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Abstract

Let G, = (V, E) be a topological graph which is a finite, simple, undirected, connected graph without isolated
vertices. In this paper, several bounds and domination parameters are studied and applied to it: bi-domination,
doubly connected bi-domination and pitchfork domination. The dominating set and domination number with its
inverse for all these types are calculated. Also, some figures from the topological graph are introduced.
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1 Introduction

Let G = (V, E) be a graph where the set of vertices of G is V (G) and the set of edges of G is E (G). The vertex u
is adjacent to a vertex v if there is an edge between them. The order of a graph G is the number of all elements in
V (G), denoted by |V (G)|. The size of a graph G is the number of all elements in F (G). The subgraph H of G is
induced subgraph denoted by G [H] and constructed by all vertices of H C V (G) and all edges between vertices of
H. A graph G is connected graph if every two vertices are joined by a path, see [32]. The subset D is dominating set
if for each vertex of V' — D is adjacent to one or more vertices of D. The domination number denoted by « (G) is the
cardinality of the minimum dominating set [I8]. The inverse dominating set in a graph G is a minimum dominating
set exist in the set V — D, denoted by D~!. The inverse domination number denoted by v~* (G) is the cardinality of
the minimum inverse dominating set [29]. The subset D is called bi-dominating set if every vertex in D is adjacent to
exactly two vertices in V' — D. The bi-domination number denoted by 7; (G) [16]. The subset D is a doubly connected
bi-dominating set if D is bi-dominating set and both G [D] and G [V — D] are connected. The doubly connected bi-
domination number denoted by ;¢ (G) [2]. The subset D is a pitchfork dominating set if every vertex in D dominates
at least j = 1 and at most k = 2 vertices of V' — D. The pitchfork domination number denoted by 7, (G) [I]. For
more information about domination see [I]-[I5], [T, B0, BI]. The discrete topology is denoted by (X, 7) such that X
is a non-empty set and 7 is a family of all subsets of X, where 7 = P (X) [33]. There are many papers to linking the
graph to topology, see [19]-[28]. In this paper, some types of domination are studied on the discrete topological graph
and calculate the inverse domination for it.
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2 Main Results

In this section, the definition that form a topological graphs is written with different properties and theorems of
this graphs are studied.

Definition 2.1. [26] Let X be a non-empty set and 7 be a discrete topology on X. The discrete topological
graph denoted by G, = (V,E) is a graph of the vertex set V = {A;A€7and A#0,X}, and the edge set
E={AB;AZ Band B¢ A}.

Proposition 2.2. [26] Let X be a non-empty set of order n and let 7 be a discrete topology on X. If n = 2, then
G, =2 K.

Proposition 2.3. [26] Let X be a non-empty set of order n and let 7 be a discrete topology on X. If n = 3, then
G, = Cs.

Proposition 2.4. [26] Let |X| = n and G,be a discrete topological graph. Then, the graph G, has n — 1 complete
induced subgraphs K; such that t > n.

Theorem 2.5. Let G, be a discrete topological graph of a non-empty set X. Then, G, is a connected graph.

Proof . Assume that ujandus are any two vertices in a graph G, let S be a set of all vertices of singleton element.
Then, there are three cases as follows:

Case 1: If uy, us € S, since G [S] = K, from proof of Proposition 2.4. Then, u; adjacent to ug for all elements of S.
So, there is an edge u; us € E (G;) in a graph G..

Case 2: If uy € Sand us ¢ S, if uy € us A us € uy then uy us € E(G,). If uy not adjacent to uy. Then, there

is at least one vertex in S say v adjacent to ug such that v ¢ up and us € v. Since v adjacent with u; from proof of
Proposition 2.4, so that v adjacent to u; and us. Thus, u; — v — ug is a path in a graph G.

