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Abstract

This paper concentrates on the parameter estimation for the Generalized Exponential Distribution (GED) in the
presence of interval-censored data with covariate. Interval-censored data usually arises in clinical and epidemiological
studies. This research attempts to investigate a conservative imputation technique to deal with interval censored data.
This is achieved by comparing the bias, standard error (SE) and root mean square error (RMSE) of the maximum
likelihood estimation (MLE) obtained without using imputation with the proposed imputation method at various
censoring proportion and sample sizes. The results indicate that the proposed imputation method performs better
than the traditional method at all sample sizes and censoring proportions.
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1 Introduction

Survival modelling studies the relation between lifetime with one or more covariates. However, a decisive analytical
problem occurs in analysing survival models when data is censored. One of the most common types of censoring in
survival analysis is interval censoring. Interval censored data arises when a survival time T cannot be observed but can
be specified to lie within the interval [Li, Ri] obtained from a sequence of examination times, where Li < T < Ri. Li

and Ri are defined as the left and right endpoints respectively. Clinical trial assessments demonstrate good examples
of these occurrences when patients are only evaluated at pre-scheduled visits and appointments. Interval-censored
data can be analysed by utilizing non-parametric, semiparametric and parametric models.

In this paper, we are mainly interested in exploring the Generalized Exponential distribution in the presence of
interval-censored data with covariates. The hazard function for this model is given by,

h(t;α, λ, µ) =
α

λ

(
1− e

−(t−µ)
λ

)α−1
e

−(t−µ)
λ

1−
(
1− e

−(t−µ)
λ

)α (t > µ). (1.1)
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where λ is the scale parameter, α is the shape parameter, and µ is the location parameter. If the shape parameter
α > 1 the hazard (risk) function increases from 0 to λ, if α < 1 the hazard (Risk) function is decreases from ∞ to λ
and if α = 1 the hazard (Risk) function remains unchanged [3]. The survival function for this model is given by,

S(t;α, λ, µ) = 1−
(
1− e

−(t−µ)
λ

)α
(t > µ, α > 0, λ > 0). (1.2)

and the probability density function for this model is given by,

f(t;α, λ, µ) =
α

λ

(
1− e

−(t−µ)
λ

)α−1
e

−(t−µ)
λ (t > µ, α > 0, λ > 0). (1.3)

Originally, Generalized Exponential distribution was first discussed by [11] as an alternative to the popularly uti-
lized Gamma and Weibull distributions. The three parameter Generalized Exponential distribution was developed
by the [3],where they compared the theoretical characteristics of this family to the well-studied characteristics of the
Weibull and the Gamma distributions. [5] studied the performance of the different estimators of the two unknown
parameters of a Generalized Exponential distribution for various parameter values and various sample sizes.[2] fo-
cused on the estimation of parameters of the Generalized Exponential distribution via maximum likelihood estimates
and moment methods in the presence of first type of interval censoring. [6, 4] mentioned that the two-parameters
Generalized Exponential distribution could be used effectively in analysing certain survival time data, especially,
in place of a two-parameters Weibull distribution or two-parameters Gamma distribution and in several cases the
two-parameters Generalized Exponential distribution. [7] examined the statistical inference of the log-exponentiated
Weibull regression model (LEWM) with interval censored data. [10] described how to assess survey process from a
true interval-censored data combination. [12] implemented the goodness-of-fit tests with two parameters Gompertz
model by using MLE based on interval and right-censored data. [8] reviewed estimation in interval censoring models,
including nonparametric and semiparametric estimations of a distribution function and regression models.

The objective of this paper is to evaluate the performance of the maximum likelihood estimation for the Generalized
exponential distribution in the presence of interval-censored data via simulation study at various censoring proportions
and sample sizes using bias, standard error and root mean square error. In this research we will be comparing two
methods of dealing with interval censored data. The first method (method (1)) will incorporate the probability of a
subject i failing within the interval (Li, Ri) directly into the likelihood function. The second method (method (2)) will
approximate the failure time for the ith subject, by randomly generating t̂i from the Uniform (Li, Ri) distribution.

