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Abstract

We consider a type of Volterra integro-differential equations of the parabolic type that arise naturally in the study of
heat flow in materials with memory. We present a simple and accurate numerical method for problems with a weakly
singular kernel subject to an initial condition and given boundary conditions. In this method, both the space and time
discretizations are based on the Müntz-Legendre collocation method that converts the problem to a system of algebraic
equations. For numerical stability purposes, the Müntz-Legendre polynomials and their partial derivatives are stated
in terms of Jacobi polynomials. Moreover, to deal with the weakly singular integral term of the problem, two efficient
schemes based on the integration by parts and nonclassical Gaussian quadrature are derived. Comparisons between
the two proposed schemes and other methods in the literature are made to demonstrate the efficiency, convergence
and superiority of our method in the space and time directions.
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1 Introduction

A physical understanding of ordinary and partial integro-differential equations is given by their usefulness in
modeling problems in heat flow [1, 2, 3]. Consider a rigid heat conductor in which heat flows in only one direction.
Let the functions u(x, t), e(x, t), q(x, t) and h(x, t) denote the temperature, internal energy, heat flux and heat supply,
respectively. Moreover, x denotes the position in the body and t denotes time. The energy balance equation is

∂

∂t
e(x, t) = − ∂

∂x
q(x, t) + h(x, t). (1.1)

In a homogeneous isotropic material, the classical linear theory for heat flow is investigated by assuming that the
internal energy depends linearly on the temperature, and the heat flux is related to the temperature by Fourier’s law,
i.e.

e(x, t) = e0 + b0u(x, t), b0 > 0, (1.2)

q(x, t) = −c0
∂

∂x
u(x, t), c0 > 0. (1.3)
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Nonetheless, the assumptions (1.2)-(1.3) are inadequate in materials of fading memory type. Indeed, in these types
of materials it should be assumed that the internal energy and heat flux are functionals of the temperature and the
gradient of the temperature, respectively. In the linear theory for materials with memory, a natural choice for the
functionals e(x, t) and q(x, t) are as follows:

e(x, t) = e0 + b0u(x, t) +

∫ t

0

k2(t− s)u(x, s)ds, t ⩾ 0, (1.4)

q(x, t) = −c0
∂

∂x
u(x, t) +

∫ t

0

k1(t− s)
∂

∂x
u(x, s)ds, t ⩾ 0. (1.5)

Note that, the history of the temperature is prescribed as zero for t ⩽ 0. Applying (1.4)-(1.5) to the energy balance
(1.1), leads to the parabolic Volterra integro-differential equation

b0
∂

∂t
u(x, t) = c0

∂2

∂x2
u(x, t) +

∫ t

0

[
k1(t− s)

∂2

∂x2
u(x, s)− k′2(t− s)u(x, s)

]
ds− k2(0)u(x, t) + h(x, t). (1.6)

Equations similar to (1.6), can also be found in the modeling of phenomena associated with linear viscoelastic
mechanics [4], combined conduction, convection and radiation problems [5, 6].

This paper concerns the numerical solution of (1.6) with the weakly singular kernel k1(t) = t−
1
2 , and k2(t) =

h(x, t) = 0, i.e., we consider

b0
∂

∂t
u(x, t) = c0

∂2

∂x2
u(x, t) +

∫ t

0

(t− s)−
1
2
∂2

∂x2
u(x, s)ds, 0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ T, (1.7)

with initial and boundary conditions

u(0, t) = u(1, t) = 0, 0 ⩽ t ⩽ T, (1.8)

u(x, 0) = f(x), 0 ⩽ x ⩽ 1, (1.9)

where f is a given continuous function. For the questions of existence and uniqueness of the solution to this problem
refer to [1, 7].

Despite the vast literature concerning ordinary integro-differential equations, in recent decade, only few numerical
methods have been developed for solving partial integro-differential equations with singular kernel. In [8] a quasi
wavelet based numerical method is given. Cubic B-splines collocation method is developed in [9]. Several finite
difference procedures are presented and compared in [10, 11]. A space-time spectral method is proposed in [12].
Compact difference schemes are derived in [13, 14]. A combination of Crank-Nicolson and Legendre spectral collocation
methods is suggested in [15]. A Crank-Nicolson-type compact difference method is constructed in [16]. In [17],
the fuzzy Laplace transform method is examined for solving the fuzzy parabolic Volterra partial integro-differential
equations. Authors of [18] proposed the combination of meshless method based on radial basis functions with a
geometric numerical integration method. A hybrid method between homotopy analytical method and Harris hawks
optimization algorithm has been developed in [19].

