Some inequalities for the growth of rational functions with prescribed poles

Nisar Ahmad Rather, Mohmmad Shafi Wani, Aijaz Ahmad Bhat*
Department of Mathematics, University of Kashmir, Srinagar-190006, India

(Communicated by Choonkil Park)

Abstract

Let \mathcal{R}_{n} be the set of all rational functions of the type $r(z)=f(z) / w(z)$, where $f(z)$ is a polynomial of degree at most n and $w(z)=\prod_{j=1}^{n}\left(z-\beta_{j}\right),\left|\beta_{j}\right|>1$ for $1 \leq j \leq n$. In this paper, we prove some results concerning the growth of rational functions with prescribed poles by involving some of the coefficients of polynomial $f(z)$. Our results not only improve the results of N. A. Rather et al. [8, but also give the extension of some recent results concerning the growth of polynomials by Kumar and Milovanovic [3] to the rational functions with prescribed poles and we obtain the analogous results for such rational functions with restricted zeros.

Keywords: Rational functions, polynomials, inequalities
2020 MSC: 30A10, 30C10, 30C15

1 Introduction

Let \mathcal{P}_{n} be the class of all complex polynomials of degree at most n. If $f \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\max _{|z|=\nu}|f(z)| \leq \nu^{n} \max _{|z|=1}|f(z)|, \quad \nu \geq 1 . \tag{1.1}
\end{equation*}
$$

Inequality (1.1) is a simple consequence of Maximum Modulus Principle (see [5], 6, 9]). The reverse analogue of inequality (1.1) whenever $\nu \leq 1$ was given by Varga [11], and he proved that if $f \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\max _{|z|=\eta}|f(z)| \geq \eta^{n} \max _{|z|=1}|f(z)|, \tag{1.2}
\end{equation*}
$$

whenever $0 \leq \eta \leq 1$. The equality in (1.1) and (1.2) holds whenever $f(z)=\lambda z^{n}, \lambda \neq 0$.
For the class of polynomials having no zeros inside the unit circle, T. J. Rivlin [10 proved the following result:
Theorem 1.1. If $f \in \mathcal{P}_{n}$ does not vanish in $|z|<1$, then for $0 \leq \eta \leq 1$ and $|z|=1$,

$$
\begin{equation*}
|f(\eta z)| \geq\left(\frac{\eta+1}{2}\right)^{n}|f(z)| \tag{1.3}
\end{equation*}
$$

The result is best possible and equality holds for $f(z)=(z+\zeta)^{n},|\zeta|=1$.

[^0]As a generalization of inequality (1.3), A. Aziz [1] established the following result:
Theorem 1.2. If $f \in \mathcal{P}_{n}$ has no zeros in $|z|<k$, then for $|z|=1$,

$$
\begin{equation*}
|f(\eta z)| \geq\left(\frac{k+\eta}{k+1}\right)^{n}|f(z)|, \quad k \geq 1 \quad \text { and } \quad 0 \leq \eta \leq 1 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(\eta z)| \geq\left(\frac{k+\eta}{k+1}\right)^{n}|f(z)|, \quad k \leq 1 \quad \text { and } \quad 0<\eta \leq k^{2} \tag{1.5}
\end{equation*}
$$

The result is sharp and equality holds for $f(z)=(z+k)^{n}$.
Recently Kumar and Milovanovic [3] sharpened the inequalities (1.3), (1.4) and (1.5) by involving some of the coefficients of underlying polynomial and obtained the following result:

Theorem 1.3. If $f(z)=\sum_{j=1}^{n} \alpha_{j} z^{j}$ is a polynomial of degree n having no zeros in $|z|<k$, then for $|z|=1$,

$$
\begin{equation*}
|f(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n}\right\}|f(z)|, \quad k \geq 1 \quad \text { and } \quad 0 \leq \eta \leq 1 \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{\rho}{k+1}\right)^{n}\right\}|f(z)|, \quad k \leq 1, \quad 0<\eta \leq k^{2} \quad \text { and } \tag{1.7}
\end{equation*}
$$

$\rho=\min \{1-\eta, k+\eta\}$. The result is sharp and equality holds for $f(z)=(z+k)^{n}$ and also for $f(z)=z+\gamma$ for any γ with $|\gamma| \geq k$.