2 Methodology

2.1 Generalized Exponential Distribution with Covariate and Interval Censored Data

Let T be a positive continuous random variable representing the survival time of individuals in a homogeneous
population. Let xi = (xi1, xi2, ..., xiq) be a vector of q covariates for the ith individuals, where; i = 1, 2, ..., n. The
effect of covariates can be incorporated into the model by letting the scale parameter be a function of the covariates
as shown below,

λ = e−(β0+βββxi), (2.1)

where βββ = β1, β2, ...., βq. The hazard function with covariates is given as:

h(ti;xi, α,βββ, µ) =
α

e−(β0+β1xi)
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the survival function with covariates can be expressed as follows:

S(ti;xi, α,βββ, µ) = 1−
(
1− e

−(ti−µ)
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)α
. (2.3)

the probability density function with covariates can be expressed as follows:
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2.2 Likelihood Equation and Estimation

The estimated parameters for the GED with covariates and interval censored data can be obtained by the method
of maximum likelihood. Let i = 1, 2, ....., n be censored and uncensored observation with covariates. The following
indicator variables will be used to identify if observation was censored or uncensored,

δIi =

{
1, if observation is interval censored;

0, Otherwise.

δEi
=

{
1, if observation is uncensored;

0, Otherwise.

The likelihood function of the full sample for the GED with covariates and interval censored data for method (1)
is given by:

L(ti, xi,ψψψ) =
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where ψψψ = (α, β0, β1, µ) and log-likelihood function is,
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The likelihood function of the full sample for the GED with covariates and interval censored data for method (2)
is given by:

L(ti, xi,ψψψ) =
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and log-likelihood function is,
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where t̂i ∼Uniform (Li, Ri). The Newton-Raphson iterative procedure will be used for solving the non linear likelihood
equations. The variance-covariance matrix can be estimated by taking the inverse of the observed information matrix
i(α̂, β̂0, β̂1, µ̂) which can be obtained from the second partial derivative of the log-likelihood function evaluated at

α̂, β̂0, β̂1, µ̂. Following that ˆvar(α̂, β̂0, β̂1, µ̂), can be obtained from [i(α̂, β̂0, β̂1, µ̂)]
−1
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3 Simulation Study

A simulation study with 1000 replication each with n=40, 100, 150, 180 and 200 were performed to assess the
performance of the GED with covariates and interval censored data using method (1) and method (2). The values
of the covariates xi were simulated independently from the Standard Normal distribution xi ∼ N(0, 1). To simulate
real-life survival data, the values 1, -0.05, 0.03 and 0.05 were selected as parameters of α, β0, β1 and µ respectively.
A series of random numbers, ui, was generated from Uniform Distribution U(0, 1) to produce lifetime ti for i = 1,
2,.....,n subjects. The lifetime ti was generated via on inverse transform method as following,

ti = µ− log(1− (ui)
1
α )e−(β0+β1xi).

The censoring time, Ci, was generated from exponential distribution exp(ω) where the value ω would be adjusted
to obtain the desired approximate censoring proportion (CP) for the data with 10%, 20%, 30%, 40% and 50%, where
Ci ≤ ti. Thus the data will consist of uncensored and interval censored data. In order to evaluate the performance
of the estimator at different combination of sample sizes and censoring proportions, the bias, standard error (SE) and
root mean square error (RMSE) of the parameter were calculated.

4 Results and Discussions

Table 1: Bias values of the parameters with covariate for method (1)

Bias

Estimates n CP

10% 20% 30% 40% 50%

40 -0.016405 -0.016445 -0.017546 -0.017593 -0.018505

100 -0.007808 -0.009354 -0.009523 -0.009890 -0.010789

α 150 -0.003373 -0.003602 -0.003345 -0.003283 -0.003609

180 -0.001768 -0.001801 -0.002067 -0.002271 -0.002351

200 -0.001250 -0.001682 -0.001325 -0.001765 -0.001844

40 0.002064 0.002097 0.002000 0.002054 0.004859

100 0.000783 0.000977 0.000751 0.000777 0.001125

β0 150 0.000330 0.000336 0.000295 0.000303 0.000311

180 0.000193 0.000200 0.000230 0.000261 0.000273

200 0.000132 0.000127 0.000144 0.000204 0.000211

40 0.000962 0.001054 -0.002239 -0.006221 -0.049284

100 0.000538 0.000471 0.000546 0.000592 0.000477

β1 150 0.000207 0.000211 0.000227 0.000224 0.000287

180 0.000128 0.000128 0.000137 0.000150 0.000159

200 0.000088 0.000112 0.000122 0.000150 0.000155

40 0.020893 0.021078 0.021169 0.021139 0.022477

100 0.009309 0.011347 0.011430 0.011591 0.012834

µ 150 0.003724 0.003769 0.003919 0.003840 0.004231

180 0.002153 0.002205 0.002562 0.002867 0.002981

200 0.001541 0.001406 0.001597 0.002216 0.002607

The results of the simulation study are given in tables (1)-(6). We calculated the value of bias, standard error
(SE) and root mean square error (RMSE) at all combination of censoring proportion and sample sizes. From the
previous tables (1)-(6), we can easily see that the values of bias, standard error (SE), and root mean square error
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Table 2: SE values of the parameters with covariate for method (1)

