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PERTURBATIONS OF HIGHER JORDAN DERIVATIONS IN
BANACH TERNARY ALGEBRAS :AN ALTERNATIVE FIXED

POINT APPROACH

R. FAROKHZAD ROSTAMI1 AND S.A.R. HOSSEINIOUN2∗

Abstract. Using fixed point methods, we investigate approximately higher Jor-
dan ternary derivations in Banach ternaty algebras via the functional equation

Df (x1, .., xm) :=

m∑
k=2

(

k∑
i1=2

k+1∑
i2=i1+1

...

m∑
im−k+1=im−k+1

)f(

m∑
i=1,i6=i1,...,im−k+1

xi −
m−k+1∑
r=1

xir )

+ f(

m∑
i=1

xi)− 2m−1f(x1) = 0

where m ≥ 2 is an integer number.

1. Introduction and preliminaries

A ternary algebraA is a real or complex linear space, endowed with a linear mapping,
the so-called a ternary product (x, y, z) → [x, y, z] of A × A × A into A such that
[[x, y, z], w, v] = [x, [y, z, w], v] = [x, y, [z, w, v]] for all x, y, z, w, v ∈ A.

If (A,�) is a usual (binary) algebra, then [x, y, z] := (x� y)� z makes A into a
ternary algebra. Hence the ternary algebra is a natural generalization of the binary
case. In particular, if a ternary algebra (A, [ ]) has a unit, i.e., an element e ∈ A
such that x = [x, e, e] = [e, e, x] for all x ∈ A, then A with the binary product
x�y := [x, e, y], is a usual algebra. By a normed ternary algebra we mean a ternary
algebra with a norm ‖.‖ such that ‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖ for all x, y, z ∈ A. A
Banach ternary algebra is a normed ternary algebra such that the normed linear
space with norm ‖.‖ is complete.

Ternary algebraic operations were considered in the XIX-th century by several
mathematicians such that as A. Cayley [6] who first introduced in 1840 the notion
of ”cubic matrices” and a generalization of the determinant, called the ”hyperde-
terminant”, then were found again and generalized by M. Kapranov, I. M. Gelfand
and A. Zelevinskii in 1990 [19].

As an application in physics, the quark model inspired a particular brand of
ternary algebraic systems. The so-called ”Nambu mechanics” which has been pro-
posed by Y. Nambu [23] in 1973, is based on such structures. There are also some
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applications, although still hypothetical, in the fractional quantum Hall effect, the
non-standard statistics (the ”anyons”), supersymmetric theories, etc, (cf.[1, 20, 34]).

Throughout this paper, we assume that A and B are real or complex ternary
algebras. For the sake of convenience, we use the same symbol [ ] (resp. ‖.‖) in
order to represent the ternary products (resp. norms) on ternary algebras A and B.

A linear mapping h : A → B is said to be a ternary Jordan homomorphism if
h([x, x, x]) = [h(x), h(x), h(x)] holds for all x ∈ A. A linear mapping d : A → A
is said to be a ternary Jordan derivation if d([x, x, x]) = [d(x), x, x] + [x, d(x), x] +
[x, x, d(x)] holds for all x ∈ A (see [4]).

Let N be the set of natural numbers. For m ∈ N ∪ {0} = N0, a sequence H =
{h0, h1, ..., hm} (resp. H = {h0, h1, ..., hn, ...}) of linear mappings from A into B is
called a higher Jordan ternary derivation of rank m (resp. infinite rank) from A
into B if

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), hj(x), hk(x)]

holds for each n ∈ {0, 1, ...,m} (resp. n ∈ N0) and all x ∈ A. The higher Jordan
ternary derivation H from A into B is said to be onto if h0 : A → B is onto. The
higher Jordan ternary derivation H on A is called be strong if h0 is an identity
mapping on A. Of course, a higher Jordan ternary derivation of rank 0 from A
into B (resp. a strong higher Jordan ternary derivation of rank 1 on A) is a Jordan
ternary homomorphism (resp. a Jordan ternary derivation). So a higher Jordan
ternary derivation is a generalization of both a Jordan ternary homomorphism and
a Jordan ternary derivation.

Here let us consider an approximately higher Jordan ternary derivation which is
not an exactly higher Jordan ternary derivation in Banach ternary algebras.

