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Abstract

In this paper, to establish general and shortest confidence interval, for a linear combination of parameters of the two-
parameter exponential distribution, we introduce a pivotal quantity. In the case of two populations, we use the method
of variance estimate recovery and generalized pivotal quantities to construct a confidence interval for the difference of
them. Based on the shortest confidence interval, we present a simple method to obtain its percentiles, and which a
shorter confidence interval can be constructed. Also, the performances of the presented methods are studied by real
data examples and simulations.
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1 Introduction

Suppose that the random variable X has a two-parameter exponential distribution, Exp(µ, σ) with a distribution
function

FX (x) = 1− e−
x−µ
σ ; x > µ,

where µ ∈ R is the location parameter and σ > 0 is the parameter of the scale. The exponential distribution is due
to the lack of memory and the possibility of creating a block distribution in issues related to location transformations
in reliability and survival analysis of numerous statistical articles [4]. The exponential distribution of two parameters
arises in engineering, biological studies, epidemiology, medical studies, etc. is widely used. As an example, the
widespread use of this distribution can be cited in modelling the fail over time for reliability [3]. In engineering and
reliability, the location parameter is called threshold value or average warranty period and scale parameter called
average time after warranty. In medical sciences, as an example in experiments related to the dose rate, these two
parameters are known as the duration of the effect of the medication and the median time of the effect of the drug.
Also, in biology and epidemiology, these two parameters are known under the heading of the period of illness and the
average incidence of disease.
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The parameter discussed in this article, the linear combination of the location parameters and scale of the two-
parameter exponential distribution, is given in the form θa=µ+aσ for different values of a. By putting a = 1, the
average two-parameter exponential distribution is obtained. Considering the value a = − ln(1 − p), p-th quantile
for 0 < p < 1, and also a = 0, the location parameter µ is obtained. Inference about the average distributions
of a statistical population is commonplace amongst statisticians. Li et al. [17] proposed a simultaneous confidence
interval for the mean k of the two-parameter exponential distribution of populations. Paolino [21] and Balakrishnan et
al. [4] introduced a pivotal quantity to create a confidence interval with equal (general) and shortest Two-parameter
exponential distribution [16] used a modified base-normal approximation (MNA) concept to create a confidence interval
for the linear combination of parameters of two-parameter distribution in one and two populations. Fernandez [6],
Krishnamoorthy et al. [14] and Roy et al. [24], proposed one-sided confidence level for a reliability function and quantile
of two-parameter exponential distribution based on the generalized pivotal quantity. The test for the assumption of
the equal of the location parameters of several exponential distributions was designed by [9], and [18] introduced exact
statistics for inference on the common location parameters of this distribution. Also, a simultaneous confidence interval
for the difference in location parameters exponential distribution provided by various authors such as [10, 11, 19, 20].
Rozbeh and Najarian [23] identified which parts of the generalized exponential distribution have more information
about the distribution parameters.

In this paper, we use the results of n observation with type II progressive censoring [2] to establish the confidence
interval for the parameter θa. The growing of type II progressive censoring of n observation is thus observed, with the
observation of the first failure at the time X(1), R1 of units of n− 1 remaining units of the test process are set aside.
After observing the second failure data at the time X(2), R2 units of n−R1 − 2 units are left out of the test process,
and similarly, at the m-th time of failure, X(m), all remaining units are

Rm = n−m−R1 −R2 − · · · −Rm−1.

In this type of censored, the values m and R = (R1, . . . , Rm) are predetermined.

Remark 1.1. If R1=R2 = · · · = Rm−1 = 0 and Rm = n−m, then censor of the second type right is obtained. Also,
if R1=R2 = · · · = Rm = 0, we have m = n, then we will have an uncensored scheme (complete sample).

In the second part of the paper, we use a pivotal quantity to construct the two-sided confidence intervals and the
shortest for the θa parameter in a population. In two independent exponential populations, the subject is considered
to provide a confidence interval for the difference between these parameters. To this end, consider the generalized
pivotal value provided by [16]. By using the modified base-normal approximation method to estimate its distribution
percentile of the distribution. Also, by using the Method of Variance Estimates Recovery (MOVER), we provide a
general and short confidence interval for the third, for this parameters difference. In part 4, we present the proposed
methods using the Monte Carlo simulation regarding both the reliability and the coverage probability. We also examine
their performance based on the data from the actual examples in Section 5.