SE

Estimates n CP

10% 20% 30% 40% 50%

40 0.012736 0.011948 0.013135 0.013199 0.013544

100 0.008431 0.007947 0.008028 0.008351 0.010276

α 150 0.006083 0.006098 0.006673 0.006448 0.006778

180 0.004346 0.004374 0.004618 0.004599 0.004619

200 0.003833 0.003913 0.004068 0.004237 0.004269

40 0.002649 0.002653 0.006761 0.008598 0.021410

100 0.001151 0.001188 0.001253 0.000990 0.001463

β0 150 0.000782 0.000793 0.000713 0.000720 0.000724

180 0.000522 0.000542 0.000580 0.000623 0.000633

200 0.000417 0.000490 0.000514 0.000631 0.000633

40 0.007088 0.007441 0.006612 0.013679 0.035109

100 0.001380 0.001367 0.001421 0.001533 0.001626

β1 150 0.000755 0.000769 0.000817 0.000820 0.000936

180 0.000481 0.000501 0.000532 0.000504 0.000516

200 0.000324 0.000550 0.000589 0.000549 0.000552

40 0.015630 0.015850 0.015975 0.015947 0.016693

100 0.010498 0.009976 0.009993 0.010049 0.012836

µ 150 0.007283 0.007323 0.007658 0.007622 0.008071

180 0.005366 0.005436 0.005817 0.005967 0.006012

200 0.004069 0.004729 0.004995 0.005546 0.005562

(RMSE) increase with the increase in censoring proportion (CP) and decrease with the increase in sample size. This
means better performance of the estimates at lower censoring proportions and higher sample sizes. In addition, most
values of the bias, SE and RMSE of the parameter estimates of the method (2) are slightly lower compared to the
parameters of the method (1).This indicates that the method (2) would have higher accuracy and efficiency compared
to the method (1) of the parameter estimates.

5 Application with Real Data

In this dataset 197 patients were chosen at random as 50% from a population patient with ”high-risk” diabetic
retinopathy as defined by the diabetic retinopathy study (DRS). One eye of each patient was randomly treated with
a laser while the other eye got no treatment. For each eye, the time from the start of therapy to the time when visual
acuity went below 5/200 for two visits in a row was the event of interest. In the event of death, dropout, or end of
the study, a subject was censored. The Clayton Oakes model with exponential and Weibull marginals was previously
used to analyse the DRS data by [9] whereas [13] examined a few models based on the bivariate exponential and
Weibull distributions using Bayesian approaches, As for [1] they studied a parallel system survival model based on the
bivariate exponential in the Presence of a time-varying covariate. In this study, the objective of analysing the DRS
data is to see whether age affects the Fit of the Generalized Exponential Model. Where Diabetic Retinopathy data
consists of 394 observations on time to event or last follow-up which measured in months, Age is one of the covariates
available with this data set, Where the diagnosed in years, As for the status, where the 0= censored or 1 = visual
loss. Firstly we will fit the model with complete data set with respect to age covariate.

Firstly, the non-parametric Kaplan-Meier (KM) estimates for the survival function was obtained and the General-
ized Exponential Model was fitted to the data with full age covariate. Then, the two survival curves were plotted on



744 AL-Hakeem, Arasan, Shafie Bin Mustafa, Peng

Table 3: RMSE values of the parameters with covariate for method (1)