The following remark is a slight modification of an example which is due to B. E.
Johnson [16] (see also [21, Example 1.1]).

Remark 1.1. Let X be a compact Hausdorff space and let (A, [ ]) be the Banach
ternary algebra of complex-valued continuous functions on X under the usual ad-
dition of complex-valued continuous functions, the ternary operation [ρ1, ρ2, ρ3] =
ρ1 ∗ ρ2 ∗ ρ3 and the supremum norm ‖.‖∞, where ∗ denotes the usual multiplication
of complex-valued continuous functions. Assume that τ : A → A is a continuous
ternary homomorphism. We define f : A → A by

f(x)(a) =

{
τ(x)(a) log |τ(x)(a)| if τ(x)(a) 6= 0,

0 if τ(x)(a) = 0

for all x ∈ A and all a ∈ X. It is easy to see that f([x, x, x]) = [f(x), τ(x), τ(x)] +
[τ(x), f(x), τ(x)]+[τ(x), τ(x), f(x)] for all x ∈ A. Let h0 = τ , hn = 0, 1 ≤ n ≤ m−1
and hm = f . Then we see that the sequence H = [h0, h1, ..., hm] satisfies the relation

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), hj(x), hk(x)]

for all x ∈ A. It is proved in [27, Remark 1.1] that for all u, v, w ∈ C\{0} with
u+ v + w 6= 0, where C is a complex field,

|(u+ v + w)log|u+ v + w| − ulog|u| − vlog|v| − wlog|w|| ≤ 2(|u|+ |v|+ |w|).
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This yields

‖hn(3x)− 3hn(x)‖∞ ≤ 6‖τ‖‖x‖∞
for each n = 0, 1, ...,m and all x ∈ A. Hence H is not an exactly higher Jordan
ternary derivation on A since hn is not exactly linear for each n ∈ N0. That is, we
may regard H as an approximately higher Jordan ternary derivation of rank m on
A.

In 1940, S. M. Ulam [33] gave a talk concerning approximate mappings before the
Mathematics Club of the University of Wisconsin in which he discussed a number
of unsolved problems:”what condition does there exists a homomorphism near an
approximate homomorphism ?” In 1941, D. H. Hyers [14] answered affirmatively the
question of Ulam for Banach spaces, which states that if ε > 0 and f : X → Y is a
mapping with X a normed space, Y a Banach space such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε

for all x→ X. This stability phenomenon is called the Hyers-Ulam stability of the
additive functional equation g(x+ y) = g(x) + g(y).

A generalized version of the theorem of Hyers for approximately additive mappings
was given by Th. M. Rassias [30] in 1978 by considering the case when the above
inequality is unbounded: if there exist θ ≥ 0 and 0 ≤ p < 1 such that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ X. From this fact, several authors say that the additive functional
equation g(x + y) = g(x) + g(y) has the Hyers-Ulam-Rassias stability property.
Since then, a great deal of work of Rassias type has been done by a number of
authors (cf. [17, 25, 26, 28] and reference therein).

In 1949, D. G. Bourgin [5] proved the following result, which is sometimes called
the superstability of ring homomorphisms: suppose that A and B are Banach alge-
bras with unit. If f : A→ B is a surjective mapping such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε,

‖f(xy)− f(x)f(y)‖ ≤ δ

for some ε ≥ 0, δ ≥ 0 and all x, y ∈ A, then f is a ring homomorphism.
Recently, R. Badora [3] and T. Miura et al. [21] proved the Hyers-Ulam sta- bility,

the Isac and Rassias-type stability [15], the Hyers-Ulam-Rassias stability and the
Bourgin-type superstability of ring derivations on Banach algebras.

On the other hand, C. Park [24] and M. S. Moslehian [22] have contributed works
on the stability problem of ternary homomorphisms and ternary derivations and M.
Bavand Savadkouhi [4] investigated stability problem of ternary Jordan homomor-
phisms and ternary Jordan derivations.
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K.-H. Park and Y.-S. Jung [27] proved the existence of an exact higher ternary
derivation near to an approximately higher ternary derivation by investigating the
Hyers-Ulam stability for higher ternary derivations in Banach ternary algebras.

Cǎdariu and Radu applied the fixed point method to the investigation of stability
of the functional equations. (see also [7, 8, 9, 10, 29, 31, 32]).