2 Confidence Interval in Case One Population

Assume that X1, . . . , Xn is a random sample of exponential distribution Exp (µ, σ), so that based on the values
of m and R1, . . . , Rm are preset, X(1) < · · · < X(m) be the observed values derived from this sample based on the
progressive type-II censoring. The maximum likelihood estimators of the parameters of this distribution, to form

µ̂ = X(1), σ̂ =

(∑m
i=1 X(i) + (n−m)X(m) − nX(1)

)
m

=
1

m

m∑
i=1

(Ri + 1)
(
X(i) −X(1)

)
,

[25]. We know these two estimators are independent of each other, and also for m ≥ 2

2n
(
X(1) − µ

)
σ

∼χ2
2,

2mσ̂

σ
∼ χ2

2m−2.

where χ2
r is the chi-square random variable with r degrees of freedom. For different values of a, the parameter θa

behaves like a location parameter. Therefore, we can develop pivotal quantity [4] in the following form,

Tn,m,a =
X(1) − θa

σ̂
=

(
X(1) − µ

)
−aσ

σ̂

d→ m

n

(
χ2
2 − 2na

)
χ2
2m−2

, (2.1)
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where random variables are independent of each other with the chi-square distribution, and
d→ it means being dis-

tributable. The support of the pivotal quantity Tn,m,a for positive value of a is real line and for negative value of a is
the positive part of the real line. The distribution function Tn,m,a is determined based on the following theorem.

Theorem 2.1. If X1, . . . , Xn is a random sample of exponential distribution Exp(µ, σ), so that X(1) < · · · < X(m) the
observed values derived from type II progressive censoring with values R1, . . . , Rm are preset. Then the distribution
function of the random variable Tn,m,a is obtained in the following from. For positive values of a,

P (Tn, m,a ≤ t)=


F2m−2

(
− 2ma

t

)
−e−na

(
m

m+nt

)m−1

F2m−2

(
−2am+nt

m

)
; t < 0

1−e−na
(

m
m+nt

)m−1

; t ≥ 0

(2.2)

where Fr (.)= 1−Fr (.) and Fr is the chi-square distribution function with r degrees of freedom. Also, for negative
values of a, we have

P (Tn, m,a ≤ t)=


0; t < 0

F2m−2

(
− 2ma

t

)
−e−na

(
m

m+nt

)m−1

F2m−2

(
−2am+nt

m

)
; t ≥ 0

(2.3)

Proof . Included in the appendix. □
If we let a = − ln (1− p), the distribution function [4] is obtained. Now, with the inverse of the distribution function,
we can easily obtain the percentile of the probability distribution of the pivotal quantity Tn,m,a. By defining tn,m,a;β

as the percentile of βth this pivotal quantity, a general confidence interval of 100 (1−α) % for the linear combination
θa = µ+aσ is obtained as follows

(
X(1)−σ̂tn,m,a;1−α

2
, X(1)−σ̂tn,m,a;α/2

)
. (2.4)

In order to establish the shortest confidence interval at 100 (1−α)%, it is only necessary to choose the value of α∗

in the interval (0, α) such that L = tn,m,a;1−α+α∗ −tn,m,a;α∗ accepts its minimum value. Then, the shortest confidence
interval for θa equals with

(
X(1)−σ̂tn,m,a;1−α+α∗ , X(1)−σ̂tn,m,a;α∗

)
. (2.5)

3 Confidence Interval of Parameters Difference in Two Populations

Assume that Xi1, ..., Xini
is a random sample of exponential distribution Exp(µi, σi), so that based on the preset

values of mi and Ri1, ..., Rimi
, the observed values of these samples are based on the progressive type-II censoring

for i = 1, 2. In order to establish the confidence interval for the difference in parameters, i.e., θ1a − θ2a, we use the
method of variance estimates recovery and the generalized pivotal quantity. for this purpose, we do not have any
presuppositions on the scale parameters such as their equality or their definiteness. Necessary values of the percentile
for the generalized pivotal quantity require the use of numerical methods, such as the Monte Carlo, in order to facilitate
this, we also propose a solution based on the method modified based-normal asymptotic of [13]. In both methods, the
confidence interval with shorter lengths will also be considered.