In this paper, we aim to introduce a Müntz-Legendre spectral collocation method for the solution of parabolic
integro-differential equation (1.7)-(1.9). The Müntz-Legendre polynomials, which have the property of orthogonality,
are used as trial functions for both space and time discretizations. We represent the trial functions and their partial
derivatives in terms of Jacobi polynomials that makes the proposed method numerically more stable. Two different
schemes are proposed to treat the singular integral term. In the first scheme, we utilize integration by parts to convert
the singular integral term to a nonsingular one. Then, the classical Legendre-Gauss (LG) quadrature rule is employed
for its approximation. In the second scheme, we first introduce a nonclassical weight function and then calculate the
singular integral term using a nonclassical Gaussian quadrature. We compare the numerical results of our proposed
methods with some available methods in the literature and show that the new method is more accurate.

This article is outlined as follows: In the next section, a brief review of orthogonal polynomials and Müntz-Legendre
functions is given. In Section 3, the Müntz-Legendre pseudospectral method is derived for partial integro-differential
equations with a weakly singular kernel. In Section 4, numerical results of two test examples are given. Section 5 is
devoted to discussion of numerical findings and conclusions are given in Section 6.



Müntz collocation approach for parabolic integro-differential equations 155

2 Preliminaries

2.1 Nonclassical Gauss points and weights

Let w(t) be a non-negative, continuous and integrable weight function on the interval [a, b]. The weighted inner
product of two functions f and g is

⟨f, g⟩w =

∫ b

a

w(t)f(t)g(t)dt. (2.1)

Corresponding to each weighted inner product, there exist a set of orthogonal polynomials with the leading coef-
ficient 1. Let Qn(t) be the nth-degree nonclassical orthogonal polynomial with respect to the weight w that can be
obtained from the following three-term recurrence relation

Q−1(t) = 0, Q0(t) = 1,

Qn+1(t) = (t− αn)Qn(t)− βnQn−1(t), n = 0, 1, 2, . . . (2.2)

with the coefficients

αn =
⟨tQn, Qn⟩w
⟨Qn, Qn⟩w

, n = 0, 1, 2, . . . (2.3)

β0 = ⟨Q0, Q0⟩w, βn =
⟨Qn, Qn⟩w

⟨Qn−1, Qn−1⟩w
, n = 1, 2, 3, . . . . (2.4)

Computing orthogonal polynomials via the three-term recurrence relation (2.2) is a quite stable scheme that can
be conveniently employed. Nonetheless, special care must be taken for the computation of the coefficients αn and βn.
One of the more practical approaches is the one introduced by Gautschi [20] referred to as the discretized Stieltjes
procedure. The method involves the accurate calculation of the integrals in Eqs. (2.3)-(2.4) by subdividing the domain
of interest into many subdomains and evaluating the contribution from each subdomain with a high-order quadrature.
The calculation begins with calculating α0 from Q0(t) = 1. This then allows Q1(t) to be determined from Eq. (2.2),
from which α1 and β1 can be calculated and so on.

For computing a set of nonclassical Gauss quadrature points and weights, a symmetric tridiagonal matrix called
Jacobi matrix is introduced. Specially, the tridiagonal Jacobi matrix of order n+ 1 is defined by

JG
n+1 =



α0

√
β1√

β1 α1

√
β2√

β2 α2

√
β3

. . .
. . .

. . .√
βn−1 αn−1

√
βn√

βn αn


.

The Gauss points a < t0 < t1 < . . . < tn−1 < tn < b and weights wj for j = 0, 1, . . . , n are obtained by the method
outlined by Golub [21].

Theorem 2.1. (Golub [21]) The Gauss nodes a < t0 < t1 < . . . < tn−1 < tn < b are the eigenvalues of JG
n+1 and the

quadrature weights wj are given by
wj = β0(v1j)

2, j = 0, 1, . . . , n,

where vj is the normalized eigenvector of JG
n+1 corresponding to the eigenvalue tj (i.e. vTj vj = 1) and v1j its first

component.