For $\beta_{j} \in \mathbb{C}, \mathbf{j}=1,2, \ldots, n$, we define

$$
w(z):=\prod_{j=1}^{n}\left(z-\beta_{j}\right), \quad B(z):=\prod_{j=1}^{n}\left(\frac{1-\overline{\beta_{j}} z}{z-\beta_{j}}\right)
$$

and

$$
\mathcal{R}_{n}:=\mathcal{R}_{n}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\left\{\frac{f(z)}{w(z)} ; f \in \mathcal{P}_{n}\right\} .
$$

Then \mathcal{R}_{n} is the set of all rational functions with poles $\beta_{j}, j=1,2, \ldots, n$ at most and with finite limit at infinity. It is clear that $B(z) \in \mathcal{R}_{n}$ and $|B(z)|=1$ for $|z|=1$. Throughout this paper, we shall assume that all the poles $\beta_{j}, \mathrm{j}=1$, $2, \ldots, n$ lie in $|z|>1$.

The problem concerning estimation of the inequalities for the rational functions has been evolved subsequently over the last many years. Li, Mohapatra and Rodriguez [4] were the first mathematicians who obtained Bernstein-type inequalities for rational functions. For the latest publications concerning to the growth estimates for the rational functions, one can refer the papers [2, [7] and [12]. Very recently N. A. Rather et al. 8] extended the inequalities (1.3), (1.4) and $\sqrt{1.5}$ to the rational functions and they proved the following result:

Theorem 1.4. Let $r \in \mathcal{R}_{n}$ have no zeros in $|z|<k$, then for $|z|=1$,

$$
\begin{equation*}
|r(\eta z)| \geq\left(\frac{\eta+k}{1+k}\right)^{n} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)|, \quad k \geq 1 \quad \text { and } \quad 0 \leq \eta \leq 1, \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|r(\eta z)| \geq\left(\frac{\eta+k}{1+k}\right)^{n} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)|, \quad k \leq 1 \quad \text { and } \quad 0<\eta \leq k^{2} . \tag{1.9}
\end{equation*}
$$

2 Main results

In this section, we establish some results concerning to the rational functions of the type $r(z)=f(z) / w(z)$, where $f(z)=\sum_{j=1}^{n} \alpha_{j} z^{j}$ and $w(z)=\prod_{j=1}^{n}\left(z-\beta_{j}\right),\left|\beta_{j}\right|>1$ for $1 \leq j \leq n$ by involving some coefficients of $f(z)$. The obtained results bring forth extensions of inequalities 1.6 and 1.7 to the rational functions with prescribed poles and also sharpen the inequalities $(1.8$ and (1.9). We begin by presenting the following result:

Theorem 2.1. Let $r \in \mathcal{R}_{n}$ have no zeros in $|z|<k, k \geq 1$, then for $0 \leq \eta \leq 1$ and $|z|=1$,

$$
\begin{equation*}
|r(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n}\right\} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)| \tag{2.1}
\end{equation*}
$$

Remark 2.2. Since $r(z)=f(z) / w(z)$, where $f(z)=\sum_{j=1}^{n} \alpha_{j} z^{j}$ has all its zeros in $|z| \geq k, k \geq 1$, we always have the situation

$$
\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|} \geq 0
$$

Therefore, for all rational functions satisfying the hypothesis of Theorem 2.1 excepting those satisfying $\left|\alpha_{0}\right|=$ $\left|\alpha_{n}\right| k^{n}$, our above inequality (2.1) sharpens the inequality (1.8).