In this paper, we consider the m-dimensional additive functional equation

m∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

m∑
im−k+1=im−k+1

)f(
m∑

i=1,i 6=i1,..,im−k+1

xi−
m−k+1∑
r=1

xir)+f(
m∑
i=1

xi) = 2m−1f(x1)

(1.1)
where m ≥ 2 is an integer number. It is easy to see that the function f(x) = ax is
a solution of the functional equation (1.1).

As a special case, if m = 2 in (1.1), then the functional equation (1.1) reduces to

f(x1 + x2) + f(x1 − x2) = 2f(x1)

also by putting m = 3 in (1.1), we obtain

2∑
i1=2

3∑
i2=i1+1

f(
3∑

i=1,i 6=i1,i2

xi −
2∑

r=1

xir) +
3∑

i1=2

f(
3∑

i=1,i 6=i1

xi − xi1) + f(
3∑

i=1

xi) = 22f(x1)

that is,

f(x1 − x2 − x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3) + f(x1 + x2 + x3) = 4f(x1).

In this paper, we will adopt the fixed point alternative of Cǎdariu and Radu to
show the existence of an exact higher Jordan ternary derivation near to an approx-
imately higher Jordan ternary derivation by investigating the Hyers-Ulam stability
for higher Jordan ternary derivations in Banach ternary algebras. Furthermore, we
are going to examine the Isac and Rassias-type stability [15] and the Bourgin-type
superstability for higher Jordan ternary derivations in Banach ternary algebras.

2. Main results

We start our work with a general solution for equation 1.1.

Lemma 2.1. [11] Let X and Y be real vector spaces. A function f : X → Y with
f(0) = 0 satisfies 1.1 if and only if f : X → Y is additive.

From now, if X and Y are linear spaces, for convenience, we use the following
abbreviation for a given function f : X → Y :

Df (x1, .., xm) =
m∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

m∑
im−k+1=im−k+1

)f(
m∑

i=1,i 6=i1,...,im−k+1

xi −
m−k+1∑
r=1

xir)

+ f(
m∑
i=1

xi)− 2m−1f(x1)

for all x1, ..., xm ∈ X, where m ≥ 2 is an integer number.
Before proceeding to the main results, we will state the following theorem.
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Theorem 2.2. (the alternative of fixed point [10]). Suppose that we are given a
complete generalized metric space (Ω, d) and a strictly contractive mapping T : Ω→
Ω with Lipschitz constant L. Then for each given x ∈ Ω, either
d(Tmx, Tm+1x) =∞ for all m ≥ 0,
or other exists a natural number m0 such that
? d(Tmx, Tm+1x) <∞ for all m ≥ m0;
? the sequence {Tmx} is convergent to a fixed point y∗ of T ;
? y∗is the unique fixed point of T in the set Λ = {y ∈ Ω : d(Tm0x, y) <∞};
? d(y, y∗) ≤ 1

1−Ld(y, Ty) for all y ∈ Λ.

By a similar to in [2], we first obtain the Hyers-Ulam stability result.

Theorem 2.3. Let A be a normed ternary algebra and B a Banach ternary algebra.
Suppose that F = {f0, f1, ..., fn, ...} is a sequence of mappings from A into B such
that for some δ ≥ 0, ε ≥ 0 and each n ∈ N0,

‖Dfn(x1, .., xm) + fn(λx)− λfn(x)‖ ≤ ε (2.1)

and

‖fn([x, x, x])−
∑

i+j+k=n

[fi(x), fj(x), fk(x)]‖ ≤ δ (2.2)

hold for all x, y, z ∈ A and all λ ∈ U = {z ∈ C : |z| = 1}. Then there exists a
unique higher Jordan ternary derivation H = {h0, h1, ..., hn, ...} of any rank from A
into B such that for each n ∈ N0,

‖fn(x)− hn(x)‖ ≤ ε

2m−2 (2.3)

holds for all x ∈ A. Moreover, we have∑
i+j+k=n

[hi(x), hj(x), {hk(x)− fk(x)}] = 0 (2.4)

for each n ∈ N0 and all x ∈ A.