An (n+ 1)–point Gaussian quadrature rule for the weight function w has the formula of the form∫ b

a

w(t)g(t)dt =

n∑
j=0

wjg(tj) +Rn[f ], (2.5)

where Rn[f ] is the error.
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2.2 Müntz polynomials

The Weierstrass theorem states that every continuous function on a compact interval can be uniformly approxi-
mated by algebraic polynomials. A generalization of this theorem to polynomials with real number exponents is stated
in the following theorem:

Theorem 2.2. (Münts–Szász Theorem [22]) Let {λk}∞k=0 be a sequence of real numbers such that infk λk > − 1
2 .

Then, span{xλ0 , xλ1 , . . .} is dense in L2(0, 1) if and only if

∞∑
k=0

1

λk + 1
2

= +∞.

Utilizing the above theorem allows us to define Müntz-Legendre polynomials. Consider the set of complex numbers
Λn = {λ0, λ1, . . . , λn} with the condition Re(λk) > − 1

2 , 0 ⩽ k ⩽ n. The Müntz-Legendre polynomials on the interval
[0, 1] are defined by [22, 23]

Pn(x) =

n∑
k=0

cn,kx
λk , cn,k =

n−1∏
i=0

(λk + λ̄i + 1)

n∏
i=0,i̸=k

(λk − λi)

. (2.6)

Noteworthy, Müntz-Legendre functions share many of the basic properties of their algebraic polynomial cousins
[23]. We have that

Pn(0) = 0, Pn(1) = 1. (2.7)

In addition, these functions are orthogonal on the interval [0, 1] with respect to the weight function w(x) = 1, i.e.,

⟨Pm, Pn⟩ =
∫ 1

0

Pm(x), P̄n(x)dx =
δmn

λm + λ̄n + 1
, (2.8)

where δmn is the Kronecker delta function.

In this paper, we suppose that λk = kα for a positive real value α. In this case, we set Pn(x) := Pn,α(x) and we
recall that the functions Pk,α(x), k = 0, 1, . . . , n form an orthogonal basis for the set Sn,α = span{1, xα, . . . , xnα}. It
is noted that the shifted Müntz-Legendre polynomials on the interval [0, T ] are represented by the formula

P̃n,α(t) = Pn,α(
t

T
), 0 ⩽ t ⩽ T. (2.9)

As Milovanović states in [23], due to rapid growth in the coefficients cn,k, evaluating Pn,α(x) using the power form
(2.6) can be numerically unstable when n is large and x is close to 1. A stable method for the numerical evaluation
of shifted Müntz-Legendre polynomials has been proposed in [24]. Indeed, the following representation holds true:

P̃n,α(t) = P
(0, 1

α−1)
n

(
2
( t

T

)α − 1
)
, (2.10)

where P
(β,γ)
n is the classical Jacobi polynomial of degree n with parameters β, γ > −1. Consequently, using the

recurrence relation of Jacobi polynomials [25], the shifted Müntz-Legendre polynomials can be computed by means of
the three-term recurrence relation

P̃0,α(t) = 1, P̃1,α(t) =

(
1

α
+ 1

)(
t

T

)α

− 1

α
,

anP̃n+1,α(t) = bn(t)P̃n,α(t)− cnP̃n−1,α(t), (2.11)

where

an = 2(n+ 1)(n+
1

α
)(2n+

1

α
− 1),

bn(t) = (2n+
1

α
)

(
(2n+

1

α
− 1)(2n+

1

α
+ 1)

(
2(

t

T
)α − 1

)
−

( 1

α
− 1

)2
)
,

cn = 2n(2n+
1

α
− 1)(2n+

1

α
+ 1).
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Another helpful formula that relates Jacobi polynomials and their derivatives is,

d

dx
P (β,γ)
n (x) =

1

2
(n+ β + γ + 1)P

(β+1,γ+1)
n−1 (x), −1 ⩽ x ⩽ 1. (2.12)

By Eqs. (2.10) and (2.12) one can deduce that

d

dt
P̃n,α(t) =

1

Tα
(1 + nα)tα−1P

(1, 1
α )

n−1

(
2
( t

T

)α − 1
)
, 0 < t ⩽ T. (2.13)

Therefore, by defining a three-term recurrence relation as in (2.11) for computing P
(1, 1

α )
n−1

(
2
(

t
T

)α − 1
)
and substi-

tuting the result into (2.13), the derivatives of Müntz-Legendre polynomials can be evaluated in a stable manner.

