ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2021.21051.2225

Slowly oscillating functions on semitopological semigroup

Ali Pashapournia^a, Mohammad Akbari Tootkaboni^{b,*}, Davood Ebrahimi Bagha^a

^aDepartment of Mathematics, Faculty of Sciences, Islamic Azad University, Central Tehran Branch, Tehran, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

The slowly oscillating functions have been used by I. V. Protasov to study of the algebraic structure of the Stone- \check{C} esh compactification. M. Filali and P. Salmi developed the concept of slowly oscillating functions to arbitrary locally compact topological groups. In this paper, we study the structure of Lmc-compactification of a semitopological semigroup by the slowly oscillating functions. In fact, we develop the concept of slowly oscillating functions to semitopological semigroups.

Keywords: Lmc-Compactification, The Stone-Čech Compactification, e-filter, Slowly oscillating functions 2020 MSC: Primary 22A20; Secondary 54D80

1 Introduction

The concept of slowly oscillating functions was introduced by Higson for metric spaces (see for example [8, p. 29]). Protasov used them to study the algebraic structure of the Stone— \check{C} ech compactification of a countable discrete group G (see [6]), and developed by Filali and Salmi to any locally compact group, see [4].

To study left ideals of βG for countable discrete group G, this notion was extended further in [3] to slowly oscillating functions in the direction of filters in the following way: Let $f:G\to\mathbb{C}$ be a function and let ϕ be a filter on G such that ϕ contains the complement of every finite subset of G. Then f is slowly oscillating in the direction of ϕ if for every $\epsilon>0$ and for every finite subset F of G containing the identity of G, there exists $A\in\phi$ such that $diamf(Ft)<\epsilon$ for every $t\in A$. Here $diamX=sup\{|x-y|:x,y\in X\}$ for any $X\subseteq\mathbb{C}$. This includes both definitions given in [6] and [4]. In fact, the functions used in [6] are slowly oscillating in the direction of the filter of co-finite subsets of G, i.e., the sets A with $|G\setminus A|<\omega$, and those used in [4] are slowly oscillating in the direction of the filter of the sets A with $|G\setminus A|<|G|$.

A ball structure is a triplet $\mathbb{B}=(X,P,B)$, where X,P are nonempty sets and $B(x,\alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x\in B(x,\alpha)$ for all $x\in X$ and $\alpha\in P$. The set X is the support of \mathbb{B} . Given any $x\in X,\ A\subseteq X,\ \alpha\in P$, put

$$B^*(x,\alpha) = \{y \in X : x \in B(y,\alpha)\} \text{ and } B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha).$$

Email addresses: ali154067@gmail.com (Ali Pashapournia), tootkaboni@guilan.ac.ir (Mohammad Akbari Tootkaboni), e_bagha@yahoo.com (Davood Ebrahimi Bagha)

^bDepartment of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

^{*}Corresponding author

A ball structure is symmetric if for every $\alpha \in P$, there exists $\beta \in P$ such that $B(x,\alpha) \subseteq B^*(x,\beta)$ for every $x \in X$, and vice versa. A ball structure is multiplicative if for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that $B(B(x,\alpha),\beta) \subseteq B(x,\gamma)$ for every $x \in X$. A ball structure is connected if for any $x, y \in X$, there exists $\alpha \in P$ such that $y \in B(x,\alpha)$. We say that a filter φ on X is thick if for any $A \in \varphi$ and $\alpha \in P$ there exists $H \in \varphi$ such that $H \in A$.

Let S be a semigroup and $P_f(S)$ denote the collection of all non-empty finite subsets of S. Then the ball structure $\mathbb{B}_r(S) = (S, P_f(S), B_r)$, where $B_r(t, F) = Ft \cup \{t\}$ for each $F \in P_f(S)$ and $t \in S$, is always multiplicative.

Let S be a non-compact Hausdorff semitopological semigroup and let S_d denote semigroup S with discrete topology. The collection of all bounded complex valued continuous functions on S with uniform norm is denoted by $\mathcal{CB}(S)$, and $l^{\infty}(S_d)$ denotes the algebra of all complex valued bounded functions on S_d . Let \mathcal{F} be a C^* -subalgebra of $\mathcal{CB}(S)$ containing the constant functions, then the set of all multiplicative means of \mathcal{F} (the spectrum of \mathcal{F}) is denoted by $S^{\mathcal{F}}$. $S^{\mathcal{F}}$, equipped with the Gelfand topology, is a compact Hausdorff topological space. For each $s \in S$, the maps r_s and λ_s are defined by $r_s(t) = ts$ and $\lambda_s(t) = st$ for all $t \in S$. Let $R_s f = f \circ r_s \in \mathcal{F}$ and $L_s f = f \circ \lambda_s \in \mathcal{F}$ for all $s \in S$ and $f \in \mathcal{F}$, and the function $s \mapsto (T_{\mu} f(s)) = \mu(L_s f)$ be in \mathcal{F} for all $f \in \mathcal{F}$ and $f \in \mathcal{F}$ and the multiplication $f \in \mathcal{F}$ and the function $f \in \mathcal{F}$ and $f \in \mathcal{F}$ and $f \in \mathcal{F}$ are migroup compactification (called the $f \in \mathcal{F}$ -compactification) of $f \in \mathcal{F}$, where $f \in \mathcal{F}$ is the evaluation mapping. (For more details see [2]).

