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Abstract

In this study, a reproducing kernel Hilbert space method with the Chebyshev function is proposed for approximating
solutions of a second-order linear partial differential equation under nonhomogeneous initial conditions. Based on re-
producing kernel theory, reproducing kernel functions with a polynomial form will be erected in the reproducing kernel
spaces spanned by the shifted Chebyshev polynomials. The exact solution is given by reproducing kernel functions
in a series expansion form, the approximation solution is expressed by an n-term summation of reproducing kernel
functions. This approximation converges to the exact solution of the partial differential equation when a sufficient
number of terms are included. Convergence analysis of the proposed technique is theoretically investigated. This
approach is successfully used for solving partial differential equations with nonhomogeneous boundary conditions.

Keywords: Reproducing kernel Hilbert space method, shifted Chebyshev polynomials, Convergence analysis, Second
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1 Introduction

A reproducing kernel Hilbert space is a powerful tool for constructing approximate solutions of partial differential
equations. Many analytical and numerical methods have been proposed for solving linear and nonlinear partial
differential equations, but we did not find a method that use reproducing kernels for solving two-dimensional initial-
boundary problems with orthogonal functions.

In recent years, there has been a growing interest to investigate scientific models, such as linear and nonlinear
boundary value problem various [4, 3, 5] integro-differential equations [2], delay problem [11, 17, 13], linear operator
equations [7, 12], fuzzy differential equations and others [9, 10]. Reproducing kernel methods has ability to solve
different problems effectively and has relatively simple implementation. Since the reproducing kernel space is a
Hilbert space, this paper will apply the theory of orthogonal function with two variables for linear partial differential
equation with initial-boundary conditions the reproducing kernel space and derive same useful conclusions.

Boundary value problems play on important role in the study of problems in fluid mechanics, flow in porons media,
heat conduction in solids, diffusive transport of chemicals in porons media and biological [13, 18]. The study of such
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problems has attracted much attention. As a result, it is of essential importance to develop on effective numerical
algorithms for solving partial differential equation with initial-boundary conditions. So far, the numerical treatment
of such problems has attracted much attention.

The aim of this paper is to introduce a numerical technique based on reproduction kernel Hilbert space methods
with polynomial form in order to solve the partial differential equation. More precisely, we provide a numerical
approximate solution for second order partial differential equation in the following form [15]:

α
∂2u

∂x2
+ β

∂2u

∂t∂x
+ γ

∂2u

∂t2
+ δ

∂u

∂x
+ η

∂u

∂t
+ θu = G(x, t), (x, t) ∈ [0, 1]× [0, 1], (1.1)

subject to the initial conditions for variable t:{
u(x, 0) = f(x), x ∈ [0, 1],
∂u(x,0)

∂t = m(x), x ∈ [0, 1],
(1.2)

together with the initial conditions for variable x:{
u(0, t) = h(t), t ∈ (0, 1],
∂u(0,t)

∂x = k(t), t ∈ (0, 1],
(1.3)

where G(x, t), f(x),m(x), h(x) and k(x) are conditions functions, and α, β, γ, δ, η and θ are real numbers. Although
the focus is on homogeneous mixed boundary conditions by the homogenization methods. In this paper, employing
the reproducing property of the kernel, we give on efficient method for solving (1.1).

The rest of this paper is organized as follows. In Section 2, an overview of two dimensional shifted Chebyshev
polynomials and their relevant properties required henceforward are presented. In Section 3, we will recall a brief
review of the reproducing kernel spaces and establish an orthogonal basis in the two dimensional shifted Chebyshev
reproducing kernel space. In Section 4, our method to approximate the solution of second order partial differential
equation with shifted Chebyshev reproducing kernel basis function is considered. The convergence analysis and error
estimation are presented in this section. In Section 5, some numerical results are provided to demonstrate the efficiency
and accuracy of using the reproducing kernel Hilbert space method in comparison with of the results presented in
[1, 15, 19].

2 Properties of Chebyshev polynomials

In this section, some preliminaries and notations of Chebyshev polynomials which are necessary for later are
recalled. Let Tn(x), x ∈ [−1, 1] be the standard Chebyshev polynomial of degree n. For positive weight function
w(t) = 1

π
√

1−(2t−1)2
, we define the shifted Chebyshev polynomials T ∗

n(t) by

T ∗
n(t) = Tn(2t− 1), t ∈ [0, 1], n = 0, 1, 2, ... . (2.1)

In particular,

T ∗
n+1(t) = 2(2t− 1)T ∗

n(t)− T ∗
n−1(t), n ≥ 1, (2.2)

where T ∗
0 (t) = 1 and T ∗

1 (t) = 2t − 1. The set of T ∗
n(t) forms a complete L2

w(0, 1) orthogonal system, where c0 = 2,
cn = 1 for n ≥ 1 and δn,m is the Kroncker symbol.