3 Proposed method

Consider the parabolic Volterra intergro-differential equation (1.7)-(1.9). At first, the solution u(x, t) is approxi-
mated by

u(x, t) ≈ Inu(x, t) =

n∑
i=0

n∑
j=0

uijPi,α1(x)P̃j,α2(t), 0 ⩽ x ⩽ 1, 0 ⩽ t ⩽ T, (3.1)

where α1, α2 > 0 and uij are unknown coefficients. Then, the partial derivatives
∂

∂t
u(x, t) and

∂2

∂x2
u(x, t) are approx-

imated using Eq. (2.13) as

∂

∂t
Inu(x, t) =

tα2−1

Tα2

n∑
i=0

n∑
j=1

uij(1 + jα2)Pi,α1
(x)P

(1, 1
α2

)

j−1

(
2
( t

T

)α2 − 1
)

=
tα2−1

Tα2

n∑
i=0

n∑
j=1

uij(1 + jα2)P
(0, 1

α1
−1)

i

(
2xα1 − 1

)
P

(1, 1
α2

)

j−1

(
2
( t

T

)α2 − 1
)
, (3.2)

and

∂2

∂x2
Inu(x, t) = xα1−2

n∑
i=2

n∑
j=0

uij(1 + iα1)

[
(α1 − 1)P

(1, 1
α1

)

i−1

(
2xα1 − 1

)
+
(
1 + (i− 1)α1

)
xP

(2, 1
α1

+1)

i−2

(
2xα1 − 1

)]
P̃j,α2(t)

= xα1−2
n∑

i=2

n∑
j=0

uij(1 + iα1)

[
(α1 − 1)P

(1, 1
α1

)

i−1

(
2xα1 − 1

)
+
(
1 + (i− 1)α1

)
xP

(2, 1
α1

+1)

i−2

(
2xα1 − 1

)]
P

(0, 1
α2

−1)

j

(
2
( t

T

)α2 − 1
)
. (3.3)

The unknown coefficients uij are obtained from the fact that Inu(x, t) should satisfy the problem (1.7)-(1.9) in a
suitably chosen univalent set of collocation points (xk, tl), 0 ⩽ k, l ⩽ n. More precisely, the collocation equations

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) +

∫ tl

0

(tl − s)−
1
2
∂2

∂x2
Inu(xk, s)ds, 1 ⩽ k ⩽ n− 1, 1 ⩽ l ⩽ n, (3.4)

and initial and boundary conditions

Inu(0, tl) = Inu(1, tl) = 0, 1 ⩽ l ⩽ n, (3.5)

Inu(xk, 0) = f(xk), 0 ⩽ k ⩽ n, (3.6)
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have to be valid. It is well known that in spectral collocation methods, an appropriate choice of collocation points is
crucial for keeping the so called spectral accuracy [25]. In this study, a particularly convenient choice for the collocation
points (xk, tl) is

(xk, tl) = (χ
1

α1

k , τ
1

α2

l ), 0 ⩽ k, l ⩽ n,

where χk and τl are the standard LG quadrature points on the intervals (0, 1) and (0, T ), respectively.

The integral on the right-hand side of (3.4) is singular. This singularity wrecks the accuracy of the numerical
solution and affects on the computational stability. To remedy this deficiency, we propose two efficient schemes.

Scheme 1 (integration by parts): In the first scheme, we set U = ∂2

∂x2 Inu(xk, s) and dV = (tl − s)−
1
2 ds and

we utilize the integration by parts formula to rewrite (3.4) as

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) + 2t

1
2

l

∂2

∂x2
Inu(xk, 0) + 2

∫ tl

0

(tl − s)
1
2

∂3

∂x2∂t
Inu(xk, s)ds. (3.7)

Applying the change of variable s = tlv, Eq. (3.7) is transcribed to

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) + 2t

1
2

l

∂2

∂x2
Inu(xk, 0) + 2t

3
2

l

∫ 1

0

(1− v)
1
2

∂3

∂x2∂t
Inu(xk, tlv)dv. (3.8)

Next, we use (n + 1)–point LG quadrature rule associated with the interval [0, 1] to approximate the integral on
the right-hand side of (3.8),