Proof. Putting xi = 0 (i = 3, ...,m) and x = 0 in 2.1 implies

‖(1 +
m−2∑
`=1

(
m− 2
`

)
)(fn(x1 + x2) + fn(x1 − x2))− 2m−1fn(x1)‖ ≤ ε (2.5)

for each n ∈ N0 and all x1, x2 ∈ A. Setting x1 = x2 = x in 2.5. On the other hand,
we have the relation

1 +

m−∑
`=1

(
m− 
`

)
=

m−∑
`=0

(
m− 
`

)
= 2m− (2.6)

for all m > . Hence we obtain from 2.6 and f(0) = 0 that

‖2m−2fn(2x)− 2m−1fn(x)‖ ≤ ε

for each n ∈ N0 and all x ∈ A, or

‖fn(2x)

2
− fn(x)‖ ≤ ε

2m−1 (2.7)

for each n ∈ N0 and all x ∈ A.
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Consider the set Xn := {g | g : A → B} and introduce the generalized metric on
Xn for all n ∈ N0:

d(h, g) := inf{c ∈ R+ : ‖g(x)− h(x)‖ ≤ cε, ∀x ∈ A}.

It is easy to show that (Xn, d) is complete for all n ∈ N0. Now we define the linear
mapping J : Xn → Xn for all n ∈ N0 by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. By Theorem 2.2,

d(J(g), J(h)) ≤ 1

2
d(g, h)

for all g, h ∈ Xn.
It follows from 2.7 that

d(fn, J(fn)) ≤ 1

2m−1 .

By Theorem 2.2, J has a unique fixed point in the set Xn1 := {h ∈ X : d(f, h) <∞}
for all n ∈ N0. Let hn be the fixed point of J for all n ∈ N0. hn is the unique mapping
with

hn(2x) = 2hn(x)

for all x ∈ A and for all n ∈ N0 satisfying there exists c ∈ (0,∞) such that

‖hn(x)− fn(x)‖ ≤ cε

for all x ∈ A and for all n ∈ N0. On the other hand we have limr d(Jr(fn), hn) = 0
for all n ∈ N0. It follows that

lim
r→∞

1

2r
fn(2rx) = hn(x) (2.8)

for all x ∈ A and for all n ∈ N0. It follows from d(fn, hn) ≤ 1
1− 1

2

d(fn, J(fn)), that

d(fn, hn) ≤ 1

2m−2

for each n ∈ N0.This implies the inequality 2.3.
If we replace x1, ..., xm with 2kx1, ..., 2

kxm in 2.1, respectively, and x = 0 and then
divide by 2k, we get

‖ 1

2k
Dfn(2kx1, ..., 2

kxm)‖ ≤ ε

2k
(2.9)

for each n ∈ N0. By letting k →∞ in 2.9, it follows from 2.8 that for each n ∈ N0,
Dhn(x1, ..., xm) = 0, thus for each n ∈ N0, hn satisfies 1.1. Hence by Lemma 2.1, the
function hn : A → B, is additive.

If we put xi = 0, (i = 1, 2, ...,m) and replace x with 2kx, and then divide by 2k,
in 2.1, for each n ∈ N0 yields

‖fn(λx)− λfn(x)‖ ≤ ε

for each λ ∈ U and all x ∈ A. By letting k →∞, we get hn(λx) = λhn(x), for each
x ∈ A and all λ ∈ U. Then it follows that the additive mapping hn is C-linear.
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Next, we need to show that the sequence H = {h0, h1, ..., hn, ...} satisfies the
identity

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), hj(x), hk(x)]

for each n ∈ N0 and all x ∈ A. The inequality 2.2 implies that the function
4n : A×A×A → B defined by

4n(x, , x, x) = fn([x, x, x])−
∑
i+j+k

[fi(x), fj(x), fk(x)] (2.10)

for each n ∈ N0 and all x ∈ A, is bounded. Hence we see that

lim
r→∞

4n(2rx, x, x)

2r
= 0 (2.11)

for each n ∈ N0 and all x ∈ A. Now, using 2.8, 2.10 and 2.11, we have

hn([x, x, x]) = lim
r→∞

fn(2r[x, x, x])

2r
= lim

r→∞

fn([2rx, x, x])

2r

= lim
r→∞

∑
i+j+k=n[fi(2

rx), fj(x), fk(x)] +4n(2rx, x, x)

2r

= lim
r→∞

∑
i+j+k=n

[
1

2r
fi(2

rx), fj(x), fk(x)

]
+ lim

r→∞

4n(2rx, x, x)

2r

=
∑

i+j+k=n

{
lim
r→∞

[
1

2r
fi(2

rx), fj(x), fk(x)

]}
=

∑
i+j+k=n

[hi(x), fj(x), fk(x)].