A function $f \in \mathcal{CB}(S)$ is left multiplicative continuous if and only if $\mathbf{T}_{\mu}f \in \mathcal{CB}(S)$ for all $\mu \in \beta S = S^{\mathcal{CB}(S)}$. The collection of all left multiplicative continuous functions on S is denoted by Lmc(S). (ε, S^{Lmc}) is the universal semigroup compactification of S (Definition 4.5.1 and Theorem 4.5.2 in [2]).

Now we quote some prerequisite material from [9] for the description of e-filters and relative concepts with Lmc-compactification. For $f \in Lmc(S)$ and $\epsilon > 0$, we define $E_{\epsilon}(f) = \{x \in S : |f(x)| \le \epsilon\}$. For $I \subseteq Lmc(S)$, we write $E(I) = \{E_{\epsilon}(f) : f \in I, \epsilon > 0\}$. Finally, for any family \mathcal{A} of zero sets, we define

$$E^{\leftarrow}(\mathcal{A}) = \{ f \in Lmc(S) : E_{\epsilon}(f) \in \mathcal{A} \text{ for each } \epsilon > 0 \}.$$

Now let \mathcal{A} be a z-filter, \mathcal{A} is called an e-filter if and only if $E(E^{\leftarrow}(\mathcal{A})) = \mathcal{A}$. Hence, \mathcal{A} is an e-filter if and only if, whenever $Z \in \mathcal{A}$, there exist $f \in Lmc(S)$ and $\epsilon > 0$, such that $Z = E_{\epsilon}(f)$ and $E_{\delta}(f) \in \mathcal{A}$ for every $\delta > 0$. For any z-filter \mathcal{A} , $E(E^{\leftarrow}(\mathcal{A}))$ is the largest e-filter contained in \mathcal{A} . A maximal e-filter is called an e-ultrafilter. Zorn's Lemma implies that every e-filter is contained in an e-ultrafilter, (see [9]).

The collection of all e-ultrafilters is denoted by $\mathcal{E}(S)$. The collection of all $A^{\dagger} = \{p \in \mathcal{E}(S) : A \in p\}$ for each $A \in Z(Lmc(S))$ is a basis for open topology of $\mathcal{E}(S)$. For each $a \in S$, $e(a) = \{E_{\epsilon}(f) : f(a) = 0, \epsilon > 0\}$ is an e-ultrafilter. Finally, S^{Lmc} and $\mathcal{E}(S)$ are topologically isomorphism. So for tow e-ultrafilters p and q in S^{Lmc} , $p+q=\lim_{\alpha}lim_{\beta}e(x_{\alpha})e(y_{\beta})$, where $lim_{\alpha}e(x_{\alpha})=p$ and $lim_{\beta}e(y_{\beta})=q$. For more details see [9].

Let \mathcal{A} be an e-filter, we define $\overline{\mathcal{A}} = \{ p \in \mathcal{E}(S) : \mathcal{A} \subseteq p \}$. Then $\overline{\mathcal{A}}$ is a closed subset of $\mathcal{E}(S)$. Also, $A \in \mathcal{A}$ if and only if $\overline{\mathcal{A}} \subseteq A^{\dagger}$, see [9].

When S_d is a discrete semigroup, every e-ultrafilter is ultrafilter and above concepts coincide with the similar concepts of ultrafilters. The collection of all ultrafilters on S_d is denoted by βS_d and is called the Stone-Čech compactification of S_d . The collection $\{A^{\dagger}: A \subseteq S_d\}$ is a basis for topology on βS_d . For $p, q \in \beta S_d$, p+q is an ultrafilter and $A \in p+q$ if and only if $\{x \in S_d: \lambda_x^{-1}(A) \in q\} \in p$. Also, if \mathcal{A} and \mathcal{B} are two filters, then

$$\mathcal{A} + \mathcal{B} = \{ A \subseteq S_d : \{ x \in S_d : x^{-1}A \in \mathcal{B} \} \in \mathcal{A} \},$$

is a filter. A family \mathcal{A} is a filter base for a filter \mathcal{U} on S_d if $\mathcal{A} \subseteq \mathcal{U}$ and for each $B \in \mathcal{U}$ there is some $A \in \mathcal{A}$ such that $A \subseteq B$. Let \mathcal{A} be a family with finite intersection property on S_d , then $\overline{\mathcal{A}}$ the collection of all ultrafilters containing \mathcal{A} is nonempty subset of βS_d , and $\bigcap \overline{\mathcal{A}}$ is the smallest filter containing \mathcal{A} .