3.1 The method of variance estimates recovery

This method was introduced by [27] to establish an approximate confidence interval for the linear composition of
the parameters based on their single confidence intervals. This method is used by writers like [15, 18, 22, 28] and
etc. In order to get familiar with this method, assume that θ′ = (θ1, . . . , θk) is unknown parameters and their

unbiased estimation vector θ̂= (θ̂1 . . .θ̂k)
′
, so that the confidence interval(li. ui) is 100 (1− α) % of the parameter θi
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for i = 1, . . . , k. Then, the confidence interval of 100 (1− α) % for the linear combination δ=
∑k

i=1 ciθi will be based
on the method of variance estimates recovery into the form (L, U), in which ci are the values and we have

L =
∑k

i=1 ciθ̂i−
√∑k

i=1 c
2
i

(
θ̂i − l∗i

)2

U=
∑k

i=1 ciθ̂i+

√∑k
i=1 c

2
i

(
θ̂i − u∗

i

)2

where for ci ≥ 0, l∗i = li and u∗
i = ui and for ci < 0, l∗i = ui and u∗

i = li are defined. For more details, see [27].

We consider the general confidence interval obtained from relation (2.4) in the form (li, ui) for the parameter θia =
µi+aσi. Using the method of variance estimates recovery, the general confidence interval of 100 (1 − α) % for
θ1a − θ2awill be given to form(L, U), where

L = θ̂1a−θ̂2a−
√(

θ̂1a−X1(1)+σ̂1tn1,m1,a;1−α/2

)2

+
(
θ̂2a−X2(1)+σ̂2tn2,m2,a;α/2

)2

U = θ̂1a−θ̂2a+

√(
θ̂1a−X1(1)+σ̂1tn1,m1,a;α/2

)2

+
(
θ̂2a−X2(1)+σ̂2tn2,m2,a;1−α/2

)2

where θ̂ia=Xi(1)+σ̂i

(
a− 1

ni

)
. We will simplify it L = θ̂1a−θ̂2a−

√
σ̂2
1

(
a′1+tn1,m1,a;1−α/2

)2
+σ̂2

2

(
a′2+tn2,m2,a;α/2

)2
U = θ̂1a−θ̂2a+

√
σ̂2
1

(
a′1+tn1,m1,a;α/2

)2
+σ̂2

2

(
a′2+tn2,m2,a;1−α/2

)2 . (3.1)

where a′i=a− 1
ni
.

Remark 3.1. If we put the values obtained from α∗
i (2.5) in the limits provided in (3.1), we have a confidence interval

of 100 (1− α)% to another form (L∗, U∗) in which L∗ = θ̂1a−θ̂2a−
√

σ̂2
1

(
a′1+tn1,m1,a;1−α+α∗

1

)2
+σ̂2

2

(
a′2+tn2,m2,a;α∗

2

)2
U∗ = θ̂1a−θ̂2a+

√
σ̂2
1

(
a′1+tn1,m1,a;α∗

1

)2
+σ̂2

2

(
a′2+tn2,m2,a;1−α+α∗

2

)2 . (3.2)

3.2 Generalized pivotal quantity

This method was first presented by [26]. Due to the widely use of this method in numerous papers, here we also
present the generalized pivotal quantity and then, using the method modified based-normal asymptotic by [13], we
introduce a solution to approximate its percentiles. We also provide a shorter confidence interval. First, we assume
that xi(1) and σ̂i0 are the values observed for the estimators Xi(1) and σ̂i based on the definitions of [24], then the
generalized pivotal quantity (GPQ) for the two parameters µi and σi are respectively

Rµi
=xi(1)−

mi

ni

Vi

Ui
σ̂i0, Rσi

=
2miσ̂i0

Ui
,

where Vi ∼ χ2
2 and Ui ∼ χ2

2mi−2 are independent random variables. Also, the generalized pivotal quantity for
θia=µi+aσi is equal to

Rθia=Rµi
+aRσi

= xi(1)−
mi

ni
σ̂i0

(
Vi − 2nia

Ui

)
.