That is, we obtain that

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), fj(x), fk(x)] (2.12)

for each n ∈ N0 and all x ∈ A. Let m ∈ N be fixed. Then, applying 2.12 and the
additivity of each hn, n ∈ N0, we get∑

i+j+k=n

[hi(x), fj(2
rx), fk(x)] = hn([x, 2rx, x]) = hn([2rx, x, x])

=
∑

i+j+k=n

[hi(2
rx), fj(x), fk(x)]

= 2r
∑

i+j+k=n

[hi(x), fj(x), fk(x)].

Hence we have∑
i+j+k=n

[hi(x), fj(x), fk(x)] =
∑

i+j+k=n

[
hi(x),

1

2r
fj(2

rx), fk(x)

]
(2.13)

for each n ∈ N0 and all x ∈ A. Letting r →∞ in 2.13, it follows that∑
i+j+k=n

[hi(x), fj(x), fk(x)] =
∑

i+j+k=n

[hi(x), hj(x), fk(x)] (2.14)
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for each n ∈ N0 and all x ∈ A. Therefore, we obtain that

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), hj(x), fk(x)] (2.15)

for each n ∈ N0 and all x ∈ A. Again, using 2.15 and the additivity of each
hn, n ∈ N0, we get∑

i+j+k=n

[hi(x), hj(x), fk(2rx)] = hn([x, x, 2rx]) = hn([2rx, x, x])

=
∑

i+j+k=n

[hi(2
rx), hj(x), fk(x)]

= 2r
∑

i+j+k=n

[hi(x), hj(x), fk(x)].

So we have∑
i+j+k=n

[hi(x), hj(x), fk(x)] =
∑

i+j+k=n

[
hi(x), hj(x),

1

2r
fk(2rx)

]
(2.16)

for each n ∈ N0 and all x ∈ A. Taking r →∞ in 2.16, we have∑
i+j+k=n

[hi(x), hj(x), fk(x)] =
∑

i+j+k=n

[hi(x), hj(x), hk(x)] (2.17)

for each n ∈ N0 and all x ∈ A which implies 2.4. Combining 2.15 with 2.17, it
follows that H = {h0, h1, ..., hn, ...} satisfies the relation

hn([x, x, x]) =
∑

i+j+k=n

[hi(x), hj(x), hk(x)]

for each n ∈ N0 and all x ∈ A. Thus H is a higher Jordan ternary derivation from
A into B.

To show the uniqueness property of H, assume that H∗ = {h∗0, h∗1, ..., h∗n, ...} is
another higher Jordan ternary derivation from A into B satisfying

‖fn(x)− h∗n(x)‖ ≤ ε

2

for each n ∈ N0 and all x ∈ A. Let m ∈ N. Since hn and h∗n are additive, we deduce
that

2r‖hn(x)− h∗n(x)‖ = ‖hn(2rx)− h∗n(2rx)‖ ≤ ε,

so that

‖hn(x)− h∗n(x)‖ ≤ ε

2r

for each n ∈ N0 and all x ∈ A. Setting r →∞, we find that

hn(x) = h∗n(x)

for each n ∈ N0 and all x ∈ A. This completes the proof of the theorem.
�
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Let R+ be the set of positive real numbers. G. Isac and Th. M. Rassias [15]
generalized the Hyers theorem by introducing a mapping ψ : R+ → R+ subject to
the conditions

lim
t→∞

ψ(t)

t
= 0, (2.18)

ψ(ts) ≤ ψ(t)ψ(s) for all t, s ∈ R+, (2.19)

ψ(t) < t for all t > 1. (2.20)

Theorem 2.4. Let A be a normed ternary algebra, B a Banach ternary algebra
and ψ : R+ → R+ a mapping with properties 2.18, 2.19 and 2.20. In addition, let
ϕ : R+ → R+ be a mapping satisfying the condition

lim
t→∞

ϕ(t)

t
= 0. (2.21)

Suppose that F = {f0, f1, ..., fn, ...} is a sequence of mappings from A into B such
that for some ε ≥ 0 and each n ∈ N0,

