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Abstract

Let Rn be the set of all rational functions of the type r(z) = f(z)/w(z), where f(z) is a polynomial of degree at most
n and w(z) =

∏n
j=1(z − βj), |βj | > 1 for 1 ≤ j ≤ n. In this paper, we prove some results concerning the growth

of rational functions with prescribed poles by involving some of the coefficients of polynomial f(z). Our results not
only improve the results of N. A. Rather et al. [8], but also give the extension of some recent results concerning the
growth of polynomials by Kumar and Milovanovic [3] to the rational functions with prescribed poles and we obtain
the analogous results for such rational functions with restricted zeros.
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1 Introduction

Let Pn be the class of all complex polynomials of degree at most n. If f ∈ Pn, then

max
|z|=ν

|f(z)| ≤ νn max
|z|=1

|f(z)|, ν ≥ 1. (1.1)

Inequality (1.1) is a simple consequence of Maximum Modulus Principle (see [5], [6], [9]). The reverse analogue of
inequality (1.1) whenever ν ≤ 1 was given by Varga [11], and he proved that if f ∈ Pn, then

max
|z|=η

|f(z)| ≥ ηn max
|z|=1

|f(z)|, (1.2)

whenever 0 ≤ η ≤ 1. The equality in (1.1) and (1.2) holds whenever f(z) = λzn, λ ̸= 0.

For the class of polynomials having no zeros inside the unit circle, T. J. Rivlin [10] proved the following result:

Theorem 1.1. If f ∈ Pn does not vanish in |z| < 1, then for 0 ≤ η ≤ 1 and |z| = 1,

|f(ηz)| ≥
(
η + 1

2

)n

|f(z)|. (1.3)

The result is best possible and equality holds for f(z) = (z + ζ)n, |ζ| = 1.
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As a generalization of inequality (1.3), A. Aziz [1] established the following result:

Theorem 1.2. If f ∈ Pn has no zeros in |z| < k, then for |z| = 1,

|f(ηz)| ≥
(
k + η

k + 1

)n

|f(z)|, k ≥ 1 and 0 ≤ η ≤ 1, (1.4)

and

|f(ηz)| ≥
(
k + η

k + 1

)n

|f(z)|, k ≤ 1 and 0 < η ≤ k2. (1.5)

The result is sharp and equality holds for f(z) = (z + k)n.

Recently Kumar and Milovanovic [3] sharpened the inequalities (1.3), (1.4) and (1.5) by involving some of the
coefficients of underlying polynomial and obtained the following result:

Theorem 1.3. If f(z) =
n∑

j=1

αjz
j is a polynomial of degree n having no zeros in |z| < k, then for |z| = 1,

|f(ηz)| ≥
{(

k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n}
|f(z)|, k ≥ 1 and 0 ≤ η ≤ 1, (1.6)

and

|f(ηz)| ≥
{(

k + η

k + 1

)n

+

[
|α0| − |αn|kn

|α0|+ |αn|

](
ρ

k + 1

)n}
|f(z)|, k ≤ 1, 0 < η ≤ k2 and (1.7)

ρ = min {1− η, k + η}. The result is sharp and equality holds for f(z) = (z + k)n and also for f(z) = z + γ for any γ
with |γ| ≥ k.

For βj ∈ C, j = 1, 2, . . . , n, we define

w(z) :=

n∏
j=1

(z − βj), B(z) :=

n∏
j=1

(
1− βjz

z − βj

)
and

Rn := Rn(β1, β2, . . . , βn) =

{
f(z)

w(z)
; f ∈ Pn

}
.

Then Rn is the set of all rational functions with poles βj , j = 1, 2, . . . , n at most and with finite limit at infinity. It is
clear that B(z) ∈ Rn and |B(z)| = 1 for |z| = 1. Throughout this paper, we shall assume that all the poles βj , j = 1,
2, . . . , n lie in |z| > 1.

The problem concerning estimation of the inequalities for the rational functions has been evolved subsequently over
the last many years. Li, Mohapatra and Rodriguez [4] were the first mathematicians who obtained Bernstein-type
inequalities for rational functions. For the latest publications concerning to the growth estimates for the rational
functions, one can refer the papers [2], [7] and [12]. Very recently N. A. Rather et al. [8] extended the inequalities
(1.3), (1.4) and (1.5) to the rational functions and they proved the following result:

Theorem 1.4. Let r ∈ Rn have no zeros in |z| < k, then for |z| = 1,

|r(ηz)| ≥
(
η + k

1 + k

)n n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|, k ≥ 1 and 0 ≤ η ≤ 1, (1.8)

and

|r(ηz)| ≥
(
η + k

1 + k

)n n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|, k ≤ 1 and 0 < η ≤ k2. (1.9)
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2 Main results

In this section, we establish some results concerning to the rational functions of the type r(z) = f(z)/w(z), where
f(z) =