For i = 1, 2. Based on the above process, the generalized pivotal quantity related to the difference in parameters
θ1a − θ2a is as follows

R12.a=Rθ1a−Rθ2a=x1(1) − x2(1)+
m2

n2
σ̂20

(
V2 − 2n2a

U2

)
−m1

n1
σ̂10

(
V1 − 2n1a

U1

)
. (3.3)

To find the distribution of R12.a, we must generate the random variables Vi and Ui and calculate the value of
(3.3) based on them. By repeating this procedure in many times (M order), the distribution of R12.a is obtained
approximately as well as an approximate value of its βth percentile, namely, R12.a;β . Then, the generalized confidence
interval of 100 (1− α)% for θ1a − θ2a based on the generalized pivotal quantity will result as follows

(
R12.a;α2

, R12.a; 1−α
2

)
. (3.4)
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3.3 Modified based-normal approximation

As mentioned in the previous paper, to obtain (3.4), it is necessary to use numerical methods. Here we use the modified
based-normal asymptotic method, the form of the package for the generalized pivotal number percentile approximation
(3.3). This method is proposed by [13] to approximate the percentiles of the linear distribution of random variables,
which we will briefly describe in the following from.

Assume Y1. . . . .Yk are continuous random variables which do not necessarily have the same distribution. Assuming
Yi;α, the percentile αth is the random variable Yi for i = 1. . . . . k. We consider Q =

∑k
i=1 wiY i

in which wi constant
and invariant coefficients are. In this case, the percentile approximation is the random variable Q in the form below

Qα ≃


∑k

i=1 wiE (Yi)−
√∑k

i=1 w
2
i (E (Yi)− Y ∗

i )
2
; 0 < α < .5∑k

i=1 wiE (Yi) +
√∑k

i=1 w
2
i (E (Yi)− Y ∗

i )
2
; .5 < α < 1

.

where Y ∗
i = Yi;α if wi > 0 and Y ∗

i = Yi;1−α if wi < 0. He introduced this approximation as the modified base-normal
approximation (MNA). For more details, see [13].

Here, with care, in (3.3) we can formulate the generalized pivotal quantity displayed as

R12.a = x1(1) − x2(1)+ [σ̂2Tn2,m2,a−σ̂1Tn1,m1,a] .

This means that the pivotal quantity (3.3) is a linear functional of T12.a = σ̂2Tn2,m2,a−σ̂1Tn1,m1,a. Using the modified
base-normal approximation method, the percentile approximation of α is the distribution of T12.a, i.e. t12.a;α, as
follows.

t12.a;α ≃

 σ̂2r2.a − σ̂1r1.a −
[
σ̂2
2(r2.a − tn2.m2.a;1−α)

2
+ σ̂2

1(r1.a − tn1.m1.a;α)
2
] 1

2

; 0 < α ≤ .5

σ̂2r2.a − σ̂1r1.a +
[
σ̂2
2(r2.a − tn2.m2.a;α)

2
+ σ̂2

1(r1.a − tn1.m1.a;1−α)
2
] 1

2

; .5 < α < 1
, (3.5)

where ri.a = mi

ni

1−nia
mi−2 . Therefore, the approximation of the generalized pivotal quantity percentile R12.a can be written

in the following from
R12.a;β ≃ x1(1) − x2(1) + t12.a;β .

And the general confidence interval at the level 100 (1− α)% for θ1a − θ2awill be equal to

(
x1(1) − x2(1) + t12.a,α2 , x1(1) − x2(1) + t12.a;1−α/2

)
. (3.6)

Remark 3.2. If in the calculation of (3.5), instead of the usual values of α∗ for tni,mi,a;α and tni,mi,a;1−α correspond
to the shortest confidence interval tni,mi,a;α∗ and tni,mi,a;1−α+α∗ for i = 1, 2 another approximation will be obtained
for t12.a;αwe denote it by t∗12.a;α. Putting the values of t∗12.a;α/2 and t∗12.a;1−α/2in (3.6), the confidence interval can be
written as; (

x1(1) − x2(1) + t∗12.a;α2 , x1(1) − x2(1) + t∗12.a;1−α/2

)
. (3.7)

Remark 3.3. It is important to note that [16] did not use exact percentile distributions for the normalized base-
approximation R12.a, but from the corrected base-normal approximation of the percentile in a state Society benefited.