The Stone-Čech compactification of S_d is $l^{\infty}(S_d)$ -compactification of S_d . In fact, it is the universal compactification of S_d . For more details see [5] and [9].

2 Applications

Let S be a semitopological semigroup and let $P_f(S)$ denote the collection of all non-empty finite subset of S. For each $t \in S$ and each $F \in P_f(S)$ we define $B(t,F) = Ft \cup \{t\}$. Then $\mathbb{B}(S) = (S,P_f(S),B)$ is ball structure. $\mathbb{B}(S)$ is always multiplicative. An e-filter A on S is called thick if for each $A \in A$ and for each $s \in S$, there exists $B \in A$ such that $sB \subseteq A$. Clearly, if A is a thick e-filter on S, for $A \in A$, and $F \in P_f(S)$ then there exists $B \in A$ such that $FB \subseteq A$. Two e-ultrafilters $r, q \in S^{Lmc}$ are parallel $(r \parallel q)$ if there exists $F \in P_f(S)$ such that, for every $F \in F$ we have $F \in F$ and $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ are parallel $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in F$ are parallel $F \in F$ and $F \in$

Lemma 2.1. Let φ be a e-filter, then $\overline{\varphi}$ is a closed left ideal of S^{Lmc} if and only if φ is thick.

Proof. Let $\overline{\varphi}$ be a left ideal of S^{Lmc} . So $S\overline{\varphi}\subseteq\overline{\varphi}$. Pick $t\in S$ and $A\in\varphi$. Then for every $p\in\overline{\varphi}$, $tp\in\overline{\varphi}$. This implies that $A\in tp$, and so $B_p=t^{-1}A\in p$. Now $\{B_p^\dag:p\in\overline{\varphi}\}$ is an open covering of $\overline{\varphi}$ of $\overline{\varphi}$. So there exist p_1,\cdots,p_k in $\overline{\varphi}$ such that $\overline{\varphi}\subseteq\bigcup_{i=1}^k B_{p_i}^\dag$. Now let $B=\bigcup_{i=1}^k B_{p_i}$. Then $\overline{\varphi}\subseteq\overline{B}$. This implies that for every $p\in\overline{\varphi}$, $B\in p$. Therefore $B\in\varphi$. Since $tB\subseteq A$ we conclude that φ is thick.

Now let φ be thick, pick $p \in \overline{\varphi}$ and $t \in S$. So for every $A \in \varphi$ and every $t \in S$, there exists $B \in \varphi$ such that $tB \subseteq A$. Now $B \subseteq t^{-1}A$ and $B \in p$. So $t^{-1}A \in p$ and hence $A \in tp$. Therefore $tp \in \overline{\varphi}$ for every $t \in S$ and every $p \in \overline{\varphi}$. This implies that $\overline{\varphi}$ is left ideal. \square

Definition 2.2. (i) Let \mathcal{A} be an e-filter on S. A function $f: S \to \mathbb{C}$ is slowly oscillating in the direction of \mathcal{A} if for every $\varepsilon > 0$ and for every $F \in P_f(S)$, there exists $A \in \mathcal{A}$ such that $diam f(Ft \cup \{t\}) < \varepsilon$ for every $t \in A$. (ii) Let $f: S \to \mathbb{C}$ be a function. For every $\varepsilon > 0$ and for every $F \in P_f(S)$, define

$$S(f, \varepsilon, F) = \{ t \in S : diam f(Ft \cup \{t\}) < \varepsilon \}.$$

We say that f is very oscillating if there exists $\varepsilon > 0$ and $F \in P_f(S)$ such that $S(f, \varepsilon, F) = \emptyset$. If f is very oscillating on a non-empty proper subset of S, then f is called oscillating.

For the next definition, note that if $F_1, F_2 \in P_f(S)$ and $\varepsilon_1, \varepsilon_2 > 0$, then $S(f, \varepsilon, F) \subseteq S(f, \varepsilon_1, F_1) \cap S(f, \varepsilon_2, F_2)$ for any function $f: S \to \mathbb{C}$, where $F = F_1 \cup F_2$ and $\varepsilon = min\{\varepsilon_1, \varepsilon_2\}$.