∑n
j=1 αjz

j and w(z) =
∏n

j=1(z − βj), |βj | > 1 for 1 ≤ j ≤ n by involving some coefficients of f(z). The
obtained results bring forth extensions of inequalities (1.6) and (1.7) to the rational functions with prescribed poles
and also sharpen the inequalities (1.8) and (1.9). We begin by presenting the following result:

Theorem 2.1. Let r ∈ Rn have no zeros in |z| < k, k ≥ 1, then for 0 ≤ η ≤ 1 and |z| = 1,

|r(ηz)| ≥
{(

k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n} n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|. (2.1)

Remark 2.2. Since r(z) = f(z)/w(z), where f(z) =
∑n

j=1 αjz
j has all its zeros in |z| ≥ k, k ≥ 1, we always have the

situation

|α0| − |αn|kn

|α0|+ |αn|
≥ 0.

Therefore, for all rational functions satisfying the hypothesis of Theorem 2.1 excepting those satisfying |α0| =
|αn|kn, our above inequality (2.1) sharpens the inequality (1.8).

Remark 2.3. Take w(z) = (z−β)n, |β| > 1 in Theorem 2.1. Then inequality (2.1) reduces to the following inequality

|f(ηz)| ≥
{(

k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n}(
|β| − 1

|β|+ η

)n ∣∣∣∣ηz − β

z − β

∣∣∣∣n |f(z)|. (2.2)

Letting |β| → ∞ in inequality (2.2), we immediately get inequality (1.6).

Theorem 2.4. Let r ∈ Rn have no zeros in |z| < k, k ≤ 1, then for |z| = 1,

|r(ηz)| ≥
{(

k + η

k + 1

)n

+

[
|α0| − |αn|kn

|α0|+ |αn|

](
ρ

k + 1

)n} n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|, (2.3)

whenever 0 < η ≤ k2 and ρ = min {1− η, k + η}.

Remark 2.5. As before, it can be easily seen that inequality (2.3) sharpens the inequality (1.9).

Remark 2.6. Take w(z) = (z−β)n, |β| > 1 in Theorem 2.4. Then inequality (2.3) reduces to the following inequality

|f(ηz)| ≥
{(

k + η

k + 1

)n

+

[
|α0| − |αn|kn

|α0|+ |αn|

](
ρ

k + 1

)n}(
|β| − 1

|β|+ η

)n ∣∣∣∣ηz − β

z − β

∣∣∣∣n |f(z)|. (2.4)

Letting |β| → ∞ in inequality (2.4), we immediately obtain inequality (1.7).

3 Preliminaries

In order to establish our results stated above, we need the following two lemmas due to Kumar and Milovanovic
[3] .

Lemma 3.1. For any 0 ≤ η ≤ 1 and ηj ≥ k ≥ 1, 1 ≤ j ≤ n, we have

n∏
j=1

η + ηj
1 + ηj

≥
(
k + η

k + 1

)n

+
1

kn−1

[
η1η2 . . . ηn − kn

η1η2 . . . ηn + 1

](
1− η

k + 1

)n

.

Lemma 3.2. For any 0 ≤ η ≤ 1 and ηj ≥ k, 1 ≤ j ≤ n, k > 0 we have

n∏
j=1

η + ηj
1 + ηj

≥
(
k + η

k + 1

)n

+

[
η1η2 . . . ηn − kn

η1η2 . . . ηn + kn

](
ρ

k + 1

)n

,

where ρ = min {1− η, k + η}.
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4 Proofs of the theorems

Proof . [Proof of Theorem 2.1] By assumption r ∈ Rn with no zero in |z| < k, k ≥ 1, we have r(z) = f(z)
w(z) , where

f(z) = c
n∏

j=1

(z − zj), |zj | ≥ k, k ≥ 1 and w(z) =
n∏

j=1

(z − βj), |βj | > 1. Since all the zeros of f(z) lie in |z| ≥ k, k ≥ 1,

we write f(z) = c
n∏

j=1

(z − ηje
iθj ), where ηj ≥ k ≥ 1, j = 1, 2, . . . , n. Hence, for 0 ≤ η ≤ 1 and 0 ≤ θ < 2π, we have

∣∣∣∣r(ηeiθ)r(eiθ)

∣∣∣∣ = ∣∣∣∣ f(ηeiθ)w(ηeiθ)

∣∣∣∣/∣∣∣∣ f(eiθ)w(eiθ)

∣∣∣∣
=

∣∣∣∣f(ηeiθ)f(eiθ)

∣∣∣∣∣∣∣∣ w(eiθ)w(ηeiθ)

∣∣∣∣
=

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ n∏
j=1

∣∣∣∣ eiθ − βj

ηeiθ − βj

∣∣∣∣. (4.1)

Now,

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ = n∏
j=1

∣∣∣∣ηei(θ−θj) − ηj
ei(θ−θj) − ηj

∣∣∣∣
=

n∏
j=1

(
η2 + η2j − 2ηηj cos(θ − θj)

1 + η2j − 2ηj cos(θ − θj)

)1/2

≥
n∏

j=1

η + ηj
1 + ηj

.