Remark 2.3. Take $w(z)=(z-\beta)^{n},|\beta|>1$ in Theorem 2.1. Then inequality 2.1) reduces to the following inequality

$$
\begin{equation*}
|f(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n}\right\}\left(\frac{|\beta|-1}{|\beta|+\eta}\right)^{n}\left|\frac{\eta z-\beta}{z-\beta}\right|^{n}|f(z)| . \tag{2.2}
\end{equation*}
$$

Letting $|\beta| \rightarrow \infty$ in inequality 2.2 , we immediately get inequality 1.6 .
Theorem 2.4. Let $r \in \mathcal{R}_{n}$ have no zeros in $|z|<k, k \leq 1$, then for $|z|=1$,

$$
\begin{equation*}
|r(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{\rho}{k+1}\right)^{n}\right\} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)| \tag{2.3}
\end{equation*}
$$

whenever $0<\eta \leq k^{2}$ and $\rho=\min \{1-\eta, k+\eta\}$.
Remark 2.5. As before, it can be easily seen that inequality 2.3 sharpens the inequality 1.9 .
Remark 2.6. Take $w(z)=(z-\beta)^{n},|\beta|>1$ in Theorem 2.4. Then inequality 2.3) reduces to the following inequality

$$
\begin{equation*}
|f(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{\rho}{k+1}\right)^{n}\right\}\left(\frac{|\beta|-1}{|\beta|+\eta}\right)^{n}\left|\frac{\eta z-\beta}{z-\beta}\right|^{n}|f(z)| \tag{2.4}
\end{equation*}
$$

Letting $|\beta| \rightarrow \infty$ in inequality (2.4), we immediately obtain inequality (1.7).

3 Preliminaries

In order to establish our results stated above, we need the following two lemmas due to Kumar and Milovanovic [3].

Lemma 3.1. For any $0 \leq \eta \leq 1$ and $\eta_{j} \geq k \geq 1,1 \leq j \leq n$, we have

$$
\prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}} \geq\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\eta_{1} \eta_{2} \ldots \eta_{n}-k^{n}}{\eta_{1} \eta_{2} \ldots \eta_{n}+1}\right]\left(\frac{1-\eta}{k+1}\right)^{n}
$$

Lemma 3.2. For any $0 \leq \eta \leq 1$ and $\eta_{j} \geq k, 1 \leq j \leq n, k>0$ we have

$$
\prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}} \geq\left(\frac{k+\eta}{k+1}\right)^{n}+\left[\frac{\eta_{1} \eta_{2} \ldots \eta_{n}-k^{n}}{\eta_{1} \eta_{2} \ldots \eta_{n}+k^{n}}\right]\left(\frac{\rho}{k+1}\right)^{n}
$$

where $\rho=\min \{1-\eta, k+\eta\}$.

4 Proofs of the theorems

Proof . [Proof of Theorem 2.1] By assumption $r \in \mathcal{R}_{n}$ with no zero in $|z|<k, k \geq 1$, we have $r(z)=\frac{f(z)}{w(z)}$, where $f(z)=c \prod_{j=1}^{n}\left(z-z_{j}\right),\left|z_{j}\right| \geq k, k \geq 1$ and $w(z)=\prod_{j=1}^{n}\left(z-\beta_{j}\right),\left|\beta_{j}\right|>1$. Since all the zeros of $f(z)$ lie in $|z| \geq k, k \geq 1$, we write $f(z)=c \prod_{j=1}^{n}\left(z-\eta_{j} e^{i \theta_{j}}\right)$, where $\eta_{j} \geq k \geq 1, j=1,2, \ldots, n$. Hence, for $0 \leq \eta \leq 1$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{align*}
\left|\frac{r\left(\eta e^{i \theta}\right)}{r\left(e^{i \theta}\right)}\right| & =\left|\frac{f\left(\eta e^{i \theta}\right)}{w\left(\eta e^{i \theta}\right)}\right| /\left|\frac{f\left(e^{i \theta}\right)}{w\left(e^{i \theta}\right)}\right| \\
& =\left|\frac{f\left(\eta e^{i \theta}\right)}{f\left(e^{i \theta}\right)}\right|\left|\frac{w\left(e^{i \theta}\right)}{w\left(\eta e^{i \theta}\right)}\right| \\
& =\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| \prod_{j=1}^{n}\left|\frac{e^{i \theta}-\beta_{j}}{\sum_{e^{i \theta}}-\beta_{j}}\right| . \tag{4.1}
\end{align*}
$$