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) + 2t

1
2

l

∂2

∂x2
Inu(xk, 0) + t

3
2

l

n∑
p=0

wLG
p (1− τp)

1
2

∂3

∂x2∂t
Inu(xk, tlτp), (3.9)

where wLG
p are LG quadrature weights. The collocation equations (3.9) for 1 ⩽ k ⩽ n − 1 and 1 ⩽ l ⩽ n, together

with (3.5)–(3.6) form a linear system of (n+1)2 equations for the (n+1)2 unknown coefficients uij that can be solved
using one of the known methods. Note that, for large mode n the dimension of the generated linear system becomes
large and it is more convenient to solve it using an iterative method.

Scheme 2 (nonclassical Gaussian quadrature): Based on the approximation of ∂2

∂x2 Inu given in (3.3), let
∂2

∂x2 Inu(x, t) := xα1−2v(x, t). In the second scheme, we first apply the change of variable

s = tlx
3−α1 , x ∈ [0, 1],

to rewrite (3.4) as

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) + t

1
2

l (3− α1)

∫ 1

0

(1− x3−α1)−
1
2x2−α1

∂2

∂x2
Inu(xk, tlx

3−α1)dx. (3.10)

To calculate the integral on the right-hand side of (3.10), the (N + 1)–point gaussian quadrature rule (2.5) in the
form ∫ 1

0

(1− x3−α1)−
1
2 g(x)dx =

N∑
p=0

wpg(vp), g ∈ P2N+1 (3.11)

is used. The weight function w(x) = (1 − x3−α1)−
1
2 is a nonclassical one and no explicit formulae are known for vp

and wp. Nevertheless, we can use the Stieltjes procedure and Golub algorithm to calculate the nodes and weights as
discussed in Section 2. It is worth mentioning that the Gaussian quadrature rule (3.11) with N = ⌈n+1

2 ⌉ becomes
exact for computing the integral in (3.10). Hence, after obtaining the nodes vp and the weights wp, Eq. (3.10) becomes

b0
∂

∂t
Inu(xk, tl) = c0

∂2

∂x2
Inu(xk, tl) + t

1
2

l (3− α1)

⌈n+1
2 ⌉∑

p=0

wpv
2−α1
p

∂2

∂x2
Inu(xk, tlv

3−α1
p ). (3.12)

Again, the collocation equations (3.12) for 1 ⩽ k ⩽ n − 1 and 1 ⩽ l ⩽ n, together with (3.5)–(3.6) form an
(n+ 1)2 × (n+ 1)2 linear system of algebraic equations for the unknowns uij .
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Table 1: Maximum absolute errors for Test 1.

Scheme 1 Scheme 2 CDS [13] BSCM [9]
n α = 1

2 α = 3
4 α = 1

2 α = 3
4 (J,N) Error (M,N) Error

5 2.9× 10−1 3.5× 10−1 1.4× 10−1 4.1× 10−1 (10,80) 3.2× 10−2 (800,10) 9.7× 10−3

10 1.1× 10−2 4.6× 10−3 5.4× 10−3 3.8× 10−3 (10,160) 1.2× 10−2 (800,25) 7.3× 10−3

15 6.8× 10−4 1.2× 10−3 2.9× 10−3 3.2× 10−3 (10,320) 4.2× 10−3 (800,50) 7.1× 10−3

20 2.2× 10−4 9.1× 10−4 1.8× 10−3 2.4× 10−3 (10,640) 1.5× 10−3 (800,100) 7.0× 10−3

25 8.8× 10−5 4.9× 10−4 9.3× 10−4 1.1× 10−3 – – – –

Figure 1: Absolute error functions for Test 1 with α = 0.5 and n = 25.

4 Numerical tests

To test the Müntz collocation method developed here for solving the parabolic integro-differential equation with a
weakly singular kernel, we give two numerical examples.

Test 1: Consider the problem (1.7)-(1.9) with b0 = 1, c0 = 0, f(x) = sin(πx) and T = 1. In this case the exact
solution is

u(x, t) = sin(πx)

∞∑
i=0

(−1)iΓ

(
3

2
i+ 1

)−1 (
π

5
2 t

3
2

)i

.