Remark 3.4. In order to carry out the test, the hypothesis

{
H0 : θ1a = θ2a
H1 : θ1a ̸= θ2a

can be assumed at the level of α. It is

possible to assume zero when the value of zero at the confidence interval created at the level 100 (1− α )% does not.

4 Simulation

Using the Monte Carlo simulation, we study the coverage probability (CP) and the average length (AL) of confidence
intervals assurance relationships (3.1), (3.2), (3.4), (3.6) and (3.7). We present the methods described above with
MOV, SMOV, GCI, MNA, and SMNA. It should be noted that the generalized method requires the use of numerical
methods in estimating its percentiles, while the remaining methods are approximations that are easily obtained. We
simulated the following steps
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Table 1: Simulation scenarios.
n1, n2 m1,m2 σ1 Scenarios

10, 10
5, 5 0.01, 1, 5, 10 1-4
5, 8 0.01, 1, 5, 10 5-8

10, 10 0.01, 1, 5, 10 9-12

10, 15

5, 5 0.01, 1, 5, 10 13-16

5, 8 0.01, 1, 5, 10 17-20
8, 10 0.01, 1, 5, 10 21-24

10, 15 0.01, 1, 5, 10 25-28

15, 10

5, 5 0.01, 1, 5, 10 29-32

5, 8 0.01, 1, 5, 10 33-36

15, 10 0.01, 1, 5, 10 37-40

20, 20
5, 5 0.01, 1, 5, 10 41-44
5, 8 0.01, 1, 5, 10 45-48

20, 20 0.01, 1, 5, 10 49-52

30, 30

5, 5 0.01, 1, 5, 10 53-56

5, 8 0.01, 1, 5, 10 57-60
20, 20 0.01, 1, 5, 10 61-64

1. Based on the values of θia, σi, ni and mi, we obtain the sample Xi1. . . . .Xini and obtain the observations
Xi(1) < · · · < Xi(mi) in terms of the values of R1. . . . .Rmi

, and also we calculate the value of σ̂i0.

2. We obtain the required methods of assuming R12.a;β (taking into account the value of 10,000 for M), t12.a;β and
t∗12.a;β to establish the confidence intervals (3.1), (3.2), (3.4), (3.6) and (3.7).

3. Step I and II are repeated 10,000 times. The ratio of the number of times that the difference θ1a − θ2a is within
these intervals is considered as an estimate for the CP and the average length of the confidence interval generated
by all the cases as an estimate for the AL of confidence intervals.