Case 3: If uy, us ¢ S and u; not adjacent to we. If there is a vertex ¢ € S such that uy g t ANt gZ U1,
also up €t A t € ug. Then, uy t € E(G;) and us t € E(G;) and u; —t — up is a path in G;. Otherwise, there is
t1, to € S whereu; t; € E(G;) and tg us € F (G,), then u; —t; —to —us is a path in G,. Hence, G is a connected
graph. [J

Proposition 2.6. [26] Let | X| = n, then the order of discrete topological graph G, is 2™ — 2.

Corollary 2.7. [28] Let | X| = n, then the order of the topological graph G is 337" (M.

3 Domination on the Topological Graph

In this section, many results of domination are found on the discrete topological graph.

2" — 2

Observation 3.1. Let G, be a discrete topological graph of order 2" —2 has a bi-dominating set. If v; (G) > =5-=,

thus it has no inverse bi-dominating set.

Observation 3.2. For any topological graph G, of order 2" — 2 has a pitchfork domination. If v,¢ (G;) > 222

2
then G, has no inverse pitchfork domination.

Proposition 3.3. [28] Let |X| = 3 and G, be a discrete topological graph. Then, G, has a bi-dominating set and
i (Gr) = 2.

Theorem 3.4. [2§] Let | X| = n (n >4) and G, be a discrete topological graph. Then, G, has bi-dominating set
and v, (G;) = Y0 (1) — 4.

Proposition 3.5. [28] Let |X| = n (n >4) and G, be a discrete topological graph. Then, G, has no inverse bi-
dominating set.
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Proposition 3.6. Let |X| = 3, then G, has a doubly connected bi-dominating set and ;¢ (G,) = 2.

Proof . If | X| = 2, then G, = K, by Proposition 2.2, and it is clear Ko has no bi-dominating set, also it has no
doubly connected bi-dominating set. If |X| = 3 by the same technique of proof of Proposition 3.3. Let D = {u,u°}
such that this two vertices of D dominate only two vertices of V' — D and it is bi-dominating set. Now, if we take
D = {{1}, {2, 3}} since {1} € {2, 3} A {2, 3} € {1}. Then, there is an edge between them so G [D] form a path
and it is connected. Let V — D = {{2}, {3}, {1, 2}, {1, 3}} since {2} adjacent with {3} and {1, 2} adjacent with
{1, 3} from proof of Proposition 2.3. Also, since {3} ¢ {1, 2} A {1, 2} € {3} so there is an edge between them.
Again, since {2} € {1, 3} A {1, 3} € {2} also there is an edge between them. Now, since {2} adjacent to {3}, {3}
adjacent to {1, 2}, {1, 2} adjacent to {1,3} and {1, 3} adjacent to {2}. Hence, G [V — D] form a cycle so that it is
connected. Since both G [D] and G [V — D] are connected. Hence, D is a doubly connected bi-dominating set and
v5¢ (G,) = 2. See Figure 1 (a). O

Proposition 3.7. Let |X| = 3, then G, has inverse doubly connected bi-dominating set and ~,,“ (G,) = 2.
Proof . By the same technique of proof of Proposition 3.6. Let D~ = {{2}, {1, 3}} such that G [D~'] form
a path so it is connected. Also, let V — D~! = {{1}, {3}, {1, 2}, {2, 3}} where G [V — D7!] form a cycle and

it is connected. Since both G [D_l] and G [V — D_l] are connected. Thus, D~! is an inverse doubly connected
bi-dominating set and ~,;“ (G-) = 2. See Figure 1 (b). O
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Figure 1: D and D~! of doubly connected bi-domination for Cg.

Theorem 3.8. Let | X| =n (n > 4), then G has a doubly connected bi-dominating set and vi¢ (G,) = Z?:_ll (") —4.
Proof . By the same technique of proof of Theorem 3.4. Let V—D = {w, v, w®, v¢} where each vertex of D dominates
only two vertices of V' — D, and it is a bi-dominating set. Now, in G [D] and in similar proof of Theorem 2.5 we get
it is connected. The remaining vertices in V' — D = {w, v, w®, v°}. Such that let w, v be two vertices of singleton
element then w®, v® are two vertices have n — 1 elements. Since w v € E(G,) and w® v € E(G;) from proof of
Proposition 2.4. Also, since w € w® A w® € w, so w adjacent with w®. Again, since v € v A v ¢ v, thus v adjacent
with v°. Now, since w adjacent to v, v adjacent to v¢, v° adjacent to w® and w® adjacent to w. Then, G [V — D] form
o . . o -1
a cycle and it is connected. Therefore, D is a doubly connected bi-dominating set and vi¢ (G) = Y i} (’Z) — 4. See
Figure 2. O