2D shifted Chebyshev polynomials are defined on Ω = [0, 1]× [0, 1] as follows:

Ci,j(x, y) = T ∗
i (x)T

∗
j (y), i, j = 0, 1, 2, ... .

We consider the space L2
w(Ω) equipped with the following inner product and norms

⟨f(x, y), g(x, y)⟩ =
∫ 1

0

∫ 1

0

f(x, y)g(x, y)W (x, y)dxdy,

∥f(x, y)∥ = ⟨f(x, y), f(x, y)⟩ 1
2 = (

∫ 1

0

∫ 1

0

|f(x, y)|2dxdy) 1
2 ,
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where w(x, y) = w(x)w(y). The set of two dimensional shifted Chebyshev polynomials forms a complete L2
w(Ω)−orthogonal

system such that the orthogonality conditions

∫ 1

0

∫ 1

0

Ci,j(x, y)Ck,l(x, y)w(x, y)dxdy =


1, i = j = k = l = 0,
1
4 , i = k ̸= 0, j = l ̸= 0,
1
2 , i = k = 0, j = l ̸= 0,

0, else i, j, k, l.

(2.3)

3 Construction of reproducing kernel

In the section, we discuss reproducing kernel on two set of nodes in two dimensions and we obtain reproducing
kernel space by re-defining the inner product of Chebyshev polynomials. We now present some necessary definitions
on Theorems in the theory of reproducing kernel spaces.

Definition 3.1. A Hilbert space H of functions defined on Ω ⊆ R2, is called a reproducing kernel Hilbert space if
there exists a reproducing kernel K of H such that verifies the following conditions

(i) K(., z) ∈ H for each fixed z ∈ Ω.

(ii) ⟨φ,K(., z)⟩ = φ(z) for all z ∈ Ω and all φ ∈ H.

It is known that in the Hilbert space H are stated the following results.

Theorem 3.2. Let H be n−dimensional Hilbert space, {wi}ni=1 is an orthogonal basis of H, then the reproducing
kernel of H as:

Kn(x, y) =

n∑
j=0

wj(x)wj(y), x, y ∈ [0, 1]. (3.1)

Theorem 3.3. ([14] Theorem 1.24) For the orthogonal system {wn}∞n=1, formula (3.1) yields the Christoffel-Darboux
formula:

Kn(x, y) =
kn(wn+1(x)wn(y)− wn(x)wn+1(y))

kn+1(x− y)
. (3.2)

Here, kn > 0 is the coefficient of xn in wn(x). we also have

Kn(x, x) =
kn
kn+1

(w′
n+1(x)wn(x)− w′

n(x)wn+1(x)). (3.3)

To derive on explicit formula for the reproducing kernel formula, we will use orthogonal polynomials and follow the
strategy in [4, 5]. Now, we construct similarity reproducing kernels of equations (3.2) and (3.3) on two set of nodes
in two dimensions. Let P 2

n denote the space of Chebyshev polynomials of degree at most n with respect to weight
function w(x, t) in two variables on Ω = [0, 1]× [0, 1], that is

P 2
n(Ω) = Span{pnk (x, y) = T̂n−k(x)T̂k(y), 0 ≤ k ≤ n}, (3.4)

where T̂0(x) = 1, T̂k(x) =
√
2T ∗

k (x) for k ≥ 1. we denote by Pn the set of this basis and we also regard Pn as a
column vector

Pn = [pn0 , p
n
1 , ..., p

n
n]

t, (3.5)

where the superscript t denotes the transposes. The reproducing kernel of the space P 2
n in L2

w([0, 1]
2) is defined by [6],

Kn(x, y) =

n∑
k=0

Pk(x)[Pk(y)]
t =

n∑
k=0

k∑
j=0

pkj (x)p
k
j (y). (3.6)
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Theorem 3.4. There is a Christoffel-Darboux formula (cf. [16]) which states that

Kn(x, y) =
[An,iPn+1(x)]

tPn(y)−An,iPn+1(y)]
tPn(x)

xi − yi
, i = 1, 2, (3.7)

for x ̸= y and

Kn(x, x) = PT
n (x)An,i∂iPn+1(x)− [An,iPn(x)]

TPn+1(x), i = 1, 2, (3.8)

where x = (x1, x2), y = (y1, y2), and An,i are matrices defined by

An,1 =
1

2


1 0 0 . . . 0
0 1 0 . . . 0
...

...
. . .

...

0 0 . . .
√
2 0

 , An,2 =
1

2


0

√
2 0 . . . 0

0 0 1 . . . 0
...

...
. . .

...
0 0 . . . . . . 1

 .

