subgroup X of index p. Then $G = P \rtimes K$, where P is the Sylow p-subgroup of G and $K \leq X$. Moreover, one of the following holds:

- 1. G is nilpotent,
- 2. P is cyclic,
- 3. $G = (\langle a \rangle \times \langle b \rangle) \times \langle y \rangle$, where $|a| = p^{n-1}$ for some integer $n \ge 2$, |b| = p, (|y|, p) = 1, $a^y = a$ and $b^y = b^r$ for some integer which is not congruent to 1 modulo p.

Theorem 2.10. [7] Let G be a non-cyclic group of order n = 2m, with m odd integer. Then

$$\psi(G) \le \frac{13}{21} \psi(C_n)$$

with equality if and only if $G = S_3 \times C_{\frac{n}{6}}$, where $n = 6m_1$, with $(m_1, 6) = 1$ and S_3 is the symmetric group on three letters.

Theorem 2.11. [7] Let $G = (\langle x \rangle \times \langle b \rangle) \times \langle y \rangle$, where p is an odd prime number, $K = \langle y \rangle, P = \langle x \rangle \times \langle b \rangle, |x| = p^{n-1}$ for some integer $n \geq 2$, |b| = p, (|y|, p) = 1, $x^y = x$ and $b^y = b^r$ for some integer which is not congruent to 1 modulo p. Then

$$\psi(G) = (p-1)^2 \psi(Z) + p\psi(\langle x \rangle)\psi(\langle y \rangle),$$

where $Z = C_{\langle y \rangle}(b)$. In particular,

$$\psi(\langle x \rangle \times \langle b \rangle) = \frac{p^{2n} + p^3 - p^2 + 1}{p+1}.$$

3 Proof of the main Theorem

Proof of the Theorem 1.4. We know that G is a solvable group, by Theorem 1.3. We prove by induction on $|\pi(G)|$ that if G is a group of order $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ where p_i are primes, $p_1 < p_2 < \dots < p_k = p$ such that $\alpha_i > 0$, for each $1 \le i \le k$, and also $\psi(G) > \frac{13}{21} \psi(C_n)$, then G is nilpotent group. If $|\pi(G)| = 1$, then G is a p-group, therefore G is nilpotent. Assume that $|\pi(G)| \ge 2$ and the theorem holds for each group H such that $|\pi(H)| < |\pi(G)|$. Let p be the largest divisor of |G|, now we consider the two following cases:

Case 1. $p \ge 5$. By proposition 2.4, we have

$$\psi(C_n) \ge \frac{2}{p+1}n^2$$

and our assumption $\psi(G) > \frac{13}{21} \psi(C_n)$, implies that

$$\psi(G) > \frac{13}{21} \cdot \frac{2}{n+1} n^2.$$

Hence there exists $x \in G$ such that

$$o(x) > \frac{26}{21} \cdot \frac{n}{p+1}$$

and

$$[G:\langle x \rangle] < \frac{21}{26}(p+1) \le \frac{21}{26} \cdot \frac{6}{5}p.$$

So that

$$[G:\langle x\rangle] < \frac{63}{65}p.$$

Thus $[G:\langle x\rangle] < p$ and $\langle x\rangle$ contains a normal cyclic Sylow *p*-subgroup *P* of *G*, by Proposition 2.5. By Lemma 2.1, we have:

$$\frac{13}{21}, \ \psi(C_n) < \psi(G) \le \psi(P)\psi(G/P).$$

On the other hand $\psi(C_n) = \psi(C_{|P|})\psi(C_{|G/P|})$. Since $\psi(C_{|P|}) = \psi(P)$ it follows that:

$$\frac{13}{21}\psi(C_{|G/P|})<\psi(G/P)$$

Now inductive hypotheses implies that G/P is a nilpotent group and $G = P \rtimes F$, where $F \cong G/P$ also P is a cyclic normal Sylow p-group for some prime p, F is a nilpotent subgroup, |F| > 1 and gcd(p, |F|) = 1.

Suppose that $C_F(P) = Z$. If Z < F, then by Lemma 2.8, $\psi(G) \le \frac{13}{21} \psi(C_n)$, which is a contradiction. Hence $C_F(P) = F$ and $G = P \times F$ so that G is nilpotent as required.

Case 2. $p \le 3$. If p = 2, then G is a 2-group and nilpotent. Hence we assume that p = 3. If G is a 3-group, then G is nilpotent. So we may assume that $n = 2^a 3^b$ for some positive integers a and b. If a = 1 then n = 2m with m odd, thus by Theorem 2.10, $\psi(G) \le \frac{13}{21} \psi(C_n)$, contrary to our assumption.