Corollary 3.9. Let |X| = n (n>4) and G, be a discrete topological graph defined on a set X. Then, G, has a
doubly connected bi-dominating set and ;7 (G,) = 2" — 6.

Proof . From proof of Theorem 3.8. Since D is a doubly connected bi-dominating set and has all vertices of G- unless
four vertices of V' — D. In addition the order of G, which is 2" — 2 by Proposition 2.6. Hence, v;¢ (G;) = 2" — 6. O

Proposition 3.10. Let |[X|=n (n > 4), then G, has no inverse doubly connected bi-dominating set.

Proof . Since G, has no inverse bi-dominating set for n > 4 by Proposition 3.5, G, has no inverse doubly connected
bi-dominating set. [J
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Figure 2: The minimum doubly connected bi-domination when |X| = 4.

Proposition 3.11. Let | X| = n, then G, has a pitchfork dominating set and

1, ifn=2
’Ypf(GT)—{ 2, fon:?,

Proof . If n = 2, then G, = K, by Proposition 2.2 and it is clear the pitchfork domination number of K5 is one,
where v,¢ (G) = 1. See Figure 3 (a). If n = 3 by the same technique of proof of Proposition 3.3, let D = {u,u°}.
Since each vertex in D dominates only two vertices in V' — D. Thus, D is a minimum pitchfork dominating set and
vYpf (G7) = 2. See Figure 1 (a). O

Proposition 3.12. Let | X| = n, then G, has inverse pitchfork dominating set and

. 1, ifn=2
Tof (GT)_{2, if n=3.

Proof . If n =2, then G, = K, by Proposition 2.2 and it is clear the inverse pitchfork domination number of K» is
one, where *y;fl (G,) = 1. See Figure 3 (b). If n = 3 in similar proof of Proposition 3.3, let D~! = {v,v°} such that
the vertices of D! dominate only two vertices in V' — D~!. Thus, D! is a minimum inverse pitchfork dominating
set and 'y;fl (G;) = 2. See Figure 1 (b). O
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Figure 3: D and D~ of pitchfork domination for K.

Theorem 3.13. Let |X| =n (n >4), then G; has pitchfork dominating set and v,s (G,) = Z?;ll (") —4.

Proof . By the same technique of proof of Theorem 3.4, let V — D = {u, w, u® w°}. Since each vertex in D
dominates only two vertices of V' — D, D is a minimum pitchfork dominating set and 7v,¢ (G-) = Z?;ll (:”) — 4. See
Figure 2 and Figure 4. O

Corollary 3.14. Let | X| =n (n > 4) and G, be a discrete topological graph. Then, G, has a pitchfork dominating
set where 7,7 (G) = 2" — 6.
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Proof . From proof of Theorem 3.13, since D is a pitchfork dominating set and has all vertices of G, unless four
vertices of V' — D such that the order of G which is 2" — 2 by Proposition 2.6, we have v, (G;) =2" — 6. O

Proposition 3.15. Let | X| =n (n > 4), then G, has no inverse pitchfork dominating set.

Proof . Since the order of G, is 2" — 2 by Proposition 2.6 and v,f (G) > Qn; 2 by Observation 3.2 the graph G,
has no inverse pitchfork dominating set. [J
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Figure 4: The pitchfork domination for |X| = 5.

4 Conclusions

Many results of domination with it’s inverse are applied on the topological graphs and introduced some figures for
it.

5 Open problems

Applying other types of domination parameters on the topological graph such as: total pitchfork domination, arrow
domination, Hn-domination, co-even domination.
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