In order to simulate different values of a such as 0,1 ,− ln (1− 0.05) and − ln (1− 0.95), and the number of different
samples and distinct quantities of scale parameters, we use it. The values used in this simulation study are summarized
in Table 1 under the scenario. In all simulations, the values of θ1a and θ2a were considered equal and the confidence
intervals were constructed at 95% confidence level. Figures 1, 2, 3 and 4 respectively, show the simulation results
for the scenarios in table 1 for the five available methods and the values of a equal to 0, 1, − ln (1 − 0.05) and
− ln (1 − 0.95) can be made. It is referred a method as a reliable method when CP is less than 0.95. We consider
the following reasonable criterion for comparing the methods: Firstly, a method is preferred to the other methods
when is not liberal. Secondly, the candidate for the best method must have the smallest AL among reliable methods;
see [18]. It should be kept in mind that the likelihood of coatings rarely varies from simulation to simulation. In
fact, the estimated coverage probability is an almost normal distribution with an average of 0.95 and a variance of
0.95 × 0.05/10000, so a low limit for them is 0.946. This means that if the coverage probability of a confidence
interval is less than 0.946, then this confidence interval is liberal. According to the simulation results, the results of
the continuation can be expressed.
Figure 1 is related to the confidence interval of the difference location parameters of the two-exponential population,
i.e., µ1 − µ2. Based on the simulation results of the 5 methods, we can say that all methods can have a coverage
of probability significantly less than 0.95, that is, in a = 0, the presented methods are liberal. However, according to
the scenarios considered in this simulation, the MOV method is more reliable than the rest of the methods due to the
minimum probability value of 0.9430.
For a = 1, i.e., the difference in mean distributions, the simulation results show that the SMOV method is the only
method which is liberal (Figure 2). Looking at the average length results, it can be said SMNA method has a lower AL,
so that this method can be introduced as the shortest confidence interval for this difference parameters. Therefore,
we recommend using method SMNA to construct a confidence interval for the difference mean between two-parameter
exponential distributions.
In Figures 3 and 4, the simulation results are presented in terms of differences of percentiles 0.05 and 0.95. In
examining the coverage probability of reported in these figures, it can be said that SMNA and SMOV methods are
liberal methods, while GCI, MNA and MOV methods have the acceptable concluded to coverage probability. Also,
the average length confidence intervals created by them are not significantly different. Because of the simplicity of
calculations associated with MNA and MOV methods and the impossibility to observe a significant difference between
the simulation results obtained from them, it is recommended to use these methods in constructing the confidence
interval for the difference between quantiles of two-parameter exponential distributions.
As expected in our simulation results, the length confidence intervals of both SMNA and SMOV methods are lower
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Figure 1: Estimation of the CP and the AL provided for a = 0.

Figure 2: Estimation of the CP and the AL provided for a = 1.

Table 2: Observations of the distance traveled by the military carrier.
162 200 271 302 393 508 539 629 706 777

884 1008 1101 1182 1463 1603 1984 2355 2880

than the other three methods, even for the states which are not liberal. However, these methods do not have the
possibility of coverage probability in all cases. Therefore, according to the results of this simulation study, SMNA
method seems that only effective in establishing the confidence interval in the case of the difference between means of
the two-parameter exponential distributions.



3078 Malekzadeh

Figure 3: Estimation of the CP and the AL provided for a = − ln(1− 0.05).

Figure 4: Estimation of the CP and the AL provided for a = − ln(1− 0.95).

5 Real Data

In this section, we will expose the performance of the detailed confidentiality of the article with two examples that
are commonly used in the two-parameter exponential distribution. The first example is the data for a population
mode, and in example 2, we use the admission time data to simulate the two-parameter exponential populations.

Example 5.1. Here we use data reported by [7] regarding the distance traveled until the failure of 19 military carriers
(Table 2). These data have been used by researchers such as [5, 6, 21, 24] as an example of two-parameter exponential
distribution data (Anderson-Darling p-value is reported as 0.196).

The data are of a complete type and, by defining different values of m, and R1, ..., Rm, we construct several progressive
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Table 3: The precise general and shortest confidence interval for fault data.
location

parameter
mean

5th

percentile

95th

percentile

m R1, ..., Rm

Type of

confidence
interval

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

19 0 . . . 0
general -28.02 160.83 702.62 1582.93 26.11 217.95 1875.04 4544.54
shortest 10.66 162.00 658.92 1501.27 55.07 228.93 1736.34 4281.92

8 2,4,0,1,2,2,0.0
general -334.34 159.52 1051.89 4961.87 -171.98 325.56 2960.12 15016.95

shortest -216.40 162.00 855.37 4272.43 -112.61 357.82 2370.67 12896.24

8 1,0,2,2,1,4,0,1
general -324.65 159.46 1115.72 4668.17 -170.07 319.53 3163.23 14102.25

shortest -212.47 162.00 934.97 4097.84 -109.22 350.49 2593.84 12323.67

7 2,0,1,0,2,4,3
general -363.20 159.39 1104.07 5242.19 -191.71 335.10 3124.04 15884.32

shortest -238.48 162.00 900.51 4517.41 -129.12 368.89 2489.00 13630.65

7 0,3,2,2,1,0,4
general -376.37 159.32 1126.84 5366.65 -200.61 339.33 3195.49 16271.00
shortest -248.27 162.00 914.87 4621.32 -136.49 373.57 2546.45 13963.33