The proof follows just as in the case of on variable. Recall that the right hand side depends on i, but the left hand
side is independent of i. It is straightforward to check that the kernel Kn(x, y) has the reproducing property

⟨pnk ,Kn(.;x, y)⟩ = pnk (x, y),

for all polynomials pkn ∈ P 2
n(Ω).

4 Description of the method

In this section, we give the solution (1.1)-(1.3) in the reproducing kernel space P 2
n(Ω). we define the linear operator

L : P 2
n([0, 1]) −→ L2

w([0, 1])⊗ L2
w([0, 1]) as

Lv = α
∂2v

∂x2
(x, t) + β

∂2v

∂t∂x
(x, t) + γ

∂2v

∂t2
(x, t) + δ

∂v

∂x
(x, t) + η

∂v

∂t
(x, t) + θv(x, t), v ∈ P 2

n(Ω).

In order to put initial boundary value conditions of equations (1.2) on (1.3) into the reproducing kernel space
P 2
n(Ω) constructed in the following part, it is must to homogenize the initial conditions. Put

v(x, t) = u(x, t)− B(x, t)f(x)− C(x, t)m(x)− B(t, x)h(t)− C(t, x)m(x)k(t),

where

B(x, t) =

{
e−

t2

x , 0 < x < 1,
0, x = 0, 1,

and

C(x, t) =

{
te−

t2

x , 0 < x < 1,
0, x = 0, 1.

Denote B(x, t)f(x)+C(x, t)m(x)+B(t, x)h(t)+C(t, x)m(x)k(t) by A(x, t), then we can obtain homogeneous initial
conditions of equations (1.1)-(1.3). Immediately, we get

Lv(x, t) = F (x, t), (x, t) ∈ Ω = [0, 1]× [0, 1],
v(x, 0) = ∂v

∂t (x, 0) = 0, x ∈ [0, 1],
v(0, t) = ∂v

∂x (0, t) = 0, t ∈ (0, 1],
(4.1)

where

F (x, t) = G(x, t) + α
∂2A

∂x2
(x, t) + β

∂2A

∂t∂x
(x, t) + γ

∂2A

∂t2
(x, t) + δ

∂A

∂x
(x, t) + η

∂A

∂t
(x, t) + θA(x, t).
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Theorem 4.1. the operator L : P 2
n([0, 1]) −→ L2

w([0, 1])⊗ L2
w([0, 1]) is a bounded operator.

Proof . Note that

∥(Lv)(x, t)∥2 = ∥αvxx + βvxt + γvtt + δvx + ηvt + θv∥2

≤ α2∥vxx∥2 + β2∥vxt∥2 + γ2∥vtt∥2 + δ2∥vx∥2 + η2∥vt∥2 + θ2∥v∥2.

Since

v(x, t) = ⟨v(y, s),Kn,(x,t)(y, s)⟩P 2
n
,

for i = 0, 1,

∂i

∂xi
v(x, t) = ⟨v(y, s), ∂

i

∂xi
Kn,(x,t)(y, s)⟩P 2

n
,

∂i

∂ti
v(x, t) = ⟨v(y, s), ∂

i

∂ti
Kn,(x,t)(y, s)⟩P 2

n
,

∂

∂t

∂

∂x
v(x, t) = ⟨v(y, s), ∂

∂t

∂

∂x
Kn,(x,t)(y, s)⟩P 2

n
.

Also, note that

∥Kn,(x,t)(y, s)∥ =
√
⟨Kn,(x,t)(y, s),Kn,(x,t)(y, s)⟩ =

√
Kn,(x,t)(x, t),

is continuous function on the interval [0, 1]; that is, it holds that ∥Kn,(x,t)(y, s)∥ ≤M0. Meanwhile, setting

∥ ∂
i

∂xi
Kn,(x,t)(y, s)∥ ≤Mi, i = 1, 2,

∥ ∂
j

∂tj
Kn,(x,t)(y, s)∥ ≤ Nj , j = 1, 2,

∥ ∂
∂t

∂

∂x
Kn,(x,t)(y, s)∥ ≤M3,

we have

| ∂
i

∂xi
v(x, t)| ≤ ∥v∥∥ ∂

i

∂xi
Kn,(x,t)(y, s)∥ ≤Mi∥v∥, i = 0, 1, 2,

| ∂
i

∂ti
v(x, t)| ≤ ∥v∥∥ ∂

i

∂ti
Kn,(x,t)(y, s)∥ ≤ Ni∥v∥, i = 0, 1, 2,

| ∂
∂t

∂

∂x
v(x, t)| ≤ ∥v∥∥ ∂

∂t

∂

∂x
Kn,(x,t)(y, s)∥ ≤M3∥v∥.