RMSE

Estimates n CP

10% 20% 30% 40% 50%

40 0.020171 0.020327 0.021917 0.021994 0.022932

100 0.011491 0.012273 0.012567 0.012944 0.014901

α 150 0.006861 0.006888 0.007286 0.007236 0.007679

180 0.004693 0.004730 0.005059 0.005129 0.005183

200 0.003973 0.004090 0.004279 0.004590 0.004650

40 0.003358 0.003382 0.007051 0.008840 0.021954

100 0.001392 0.001539 0.001637 0.001259 0.001845

β0 150 0.000849 0.000861 0.000771 0.000779 0.000788

180 0.000557 0.000578 0.000625 0.000676 0.000691

200 0.000437 0.000506 0.000534 0.000663 0.000668

40 0.007153 0.007515 0.006615 0.013693 0.035452

100 0.001481 0.001445 0.001520 0.001643 0.001694

β1 150 0.000783 0.000801 0.000848 0.000848 0.000979

180 0.000498 0.000514 0.000550 0.000526 0.000552

200 0.000336 0.000571 0.000602 0.000569 0.000574

40 0.026093 0.026454 0.026520 0.026480 0.027998

100 0.014031 0.015108 0.015301 0.015341 0.018151

µ 150 0.008180 0.008236 0.008602 0.008535 0.009112

180 0.005782 0.005866 0.006357 0.006620 0.006911

200 0.004559 0.004934 0.005244 0.005972 0.006021

the same graph, Which is shown in Figure 3. Secondly, the non-parametric Kaplan-Meier estimates for the survival
function was obtained and the Generalized Exponential distribution was fitted to the data when we classified DRS
into two general groups by the age, adult DRS (age>20 years) and juvenile DRS (age≤ 20 years). Then, the two
survival curves were plotted on the same graph, Which is shown in Figure 4 and Figure 5

Table (7) show the values of the parameter estimates, standard errors and the length of 95% and 90% confidence
intervals for the parameters α, β0, β1 and µ using the Z-test.

Figures 3-5 depict the plot of the survival functions obtained using the KM and the GED estimator for the modified
Diabetic Retinopathy data. From Figure 3 It can be seen that the reduced Generalized Exponential distribution
provides a satisfactory fit for the data as the estimated survival functions are approximately close to the values obtained
using the nonparametric KM estimator. Hence, the GED is appropriate to be fitted into Diabetic Retinopathy data.
Figure 4 and Figure 5, show that the plot of survival function obtained from GED to adult (age>20 years) is close
to the non-parametric Kaplan-Meier plot than for juvenile (age≤20 years). This indicates that the GED to adult
(age>20 years) is appropriate to be fitted into Diabetic Retinopathy data more than juvenile (age≤20 years).
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Table 4: Bias values of the parameters with covariate for method (2)

Bias

Estimates n CP

10% 20% 30% 40% 50%

40 -0.011422 -0.012781 -0.013541 -0.017219 -0.016236

100 -0.006623 -0.007584 -0.007811 -0.008347 -0.008883

α 150 -0.003191 -0.003799 -0.003742 -0.003425 -0.004119

180 -0.001603 -0.001771 -0.002047 -0.002225 -0.002329

200 -0.001215 -0.001572 -0.001226 -0.001329 -0.001750

40 0.000973 0.000656 -0.000730 0.001555 0.001837

100 0.000631 0.000812 0.000648 0.000677 0.000875

β0 150 0.000262 0.000327 0.000285 0.000271 0.000318

180 0.000144 0.000158 0.000187 0.000254 0.000269

200 0.000124 0.000131 0.000133 0.000117 0.000170

40 0.001153 0.000440 0.000753 0.001131 0.001556

100 0.000452 0.000517 0.000522 0.000401 0.000617

β1 150 0.000191 0.000237 0.000273 0.000156 0.000371

180 0.000177 0.000085 0.000120 0.000150 0.000192

200 0.000068 0.000096 0.000071 0.000085 0.000032

40 0.014605 0.015541 0.017072 0.022402 0.021479

100 0.008354 0.009777 0.010057 0.010394 0.011282

µ 150 0.003699 0.004634 0.004752 0.004255 0.005011

180 0.002058 0.002181 0.002451 0.002819 0.002934

200 0.001513 0.001332 0.001517 0.001589 0.001022
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Table 5: SE values of the parameters with covariate for method (2)