Definition 2.3. Let $f: S \to \mathbb{C}$ be a function which is not very oscillating. Then the filter generated by

$$\{S(f,\varepsilon,F):\varepsilon>0,F\in P_f(S)\}$$

is denoted by so(f).

Remark 2.4. (a) Let $f: S \to \mathbb{C}$ be a function which is not very oscillating. Then $tS(f, \varepsilon, Ft \cup \{t\}) \subseteq S(f, \varepsilon, F)$ for any $F \in P_f(S)$, $\varepsilon > 0$, and $t \in S$. Hence, so(f) is thick.

- (b) The filter so(f) is smallest filter φ on S such that f is slowly oscillating in the direction of φ , and it is a unique filter on S such that f is slowly oscillating in the direction of φ .
- (c) For every non-empty proper A in so(f), there are $\varepsilon > 0$ and $F \in P_f(S)$ such that $diam f(Ft \cup \{t\}) \ge \varepsilon$ for every $t \in S \setminus A$. In fact f is oscillating on $S \setminus A$ for every $A \in \varphi \setminus \{S\}$.
- (d) If φ is the smallest filter generated by an e-filter \mathcal{A} , we write $\varphi = \langle \mathcal{A} \rangle$.

Theorem 2.5. A function $f: X \to \mathbb{C}$ is slowly oscillating in direction of an e-filter \mathcal{A} if and only if f is slowly oscillating in direction of every e-ultrafilter g containing \mathcal{A} .

Proof. If f is slowly oscillating in direction of \mathcal{A} , then f is slowly oscillating in direction of every e-filter \mathcal{A}' containing \mathcal{A} .

Assume that f is slowly oscillating in direction of every e-ultrafilter $q \in \overline{\mathcal{A}}$. Fix $\epsilon > 0$ and $F \in P_f(S)$. For each $q \in \overline{\mathcal{A}}$, pick $A_q \in q$ such that $diam f(Fx \cup \{x\}) < \epsilon$ for each $x \in A_q$. Then we consider the open covering $\{A_q^{\dagger} : q \in \overline{\mathcal{A}}\}$ of the compact space $\overline{\mathcal{A}}$ and choose some finite subcovering $\{A_{q_1}, \cdots, A_{q_n}\}$. Then $A = A_{q_1} \cup \cdots \cup A_{q_n} \in \mathcal{A}$. Since $diam f(Fx \cup \{x\}) < \epsilon$ for each $x \in A_{q_1} \cup \cdots \cup A_{q_n} \in \mathcal{A}$, we see that f is slowly oscillating in direction of \mathcal{A} . \square

Theorem 2.6. Let \mathcal{A} be a thick e-filter and $q \in \overline{\mathcal{A}}$. If r || q for some e-ultrafilter r, then $r \in \overline{\mathcal{A}}$.

Proof. Let $r \notin \overline{\mathcal{A}}$. So there exists $A \in \mathcal{A}$ such that $A \cap R = \emptyset$ for some $R \in r$. Since r || q so there exists $F \in P_f(S)$ such that $FR \cup R = \bigcup_{t \in R} Ft \cup \{t\} \in q$, this implies that $FR \in q$. Also \mathcal{A} is thick, so there exists $B \in \mathcal{A}$ such that $FB \subseteq A$. Since $FB \in q$, we have $FB \cap FR = F(B \cap R) = \emptyset$. It is a contradiction. \square

Theorem 2.7. Let S be a semitopological semigroup. Suppose that S contains a point s such that λ_s has no fixed point in S. Let \mathcal{A} be a thick e-filter with a countable basis on S. Then there exists a bounded function $f: S \to \mathbb{C}$ such that $so(f) = \langle \mathcal{A} \rangle$.

Proof. Since \mathcal{A} is thick with a countable basis, so $\varphi = \langle \mathcal{A} \rangle$ is thick with a countable basis. Let $\langle A_n \rangle_{n=0}^{\infty}$ be a basis of φ such that $A_0 = S$ and $A_{n+1} \subseteq A_n$ for every $n \ge 0$. Since λ_s has no fixed point in S, by [1, Lemma 3.33], there exist a partition $S = T_1 \cup T_2 \cup T_3$ such that $sT_i \cap T_i = \emptyset$ for every $i \in \{1, 2, 3\}$. Now define $f(x) = \frac{\sqrt{3}}{2n}$ for $x \in T_1 \cap (A_n \setminus A_{n+1})$, $f(x) = \frac{1}{2n}$ for $x \in T_2 \cap (A_n \setminus A_{n+1})$ and $f(x) = \frac{-1}{2n}$ for $x \in T_3 \cap (A_n \setminus A_{n+1})$ for some n > 0.