Thus we have,

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ ≥ n∏
j=1

η + ηj
1 + ηj

. (4.2)

Now employing Lemma 3.1 to the right hand side of the inequality (4.2) and using the fact that

η1η2 . . . ηn =
|α0|
|αn|

,

we get

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ ≥ (
k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n

. (4.3)

Also for |βj | > 1, j = 1, 2, . . . , n, we have

n∏
j=1

∣∣∣∣ eiθ − βj

ηeiθ − βj

∣∣∣∣ ≥ n∏
j=1

|βj | − 1

|βj |+ η
. (4.4)

Using inequalities (4.3) and (4.4) in equation (4.1), we obtain for 0 ≤ θ < 2π,∣∣∣∣r(ηeiθ)r(eiθ)

∣∣∣∣ ≥ {(
k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n} n∏
j=1

(
|βj | − 1

|βj |+ η

)
.

That is, for |z| = 1 and 0 ≤ η ≤ 1, we have

|r(ηz)| ≥
{(

k + η

k + 1

)n

+
1

kn−1

[
|α0| − |αn|kn

|α0|+ |αn|

](
1− η

k + 1

)n} n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|.
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This completes the proof of Theorem 2.1. □

Proof .[Proof of Theorem 2.4] By hypothesis r ∈ Rn with no zero in |z| < k, k ≤ 1, we have r(z) = f(z)
w(z) , where

f(z) = c
n∏

j=1

(z − zj), |zj | ≥ k, k ≤ 1 and w(z) =
n∏

j=1

(z − βj), |βj | > 1. Since all the zeros of f(z) lie in |z| ≥ k, k ≥ 1,

we write f(z) = c
n∏

j=1

(z − ηje
iθj ), where ηj ≥ k, k ≤ 1, j = 1, 2, . . . , n. Hence for 0 < η ≤ k2 and 0 ≤ θ < 2π, we have

∣∣∣∣r(ηeiθ)r(eiθ)

∣∣∣∣ = n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ n∏
j=1

∣∣∣∣ eiθ − βj

ηeiθ − βj

∣∣∣∣. (4.5)

Now,

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ = n∏
j=1

∣∣∣∣ηei(θ−θj) − ηj
ei(θ−θj) − ηj

∣∣∣∣
=

n∏
j=1

(
η2 + η2j − 2ηηj cos(θ − θj)

1 + η2j − 2ηj cos(θ − θj)

)1/2

≥
n∏

j=1

η + ηj
1 + ηj

.

Therefore, we have

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ ≥ n∏
j=1

η + ηj
1 + ηj

. (4.6)

Now applying Lemma 3.2 to the right hand side of the inequality (4.6) and using the fact that

η1η2 . . . ηn =
|α0|
|αn|

,

we get

n∏
j=1

∣∣∣∣ηeiθ − ηje
iθj

eiθ − ηjeiθj

∣∣∣∣ ≥ (
k + η

k + 1

)n [
η1η2 . . . ηn − kn

η1η2 . . . ηn + kn

](
ρ

k + 1

)n

, (4.7)

where ρ = min {1− η, k + η}. Again as before, for |βj | > 1, j = 1, 2, . . . , n, we have

n∏
j=1

∣∣∣∣ eiθ − βj

ηeiθ − βj

∣∣∣∣ ≥ n∏
j=1

|βj | − 1

|βj |+ η
. (4.8)

Using inequalities (4.7) and (4.8) in equation (4.5), we have for |z| = 1 and 0 < η ≤ k2,

|r(ηz)| ≥
{(

k + η

k + 1

)n

+

[
|α0| − |αn|kn

|α0|+ |αn|

](
ρ

k + 1

)n} n∏
j=1

(
|βj | − 1

|βj |+ η

)
|r(z)|,

where ρ = min {1− η, k + η} . This completes the proof. □

Acknowledgement

The authors are highly grateful to the anonymous referee for the valuable suggestions regarding the paper.



722 Rather, Wani, Bhat

References

[1] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc. 35 (1987),
247–256.

[2] A. Aziz and N.A. Rather, Growth of maximum modulus of rational functions with prescribed poles, J. Math.
Inequal. Appl. 2 (1999), no. 2, 165–173.

[3] P. Kumar and G.V. Milovanovic, On sharpening and generalization of Rivlin’s inequality, Turk. J. Math. 46
(2022), 1436–1445.

[4] X. Li, R.N. Mohapatra and R.S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed
poles, J. London Math. Soc. 51 (1995), 523—531.
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