Now,

$$
\begin{aligned}
\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| & =\prod_{j=1}^{n}\left|\frac{\eta e^{i\left(\theta-\theta_{j}\right)}-\eta_{j}}{e^{i\left(\theta-\theta_{j}\right)}-\eta_{j}}\right| \\
& =\prod_{j=1}^{n}\left(\frac{\eta^{2}+\eta_{j}^{2}-2 \eta \eta_{j} \cos \left(\theta-\theta_{j}\right)}{1+\eta_{j}^{2}-2 \eta_{j} \cos \left(\theta-\theta_{j}\right)}\right)^{1 / 2} \\
& \geq \prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}} .
\end{aligned}
$$

Thus we have,

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{\eta^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| \geq \prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}} . \tag{4.2}
\end{equation*}
$$

Now employing Lemma 3.1 to the right hand side of the inequality 4.2 and using the fact that

$$
\eta_{1} \eta_{2} \ldots \eta_{n}=\frac{\left|\alpha_{0}\right|}{\left|\alpha_{n}\right|}
$$

we get

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{\theta_{j}}}\right| \geq\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n} . \tag{4.3}
\end{equation*}
$$

Also for $\left|\beta_{j}\right|>1, j=1,2, \ldots, n$, we have

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{e^{i \theta}-\beta_{j}}{\eta e^{i \theta}-\beta_{j}}\right| \geq \prod_{j=1}^{n} \frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta} . \tag{4.4}
\end{equation*}
$$

Using inequalities (4.3) and (4.4) in equation (4.1), we obtain for $0 \leq \theta<2 \pi$,

$$
\left|\frac{r\left(\eta e^{i \theta}\right)}{r\left(e^{i \theta}\right)}\right| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n}\right\} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right) .
$$

That is, for $|z|=1$ and $0 \leq \eta \leq 1$, we have

$$
|r(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\frac{1}{k^{n-1}}\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{1-\eta}{k+1}\right)^{n}\right\} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)| .
$$

This completes the proof of Theorem 2.1.
Proof .[Proof of Theorem 2.4 By hypothesis $r \in \mathcal{R}_{n}$ with no zero in $|z|<k, k \leq 1$, we have $r(z)=\frac{f(z)}{w(z)}$, where $f(z)=c \prod_{j=1}^{n}\left(z-z_{j}\right),\left|z_{j}\right| \geq k, k \leq 1$ and $w(z)=\prod_{j=1}^{n}\left(z-\beta_{j}\right),\left|\beta_{j}\right|>1$. Since all the zeros of $f(z)$ lie in $|z| \geq k, k \geq 1$, we write $f(z)=c \prod_{j=1}^{n}\left(z-\eta_{j} e^{i \theta_{j}}\right)$, where $\eta_{j} \geq k, k \leq 1, j=1,2, \ldots, n$. Hence for $0<\eta \leq k^{2}$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{equation*}
\left|\frac{r\left(\eta e^{i \theta}\right)}{r\left(e^{i \theta}\right)}\right|=\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| \prod_{j=1}^{n}\left|\frac{e^{i \theta}-\beta_{j}}{\eta e^{i \theta}-\beta_{j}}\right| \tag{4.5}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| & =\prod_{j=1}^{n}\left|\frac{\eta e^{i\left(\theta-\theta_{j}\right)}-\eta_{j}}{e^{i\left(\theta-\theta_{j}\right)}-\eta_{j}}\right| \\
& =\prod_{j=1}^{n}\left(\frac{\eta^{2}+\eta_{j}^{2}-2 \eta \eta_{j} \cos \left(\theta-\theta_{j}\right)}{1+\eta_{j}^{2}-2 \eta_{j} \cos \left(\theta-\theta_{j}\right)}\right)^{1 / 2} \\
& \geq \prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| \geq \prod_{j=1}^{n} \frac{\eta+\eta_{j}}{1+\eta_{j}} \tag{4.6}
\end{equation*}
$$