First, f is slowlly oscillating. Let $\epsilon > 0$ and let $F \in P_f(S)$. Pick $n \geq 0$ such that $\frac{1}{n} < \epsilon$. Since φ is thick, so there exists $A_m \in \varphi$ such that $FA_m \subseteq A_n$. For each $x \in A_m$, $Fx \cup \{x\} \subseteq A_n$. So $f(Fx \cup \{x\}) \subseteq f(A_n)$. Hence $diam f(Fx \cup \{x\}) \leq diam f(A_n)$ and

$$diam(f(Fx \cup \{x\}) \le \frac{1}{n} < \epsilon.$$

Now we show that f is oscillating on $S \setminus A_{n+1}$ for each $n \in \mathbb{N}$. Let $\epsilon = \frac{1}{2n}$ and $F = \{s\}$, then for each $x \in S \setminus A_{n+1}$, there exists $m \in \{1, \dots, n\}$ such that $x \in A_m \setminus A_{m+1}$, and so

$$\begin{aligned} \operatorname{diam} f(B(x,\{s\})) &= \operatorname{diam} f(\{sx,x\}) \\ &= |f(sx) - f(x)| \\ &\geq \frac{1}{2m} \\ &\geq \frac{1}{2n}. \end{aligned}$$

Now by Remark 2.4, $so(f) = \varphi$. \square

Theorem 2.8. Let S be a semitopological semigroup and suppose that S contains a point s such that λ_s has no fixed point in S. Let \mathcal{A} be an e-filter with a countable basis on S. Then the following statements are equivalent

- (i) $\overline{\mathcal{A}}$ is a closed left ideal of S^{Lmc} :
- (ii) there exists a function $f: S \to \mathbb{C}$ such that $so(f) = \langle \mathcal{A} \rangle$.

Proof. $(i) \Rightarrow (ii)$. We show that \mathcal{A} is thick. Fixed an arbitrary $A \in \mathcal{A}$, $x \in S$. Pick $p \in \overline{\mathcal{A}}$, so $e(x)p \in \overline{\mathcal{A}}$ for each $x \in S$. Therefore $A \in e(x)p$, and by Lemma 3.9 in [9], $\lambda_x^{-1}(A) \in p$. Now let $B = \lambda_x^{-1}(A)$. Hence $xB \subseteq A$. It is obvious that $B \in \mathcal{A}$, so \mathcal{A} is thick, also see Lemma 2.1. Now we can apply Theorem 2.7.

 $(ii) \Rightarrow (i)$. Since so(f) is thick, and $so(f) = \langle \mathcal{A} \rangle$, and so \mathcal{A} is thick. Now let $q \in \overline{\mathcal{A}}$, by Theorem 2.6, for each $r \in S^{Lmc}$ that $r || q, r \in \overline{\mathcal{A}}$. So $e(x)q \in \overline{\mathcal{A}}$ for each $x \in S$. Since S^{Lmc} is right topological semigroup and S is dense in S^{Lmc} , we have $pq \in \overline{\mathcal{A}}$ for every $p \in S^{Lmc}$. Hence, $\overline{\mathcal{A}}$ is a closed left ideal of S^{Lmc} . \square

References

- [1] T. Alaste and M. Filali, slowly oscillating functions and closed left ideals of βS , Topology Appl. **156** (2009), 669–673.
- [2] J.F. Berglund, H.D. Junghenn and P. Milnes, Analysis on Semigroups: Function Spaces, Compactifications, Representations, Wiley, New York, 1989.
- [3] M. Filali and I. Protasov, Asymptotic oscillations, Topology Appl. 154 (2007), 561–566.
- [4] M. Filali and P. Salmi, Slowly oscillating function in semigroup compactification and convolution algebra, J. Funct. Anal. 250 (2007), 144–166.
- [5] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, Theory and Application, Springer Series in Computational Mathematics, Walter de Gruyter, Berlin, 2011.
- [6] I. Protasov, Normal ball structures, Mat. Stud. 20 (2003), 3–16.
- [7] I. Protasov, Metrizable ball structures, Algebra Discrete Math. 1 (2002), 129–141.
- [8] J. Roe, Lectures on Coarse Geometry, no. 31, American Mathematical Soc., 2003.
- [9] M.A. Tootkaboni, *Lmc-compactification of a semitopological semigroup as a space of e-ultrafilters*, New York J. Math. **19** (2013), 669–688.