‖Dfn(x1, .., xm) + fn(λx)− λfn(x)‖ ≤ εψ(
m∑
i=1

‖xi‖+ ‖x‖) (2.22)

and

‖fn([x, x, x])−
∑

i+j+k=n

[fi(x), fj(x), fk(x)]‖ ≤ ϕ(‖x‖3) (2.23)

hold for all xi, x ∈ A and all λ ∈ U. Then there exist a unique higher Jordan ternary
derivation H = {h0, h1, ..., hn, ..} of any rank from A into B and a constant k ∈ R
such that for each n ∈ N0 and all x ∈ A,

‖fn(x)− hn(x)‖ ≤ kεψ(‖x‖). (2.24)

Moreover, the relation 2.4 is fulfilled.

Proof. Putting xi = 0 (i = 3, ...,m) and x = 0 in 2.22 implies

‖(1 +
m−2∑
`=1

(
m− 2
`

)
)(fn(x1 + x2) + fn(x1 − x2))− 2m−1fn(x1)‖ ≤ εψ(‖x1‖+ ‖x2‖)

(2.25)
for each n ∈ N0 and all x1, x2 ∈ A. Setting x1 = x2 = x in 2.25. Hence we obtain
from 2.6 and f(0) = 0 that

‖2m−2fn(2x)− 2m−1fn(x)‖ ≤ εψ(2‖x‖) ≤ 2εψ(‖x‖)

for each n ∈ N0 and all x ∈ A, or

‖fn(2x)

2
− fn(x)‖ ≤ εψ(‖x‖)

2m−2 (2.26)

for each n ∈ N0 and all x ∈ A.
Consider the set Xn := {g | g : A → B} and introduce the generalized metric on

Xn for all n ∈ N0:

d(h, g) := inf{c ∈ R+ : ‖g(x)− h(x)‖ ≤ cψ(‖x‖), ∀x ∈ A}.
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It is easy to show that (Xn, d) is complete for all n ∈ N0. Now we define the linear
mapping J : Xn → Xn for all n ∈ N0 by

J(h)(x) =
1

2
h(2x)

for all x ∈ A. It is easy to show that,

d(J(g), J(h)) ≤ 1

2
d(g, h)

for all g, h ∈ Xn.
It follows from 2.26 that

d(fn, J(fn)) ≤ ε

2m−2 .

By Theorem 2.2, J has a unique fixed point in the set Xn1 := {h ∈ X : d(f, h) <∞}
for all n ∈ N0. Let hn be the fixed point of J for all n ∈ N0. hn is the unique mapping
with

hn(2x) = 2hn(x)

for all x ∈ A and for all n ∈ N0 satisfying there exists c ∈ (0,∞) such that

‖hn(x)− fn(x)‖ ≤ cψ(‖x‖)
for all x ∈ A and for all n ∈ N0. On the other hand, we have limr d(Jr(fn), hn) = 0
for all n ∈ N0. It follows that

lim
r→∞

1

2r
fn(2rx) = hn(x)

for all x ∈ A and for all n ∈ N0. It follows from d(fn, hn) ≤ 1
1− 1

2

d(fn, J(fn)), that

d(fn, hn) ≤ ε

2m−3

for all n ∈ N0. This implies the inequality 2.24. The further of the proof is similar
to the proof of Theorem 2.3. �

Remark 2.5. The typical example of the mapping ψ fulfilling 2.18, 2.19 and 2.20
is given by ψ(t) = tp, where p < 1. The example of the mapping ϕ satisfying 2.21 is
ϕ(t) = tq, where q < 1. If we intend to consider the case of p, q > 1, then we adopt
the method given by Z. Gajda in [12] to obtain the Isac and Rassias-type stability
result for the mapping ψ : R+ → R+ fulfilling the conditions

lim
t→∞

ψ(t)

t
= 0, (2.27)

ψ(ts) ≤ ψ(t)ψ(s) for all t, s ∈ R+, (2.28)

ψ(t) < t for all t ∈ (0, 1). (2.29)

In the proof of Theorem 2.3, if we replace 2.8 by

hn(x) = lim
r→∞

2rfn(
1

2r
x)

and 2.10 in by

lim
r→∞

2r4n(
1

2r
x, x, x) = 0,

then Theorem 2.4 is still true under the conditions 2.27, 2.28 and 2.29.
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