SE

Estimates n CP

10% 20% 30% 40% 50%

40 0.004688 0.011414 0.011667 0.016993 0.015980

100 0.007256 0.007492 0.007731 0.008566 0.008730

α 150 0.004823 0.005116 0.005447 0.005402 0.006156

180 0.004338 0.003323 0.003810 0.004491 0.004841

200 0.002644 0.003229 0.003502 0.002612 0.002027

40 0.000899 0.001030 0.001139 0.002961 0.003621

100 0.000916 0.001109 0.001136 0.000936 0.001175

β0 150 0.000482 0.000514 0.000535 0.000538 0.000661

180 0.000463 0.000333 0.000391 0.000608 0.000634

200 0.000284 0.000302 0.000443 0.000262 0.000190

40 0.001130 0.001252 0.001741 0.004345 0.006357

100 0.001055 0.001314 0.001332 0.000871 0.001359

β1 150 0.000556 0.000712 0.000720 0.000432 0.000791

180 0.000417 0.000294 0.000340 0.000514 0.000664

200 0.000255 0.000423 0.000271 0.000319 0.000500

40 0.006898 0.014614 0.015618 0.024107 0.023556

100 0.006569 0.010086 0.009636 0.011151 0.011580

µ 150 0.006018 0.006881 0.006818 0.006962 0.007740

180 0.005900 0.004166 0.004668 0.005847 0.006165

200 0.003200 0.004089 0.004461 0.003150 0.004090
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Table 6: RMSE values of the parameters with covariate for method (2)

RMSE

Estimates n CP

10% 20% 30% 40% 50%

40 0.012247 0.017136 0.017745 0.024192 0.022781

100 0.009824 0.010661 0.011336 0.011961 0.012455

α 150 0.005784 0.006598 0.006608 0.006396 0.007406

180 0.005319 0.003766 0.004326 0.005012 0.005372

200 0.002944 0.003572 0.003711 0.002930 0.002207

40 0.001325 0.001221 0.001353 0.003346 0.004061

100 0.001113 0.001375 0.001407 0.001155 0.001465

β0 150 0.000548 0.000602 0.000606 0.000622 0.000689

180 0.000524 0.000368 0.000433 0.000659 0.000688

200 0.000310 0.000334 0.000463 0.000287 0.000203

40 0.001615 0.001327 0.001897 0.004490 0.006545

100 0.001148 0.001412 0.001381 0.000958 0.001426

β1 150 0.000587 0.000750 0.000752 0.000456 0.000852

180 0.000453 0.000305 0.000360 0.000536 0.000692

200 0.000264 0.000434 0.000281 0.000330 0.000534

40 0.016152 0.021333 0.023138 0.032998 0.031878

100 0.012702 0.013978 0.014382 0.015244 0.016167

µ 150 0.007171 0.008296 0.008197 0.008160 0.009221

180 0.006740 0.004703 0.005272 0.006491 0.006828

200 0.003561 0.004795 0.004312 0.003528 0.006167

Table 7: MLE of Diabetic Retinopathy patients data with 95% and 90% confidence intervals

Estimate SE 95% Z-test length 90% Z-test length

0.6999857 0.0002545 (0.6994869, 0.7004845) 0.0009976 (0.6992671, 0.7004043) 0.0011372

-0.4522179 0.0108751 (-0.4735327, -0.4309031) -0.0426296 (-0.4751058, -0.4343351) -0.0407707

-0.3441711 0.0108791 (-0.3654937, -0.3228485) -0.0426452 (-0.3660656, -0.3262766) -0.0397890

0.2851697 0.0106155 (0.2643637, 0.3059757) 0.0416120 (0.2627088, 0.3026306) 0.0399218
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Figure 1: Comparison the SE values of method(1) and method(2)
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Figure 2: Comparison the RMSE values of method(1) and method(2)
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Figure 3: Plot of Kaplan-Meier and GED survival functions with full age

Figure 4: Plot of Kaplan-Meier and GED survival functions, when age>20 years

Figure 5: Plot of Kaplan-Meier and GED survival functions, when age≤20 years
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6 Conclusions and Recommendations

In this research, the maximum likelihood estimation (MLE) for the three parameters of the Generalized Exponential
distribution (GED) with covariate in the presence of Interval-censored data was obtained. It was shown that the bias,
SE and RMSE increase substantially when censoring proportion (CP) increases and sample size decreases. Also,it was
shown that the values of the estimated parameters of Bias, SE and RMSE in which generated from the method (2) are
slightly lower compared to the estimated parameter values in method (1), this indicates that the method (2) produces
better estimate of the parameters compared to the method (1). The discussion in this paper was restricted to one type
of censored data. Thus, it would be possible to carry out further work to include more censored data as right-censored
data. Also, the model could be extended to include a larger number of covariates to see their performance. The
Generalized Exponential distribution (GED) could also be extended further to include additional scale parameters, if
necessary. Also, we can use other methods to get good performance of the parameters as midpoint imputation method.
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