Now applying Lemma 3.2 to the right hand side of the inequality 4.6 and using the fact that

$$
\eta_{1} \eta_{2} \ldots \eta_{n}=\frac{\left|\alpha_{0}\right|}{\left|\alpha_{n}\right|}
$$

we get

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{\eta e^{i \theta}-\eta_{j} e^{i \theta_{j}}}{e^{i \theta}-\eta_{j} e^{i \theta_{j}}}\right| \geq\left(\frac{k+\eta}{k+1}\right)^{n}\left[\frac{\eta_{1} \eta_{2} \ldots \eta_{n}-k^{n}}{\eta_{1} \eta_{2} \ldots \eta_{n}+k^{n}}\right]\left(\frac{\rho}{k+1}\right)^{n} \tag{4.7}
\end{equation*}
$$

where $\rho=\min \{1-\eta, k+\eta\}$. Again as before, for $\left|\beta_{j}\right|>1, j=1,2, \ldots, n$, we have

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\frac{e^{i \theta}-\beta_{j}}{\eta e^{i \theta}-\beta_{j}}\right| \geq \prod_{j=1}^{n} \frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta} \tag{4.8}
\end{equation*}
$$

Using inequalities 4.7) and (4.8) in equation 4.5, we have for $|z|=1$ and $0<\eta \leq k^{2}$,

$$
|r(\eta z)| \geq\left\{\left(\frac{k+\eta}{k+1}\right)^{n}+\left[\frac{\left|\alpha_{0}\right|-\left|\alpha_{n}\right| k^{n}}{\left|\alpha_{0}\right|+\left|\alpha_{n}\right|}\right]\left(\frac{\rho}{k+1}\right)^{n}\right\} \prod_{j=1}^{n}\left(\frac{\left|\beta_{j}\right|-1}{\left|\beta_{j}\right|+\eta}\right)|r(z)|
$$

where $\rho=\min \{1-\eta, k+\eta\}$. This completes the proof.

Acknowledgement

The authors are highly grateful to the anonymous referee for the valuable suggestions regarding the paper.

References

[1] A. Aziz, Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc. 35 (1987), 247-256.
[2] A. Aziz and N.A. Rather, Growth of maximum modulus of rational functions with prescribed poles, J. Math. Inequal. Appl. 2 (1999), no. 2, 165-173.
[3] P. Kumar and G.V. Milovanovic, On sharpening and generalization of Rivlin's inequality, Turk. J. Math. 46 (2022), 1436-1445.
[4] X. Li, R.N. Mohapatra and R.S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles, J. London Math. Soc. 51 (1995), 523-531.
[5] G. V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World Scientific Publishing Co., Singapore, 1994.
[6] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol.I, Springer-Verlag, New York, 1972.
[7] N.A. Rather, M.S. Wani and I.A. Dar, Growth estimate for rational functions with prescribed poles and restricted zeros, Int. J. Nonlinear Anal. Appl. 13 (2022), no. 1, 247-252.
[8] N.A. Rather, M.S. Wani and I.A. Dar, Growth estimate for rational functions with prescribed poles and restricted zeros, Kragujevac J. Math. 49 (2025), no. 2, 305-311.
[9] M. Reisz, Über einen Satz des Herrn Serge Bernstein, Acta. Math. 40 (1916), 337-347.
[10] T.J. RivIin, On the maximum modulus of polynomials, Amer. Math. Month. 67 (1960), 251-253.
[11] R.S. Varga, A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials, J. Soc. Industr. Appl. Math. 5 (1957), no. 2, 39-46.
[12] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, Vol. 20, Amer. Math. Soc., Colloq. Publ., Providence, R. I, 1969.

[^0]: *Corresponding author
 Email addresses: dr.narather@gmail.com (Nisar Ahmad Rather), wanishafi1933@gmail.com (Mohmmad Shafi Wani), aijazb824@gmail.com (Aijaz Ahmad Bhat)