5 2,4,2,3,3
general -754.29 158.16 1389.27 10175.33 -424.77 477.72 4013.54 31196.40
shortest -512.36 162.20 1021.34 8234.94 -332.84 533.73 2859.16 25158.13

5 0,4,4,3,3
general -733.45 158.25 1361.07 9946.05 -412.21 470.93 3925.04 30482.14

shortest -496.51 162.00 992.10 8044.44 -322.23 525.77 2809.75 24607.91

5 4,2,3,3,1
general -683.93 158.45 1295.93 9408.80 -380.33 453.71 3719.83 28814.42

shortest -460.17 162.00 947.66 7612.30 -296.26 504.31 2668.24 23266.77

type-II censoring using the observations of Table 2. The distance between general confidence and the shortest precision
obtained from these values, and for 0, 1,− ln(1− 0.05) and − ln(1− 0.95) are given in Table 3.
The results of Table 3 clearly show the significant difference between the lengths of the confidence interval generated
in the shortest state with the general in all states. Noteworthy, the value of 162 is the upper bound for the shortest
confidence interval for the location parameter in all states and shows the efficiency of this type of confidence interval in
comparison with the general method. Based on the complete sample, we can conclude the all parameters are positive,
while with the second-generation censorship of data some results are disturbed. These results are far from expected
and show the importance of having complete data.

Example 5.2. In this example, we use data on the survival time of people with lung cancer that cannot be surgically
treated. The data of this example are a part of a larger data set given by Hill et al. (1988) and collected by the Veterans
Administrative Lung Cancer Study Group in the USA. These data refer to four types of cancer, called Squamous,
Small, Adeno and Large. Follow the [10, 11, 12, 16], we only use observations of two types of cancers, including 9
observations, as in Table 4.

Table 4: Observations on the durability of two types of cancers.
Squamous type 10 81 110 100 42 8 25 11 72

Small type 30 13 23 16 21 18 20 27 31

The results of the confidence intervals related to the difference in location parameters (a = 0), the mean (a = 1), the
5th percentile and the 95th percentile of the first society of the second society are presented in Table 5. The results
include full data and incremental censorship data when m = 5. Based on the results of Table 5 for the complete

Table 5: Confidence interval for the cancer data.
GCI MNA SMNA MOV

m1,m2
R11, ..., R1m1

R21, ..., R2m2

parameter
Lower

bound

Upper

bound

Lower

bound

Upper

bound

Lower

bound

Upper

bound

Lower

bound

Upper

bound

9,9

0 . . . 0

0 . . . 0

Location -28.27 -1.99 -28.90 -2.62 -23.26 -3.07 -29.05 -2.53

Mean 4.46 86.23 4.01 86.98 0.79 76.60 4.12 88.14
5th percentile -25.28 0.26 -25.69 -0.05 -21.21 0.83 -25.77 -0.03

95th percentile 33.12 285.85 31.02 286.62 21.41 250.05 31.09 290.40

5,5

0,1,1,0,2

1,2,0,1,0

Location -56.55 2.08 -56.42 0.63 -42.19 -0.88 -57.03 1.24
Mean -7.59 245.80 -6.03 239.71 -10.91 191.11 -8.94 244.57

5th percentile -47.87 6.74 -47.90 5.77 -38.30 8.04 -48.23 5.89

95th percentile -4.03 801.56 -0.80 779.10 -13.23 616.54 -11.02 794.94

1,0,1,1,1

2,0,0,1,1

Location -58.56 1.42 -61.47 0.16 -45.71 -1.14 -62.08 0.69
Mean -3.07 263.88 -1.54 263.92 -8.11 209.85 -3.94 268.70

5th percentile -50.22 7.21 -52.06 6.01 -41.49 8.47 -52.37 6.10

95th percentile 11.62 855.50 13.95 854.93 -3.71 677.61 5.45 870.45
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sample, we can say that the average and 95th percentile of the time of hospitalization of the Squamous type are more
than the Small type, while the 5th percentile parameter of these distributions are reversely different. When we use
the second-generation censorship of constructing this confidence interval, the results show that in each of the four
parameters, these two types of cancer are the same. Perhaps the reason for this could be to reduce the information
obtained from censoring data towards the full sample.