We assume that $a \geq 2$. Since $\psi(G) > \frac{13}{21}\psi(C_n)$, there exists a cyclic subgroup $\langle x \rangle$ such that $[G:\langle x \rangle] < \frac{42}{13}$, by Lemma 2.3. It follows that $[G:\langle x \rangle] \leq 3$, which implies that $[G:\langle x \rangle] = 2$ or $[G:\langle x \rangle] = 3$.

Suppose that $[G:\langle x\rangle]=2$. Then $\langle x\rangle$ contains a normal cyclic Sylow 3-subgroup P of G, by Proposition 2.5. If there exists $y\in G\setminus \langle x\rangle$ with $[G:\langle y\rangle]=2$, then $y\in C_G(P)$ and hence $P\leq Z(G)$, Thus $G=P\times F$, where F is a non-cyclic Sylow 2-subgroup of G and it follows that G is nilpotent. If $o(y)\leq \frac{n}{3}$ for all $y\in G\setminus \langle x\rangle$, we have

$$\psi(G) \le \psi(C_{\frac{n}{2}}) + \frac{n}{2} \cdot \frac{n}{3}.$$

We show that $\psi(G) \leq \frac{13}{21} \psi(C_n)$ as follows:

$$\psi(C_{\frac{n}{2}}) + \frac{n}{2} \cdot \frac{n}{3} \le \frac{13}{21} \psi(C_n)$$

$$\Leftrightarrow \psi(C_{2^{a-1}}) \psi(C_{3^b}) + \frac{2^{2a}3^{3b}}{6} \le \frac{13}{21} \psi(C_{2^a}) \psi(C_{3^b})$$

$$\Leftrightarrow \left(\frac{2^{2a-1}+1}{3}\right) \left(\frac{3^{2b+1}+1}{4}\right) + 2^{2a-1}3^{2b-1} < \frac{13}{21} \left(\frac{2^{2a+1}+1}{3}\right) \left(\frac{3^{2b+1}+1}{4}\right)$$

$$\Leftrightarrow 21 \left(2^{2a-1}+1\right) \left(3^{2b+1}+1\right) + 7 \cdot 2^{2a+1}3^{2b+1} < 13 \left(2^{2a+1}+1\right) \left(3^{2b+1}+1\right)$$

$$\Leftrightarrow 21 \cdot 2^{2a-1}3^{2b+1} + 8 \cdot 3^{2b+1} + 8 < 6 \cdot 2^{2a+1}3^{2b+1} + 31 \cdot 2^{2a-1} + 96 \cdot 3^{2b+1}$$

$$\Leftrightarrow 8 \cdot 3^{2b+1} + 8 < 3 \cdot 2^{2a-1}3^{2b+1} + 31 \cdot 2^{2a-1}$$

$$\Leftrightarrow 1 < 2^{2a-4}3^{2b+2} + 31 \cdot 2^{2a-4} - 3^{2b+1}$$

$$\Leftrightarrow 1 < 3^{2b+1} \left(2^{2a-4} \cdot 3 - 1\right) + 31 \cdot 2^{2a-4}.$$

For $a \geq 2$ is true which contradicts our assumption.

Finally, we suppose that $[G:\langle x\rangle]=3$. By Theorem 2.9, $G=P\rtimes F$ where P is Sylow 3-subgroup of G and $F\leq\langle x\rangle$. Since $|G|=2^a3^b,\,|P|=3^b$ and $F\leq\langle x\rangle$, we have $F\cong C_{2^a}$, and one of the following holds:

- 1. G is nilpotent,
- $2. \ G \cong C_{3^b} \rtimes C_{2^a},$
- 3. $G \cong (C_{3^{b-1}} \times C_3) \rtimes C_{2^a}$.

We show that, if $G \cong C_{3^b} \rtimes C_{2^a}$ or $G \cong (C_{3^{b-1}} \times C_3) \rtimes C_{2^a}$, then $\psi(G) \leq \frac{13}{21} \psi(C_n)$. First, Suppose that $G \cong P \rtimes F$ where $P = C_{3^b}$, $F = C_{2^a}$. Let $Z = C_F(P)$. Then Z < F and Lemma 2.6(5) implies that

$$\psi(G) = \psi(P)\psi(Z) + |P|\psi(F \setminus Z).$$

If b=1, then $G\cong C_3\rtimes F$, $|G|=3.2^a$, and $F=C_{2^a}$. Let $Z=C_F(C_3)$, then $\frac{\psi(Z)}{\psi(F)}\leq \frac{1}{3}$. Since $\psi(C_n)=\psi(C_3)\psi(F)=7\psi(F)$, we have

$$\psi(G) = \psi(C_3)\psi(Z) + |C_3|\psi(F \setminus Z)$$

$$= 7\psi(Z) + 3(\psi(F) - \psi(Z))$$

$$= 4\psi(Z) + 3\psi(F)$$

$$\leq \frac{13}{3}\psi(F)$$

$$= \frac{13}{21}\psi(C_n).$$

Now, we suppose that b > 1. Then $|P| \ge p^2$. Hence

$$\frac{|P|}{\psi(P)} = \frac{|P|(p+1)}{p|P|^2+1} \leq \frac{|P|(p+1)}{p|P|^2} \leq \frac{p+1}{p^3} = \frac{1}{p^2} + \frac{1}{p^3} \leq \frac{4}{27}.$$

