[1] A. Alam and M. Imdad , Relation-theoretic contraction principle, J. Fixed Point Theory Appl. 17 (2015), 693–702.
[2] A. Alam and M. Imdad, Nonlinear contractions in metric spaces under locally T-transitive binary relations, Fixed
Point Theory 19 (2018), 13–23.
[3] H. Baghani and M. Ramezani, A fixed point theorem for a new class of set-valued mappings in R-complete (not
necessarily complete) metric spaces, Filomat 31 (2017), 3875–3884.
[4] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund.
Math. 3 (1922), 133–181.
[5] H. Ben-El-Mechaiekh , The Ran-Reurings fixed point theorem without partial order: a simple proof, J. Fixed Point
Theory Appl. 16 (2014), 373–383.
[6] D. Khantwal, S. Aneja, G. Prasad and U.C. Gairola , A generalization of relation-theoretic contraction principle,
TWMS J. App. Eng. Math. (Accepted).
[7] S.B. Nadler Jr, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
[8] J.J. Nieto and R. Rodr´ıguez-L´opez, Contractive mapping theorems in partially ordered sets and applications to
ordinary differential equations, Order 22 (2005), 223–239.
[9] A. Petru¸sel, G. Petru¸sel and J. Yao, Multi-valued graph contraction principle with applications, Optim. 69 (2020),
1541–1556.
[10] G. Prasad and R. C. Dimri, Fixed point theorems for weakly contractive mappings in relational metric spaces with
an application, J. Anal. 26 (2018), 151–162.
[11] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix
equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.
[12] B. Samet and M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and
applications, Commun. Math. Anal. 13 (2012), 82–97.
[13] S. Shukla and R. Rodr´ıguez-L´opez, Fixed points of multi-valued relation-theoretic contractions in metric spaces
and application, Q. Math. 43 (2020), 409–424.
[14] A. Tomar, M. Joshi, S.K. Padaliya, B. Joshi and A. Diwedi, Fixed point under set-valued relation-theoretic
nonlinear contractions and application, Filomat 33 (2019), 4655–4664.
[15] M. Turinici, Nieto-Lopez theorems in ordered metric spaces, Math. Stud. 81 (2012), 219–229.