Appendix: Proof of Theorem In order to find the distribution function Tn,m,a

In order to obtain the distribution function Tn,m,a, we have

Fn,m,a (t)=P (Tn,m,a ≤ t)=P
(
m
n

V−2na
U ≤ t

)
=P

(
V− n

m tU ≤ 2na
)

=
∫∞
0

fU (u)FV

(
2na+ n

m tu
)
du =

∫∞
0

fU (u)
(
1− exp

(
−
(
na+ n

2m tu
)) )

du.

where U∼χ2
2m−2 and V∼χ2

2 are independent and FV is probability distribution function of V . It should be noted
that when a > 0, its support is (−∞, ∞). For t < 0, the bound of u should be chosen such that 2na + ntu

m > 0, i.e.
u < − 2ma

t , so

Fn,m,a (t)=1− FU

(
− 2ma

t

)
− e−na

∫∞
− 2ma

t
fU (u) exp

(
− n

2m tu
)
du

=1− FU

(
− 2ma

t

)
− e−na

(
m

m+nt

)m−1 ∫∞
− 2a

t (nt+m)
fU (u) du

=1− FU

(
− 2ma

t

)
−e−na

(
m

m+nt

)m−1 (
1−FU

(
− 2a

t (nt+m)
))

For t > 0, the 2na+ ntu
m is positive and

Fn,m,a (t) = 1− e−na

∫ ∞

0

fU (u) exp
(
− n

2m
tu
)
du= 1−e−na

(
m

m+ nt

)m−1

.

It is very clear that both random variables, U and V , take positive values. Therefore, for calculating P
(
V ≤ 2na+ ntu

m

)
.

Since 2na+ ntu/m may be lower than zero, we use max
(
0, 2na+ ntu

m

)
. To calculate P

(
V − ntU

m ≤ 2na
)
. The integral

regions are as follows: {
V < 0 if 0 < u < − 2ma

t
V < 2na+ n

m tu if u > − 2ma
t

To obtain the quotient distribution function we perform the following

P
(
V ≤ n

m
tU + 2na

)
=

∫ ∞

0

∫ ∞

max( 0.2na− n
m ty)

fV (v) fU (u) dvdu=

∫ ∞

− 2ma
t

FV

(
2na+

n

m
tu
)
fU (u) du.

Given that V has an exponential distribution with an average of 2, when −2ma < t < 0, we will have the density of
the random variable U , we will have

P
(
V ≤ n

m
tU + 2na

)
= 1−F2m−2

(
−2ma

t

)
−e−na

∫ ∞

− 2ma
t

um−2e−
u
2 (1+

n
m t)

2m−1Γ (m− 1)
du.

Now with consideration (
1 +

n

m
t
)
u = s → u = s

(
m

m+ nt

)
we have

P
(
V ≤ n

m tU + 2na
)
=1− F2m−2

(
− 2ma

t

)
−e−na

(
m

m+nt

)m−1 (
1−F2m−2

(
−2am+nt

m

))
=e−

ma
t

∑∞
j=m−1

1
j!

(
ma
t

)j−e−am+n+nt
m

(
m

m+nt

)m−1 ∑∞
j=m−1

1
j!

(
am+nt

m

)j
.

If t ≥ 0, then

P
(
V ≤ n

m
tU + 2na

)
= 1−e−na

(
m

m+ nt

)m−1

.

When a < 0, the support fn,m,a contains positive values and the minimum value is −2ma, so for positive values t the
distribution function will be in the form below.

Fn.m.a (t)=P
(
V ≤ n

m tU + 2na
)
=

∫∞
− 2ma

t
FV

(
2na+ n

m tu
)
fU (u) du

=1− FU

(
− 2ma

t

)
−e−na

(
m

m+nt

)m−1 (
1−FU

(
− 2a

t (nt+m)
))

,
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where

FU (x)=

∫ x

0

fU (x) dx= 1−e−
x
2

m−2∑
j=0

1

j!

(x
2

)j

=e−
x
2

∞∑
j=m−1

1

j!

(x
2

)j

, x ≥ 0.

This complete the proof.
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