By Theorem 2.11, $\frac{\psi(Z)}{\psi(F)} \leq \frac{1}{3}$. Therefore

$$\psi(G) < \psi(C_n) \left(\frac{\psi(Z)}{\psi(F)} + \frac{|P|}{\psi(P)} \right)$$

$$< \left(\frac{1}{3} + \frac{4}{27} \right) \psi(C_n)$$

$$< \frac{13}{21} \psi(C_n).$$

Now, we assume that $G = (\langle x \rangle \times \langle z \rangle) \rtimes \langle y \rangle$, where $\langle x \rangle = C_{3^{b-1}}$, $\langle z \rangle = C_3$, and $\langle y \rangle = C_{2^a}$. Then Theorem 2.11 implies that

$$\psi(G) = (p-1)^2 \psi(Z) + p\psi(\langle x \rangle)\psi(\langle y \rangle),$$

where $Z=C_{\langle y\rangle}(z).$ Since $p=3,\,b\geq 1$ and by Theorem 2.7, $\frac{\psi(Z)}{\psi(C_{2^a})}\leq \frac{1}{3},$ we have

$$\psi(G) = \frac{4}{3}\psi(C_{2^a}) + 3\psi(C_{3^{b-1}})\psi(C_{2^a})$$

$$= \left(\frac{4}{3} + 3\psi(C_{3^{b-1}})\right)\psi(C_{2^a})$$

$$= \left(\frac{4}{3} + 3\frac{3^{2b-1} + 1}{4}\right)\psi(C_{2^a})$$

$$= \left(\frac{3^{2b+1} + 25}{12}\right)\psi(C_{2^a})$$

$$\leq \frac{13}{21}\left(\frac{3^{2b+1} + 1}{4}\right)\psi(C_{2^a})$$

$$\leq \frac{13}{21}\psi(C_{3^b})\psi(C_{2^a}) = \frac{13}{21}\psi(C_n).$$

It follows that G is a nilpotent group. Thus the proof is complete.

Remark 3.1. We note that if $G = S_3$, then |G| = 6, and $\psi(G) = 13$. Since $\psi(C_6) = 21$, therefore

$$\frac{13}{21}\psi(C_{|G|}) = \psi(G).$$

Acknowledgment

The authors would like to thank the Editor and reveries for their helpful comments.

References

- [1] H. Amiri and S.M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), no. 2, 187–190.
- [2] H. Amiri and S.M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Commun. Algebra Appl. 40 (2012), no. 2, 770–778.
- [3] H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978–2980.
- [4] M. Baniasad and B. Khosravi, A creterian for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115–124.

- [5] M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Algebra 222 (2018), no. 7, 1628–1642.
- [6] M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. pure Appl. Algebra 511 (2018), 215–226.
- [7] M. Herzog, P. Longobardi and M. Maj, Sums of element orders groups of order 2m with m odd, Commun. Algebra 47 (2019), no. 5, 2035–2048.
- [8] S.M. Jafarian Amiri, Characterization of a_5 and psl(2, 7) by sum of element orders, Int. J. Group Theory 2 (2013), no. 2, 35–39.
- [9] S.M. Jafarian Amiri, Maximum sum of element orders of all proper subroups of psl(2, q), Bull. Iran. Math. Soc. **39** (2013), no. 3, 501–505.
- [10] S.M. Jafarian Amiri, Second maximum sum of element orders on finite nilpotent groups, Commun. Algebra 41 (2013), no. 6, 2055–2059.
- [11] S.M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 (2014), no. 3, 531–539.
- [12] S.M. Jafarian Amiri and M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Commun. Algebra 42 (2014), no. 12, 531–539.
- [13] S.M. Jafarian Amiri and M. Amiri, *Characterization of p-groups by sum of element orders*, Publ. Math. Debrecen **86** (2015), no. 1–2, 31–37.
- [14] S.M. Jafarian Amiri and M. Amiri, Sum of element orders in groups with the square-free orders, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1025–1034.
- [15] Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl. 12 (2013), no. 7.
- [16] R. Shen, G. Chen and C. Wu, On groups with the second largest value of the sum of element orders, Commun. Algebra 43 (2015), no. 6, 2618–2631.