The maximum absolute errors obtained using both schemes of the presented method with α1 = α2 = 0.5, 0.75 and
different values of n, together with the errors obtained in [13] using a compact difference scheme (CDS) and the errors
in [9] using a cubic B-splines collocation method (BSCM) are presented in Table 1. In the CDS, J is the number
of grides in space and N is the number of grides in time. In the BSCM, M and N are the number for temporal
and spatial divisions, respectively. Table 1 shows the convergence of both Schemes 1 and 2. However, in this test
problem, Scheme 1 with α1 = α2 = 0.5 provides more accurate numerical results. Moreover, Table 1 demonstrates the
superiority of our collocation method over the BSCM as our method is more accurate and it uses much fewer total
number of collocation points. Fig. 1 depicts the absolute error functions of Schemes 1 and 2 for α = 0.5 and n = 25.

Test 2: In the second test example, we consider the problem (1.7)-(1.9) with b0 = c0 = 1, f(x) = sin(πx) and
T = 1. In this case no analytical solution is available. The approximated solution for α1 = α2 = 0.5 with n = 20 (441
nodes) is plotted in Fig. 2. The numerical results for this problem at T = 1 computed for α1 = α2 = 0.5 and different
values of n are given in Table 2. The convergence of the proposed spectral collocation schemes is apparent from this
table.

5 Discussion of results

In our numerical implementations, we observed some key features of the derived spectral collocation method with
the proposed schemes for approximating the integral term, which are explained now:
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Table 2: Results for u(x, 1) with α1 = α2 = 0.5 for Test 2.

Scheme 1 Scheme 2
x n = 12 n = 16 n = 20 n = 12 n = 16 n = 20
0.1 −0.003786 −0.003827553 −0.003985512 −0.003926 −0.0039408200 −0.0039438554
0.2 −0.007202 −0.007280438 −0.007408356 −0.007468 −0.0074958850 −0.0075016588
0.3 −0.009914 −0.010020663 −0.010275678 −0.010279 −0.0103172006 −0.0103251475
0.4 −0.011655 −0.011779996 −0.012035748 −0.012083 −0.0121285966 −0.0121379389
0.5 −0.012254 −0.012386221 −0.012865964 −0.012705 −0.0127527612 −0.0127625842
0.6 −0.011654 −0.011779995 −0.012035748 −0.012083 −0.0121285966 −0.0121379389
0.7 −0.009914 −0.010020662 −0.010275678 −0.010279 −0.0103172005 −0.0103251475
0.8 −0.007204 −0.007280437 −0.007408356 −0.007468 −0.0074958849 −0.0075016588
0.9 −0.003788 −0.003827552 −0.003985512 −0.003926 −0.0039408199 −0.0039438554

Figure 2: Numerical solution of Test problem 2 with α = 0.5 and n = 20.
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� The present collocation method choose a suitable mesh and basis functions and by tuning the parameters α1

and α2 the accuracy of the solution may be improved; however, we found out that the choice α1 = α2 = 0.5
provides more accurate results.

� Table 1 shows that the errors using the Scheme 1 are smaller than those for the Scheme 2 and Scheme 1 provides
higher convergence rate. Nevertheless, Scheme 1 has more computational complexity than Scheme 2. A drawback

of Scheme 1 is the appearance of the third order partial derivative ∂3

∂x2∂t in the formulation of the problem. On
the other hand, the main difficulty in Scheme 2 is the generation of a set of nonclassical nodes and weights.

� Although the kernel in the considered problem is weakly singular, our proposed schemes provide satisfactory
numerical results with moderate mode n. Nevertheless, very large mode n is required so that the errors achieve
machine precision that is not convenient.

� In Fig. 1 it is seen that the absolute error function of Scheme 1 is increasing in time while the absolute error
function of Scheme 2 is oscillatory in time.

6 Conclusions

We have considered a space-time spectral collocation method based on the Müntz-Legendre polynomials for com-
puting the solutions of a parabolic integro-differential equation with a weakly singular kernel that appears in the study
of heat flow in materials of fading memory type. A opposed to finite difference schemes for time discretization, we
utilized the collocation method for discretizing both the time and space variables simultaneously that improves the
accuracy. The singular integral term involve in the problem, limit the accuracy of the spectral methods. Hence, two
efficient stable schemes have been introduced to approximate it and the numerical results were quite satisfactory. The
new method outlined here were tested on two problems and it was seen that the results converge to the exact solution
when n goes to infinity.
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