Hence

∥(Lv)(x, t)∥2 ≤ (α2M2
2 + β2M2

3 + γ2N2
2 + δ2M2

1 + η2N2
1 + θ2)M2

0 .

The proof is complete. □

Now, choose a countable dense subset {(x1, t1), (x2, t2), ...} in Ω and define

ψi(x, t) = L(y,s)Kn(x, t, y, s)|(y,s)=(xi,ti),

where the subscript (y, s) in the operator L indicates that the operator L applies to the functions y, s. considering the
boundary conditions, we skillfully construct φ1i(x, t), φ2i(x, t), φ3i(x, t) and φ4i(x, t), i = 1, 2, ... as follows

φ1i(x, t) = Kn(x, t, xi, 0), φ2i(x, t) =
∂

∂s
Kn(x, t, xi, s)|s=0, i = 1, 2, ...,

φ3i(x, t) = Kn(x, t, 0, ti), φ4i(x, t) =
∂

∂y
Kn(x, t, y, ti)|y=0, i = 1, 2, ... .

(4.2)
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Theorem 4.2. For each fixed n,
{
{ψi}ni=1, {φji}(4,n)(j,i)=(1,1)

}
are linearly independent in P 2

n(Ω).

Proof . Assume
∑n

i=1 λiψi +
∑4

j=1

∑n
i=1 rjiφji = 0. For arbitrary l ∈ N , let Lagrange polynomials be defined by

fl(x) =

∏n
i=1,i̸=l(x− xi)∏n
i=1,i̸=l(xl − xi)

,

and let fl(x, t) = fl(x).fl(t), then there exists Vl ∈ P 2
n(Ω), (l = 1, 2, ..., n), such that

LVl(x, t) = fl(x, t), (x, t) ∈ Ω = [0, 1]× [0, 1],
Vl(x, 0) =

∂
∂tVl(x, 0) = 0, x ∈ [0, 1],

Vl(0, t) =
∂
∂xVl(0, t) = 0, t ∈ (0, 1],

(4.3)

then we have

0 = ⟨Vl(x, t),
n∑

i=1

λiψi +

4∑
j=1

n∑
i=1

rjiφji⟩P 2
n

=

n∑
i=1

λi⟨Vl, ψi⟩P 2
n
+

n∑
i=1

r1i⟨Vl, φ1i⟩P 2
n
+

n∑
i=1

r2i⟨Vl, φ2i⟩P 2
n
+

n∑
i=1

r3i⟨Vl, φ3i⟩P 2
n

+

n∑
i=1

r4i⟨Vl, φ4i⟩P 2
n

=

n∑
i=1

λi⟨Vl, L(y,s)Kn(x, t, y, s)|(y,s)=(xi,ti)⟩P 2
n
+

n∑
i=1

r1i⟨Vl,Kn(x, t, xi, 0)⟩P 2
n

+

n∑
i=1

r2i⟨Vl,
∂

∂s
Kn(x, t, xi, s)|s=0⟩P 2

n
+

n∑
i=1

r3i⟨Vl,Kn(x, t, 0, ti)⟩P 2
n

+

n∑
i=1

r4i⟨Vl,
∂

∂y
Kn(x, t, y, ti)|y=0⟩P 2

n

=

n∑
i=1

λiL(y,s)⟨Vl,Kn(x, t, y, s)|(y,s)=(xi,ti)⟩P 2
n
+

n∑
i=1

r1iVl(xi, 0)

+

n∑
i=1

r2i
∂

∂s
⟨Vl,Kn(x, t, xi, s)|s=0⟩P 2

n
+

n∑
i=1

r3iVl(0, ti)

+

n∑
i=1

r4i
∂

∂y
⟨Vl,Kn(x, t, y, ti)|y=0⟩P 2

n

=

n∑
i=1

λiL(y,s)Vl(y, s)|(y,s)=(xi,ti) +

n∑
i=1

r1iVl(xi, 0) +

n∑
i=1

r2i
∂

∂s
Vl(xi, 0)

+

n∑
i=1

r3iVl(0, ti) +

n∑
i=1

r4i
∂

∂y
Vl(0, ti)|y=0

=

n∑
i=1

λifl(xi, ti) + 0

= λl.

In the same manner, there exist functions W1l(x, t),W2l(x, t),W3l(x, t),W4l(x, t) ∈ P 2
n(Ω). and Lagrange polyno-

mials f1l(x), f2l(x), f3l(t), f4l(t), satisfying
LW1l(x, t) = 0,
W1l(x, 0) = f1l(x),

∂
∂tW1l(x, 0) = 0,

W1l(0, t) = 0, ∂
∂xW1l(0, t) = 0,


LW2l(x, t) = 0,
W2l(x, 0) = 0, ∂

∂tW2l(x, 0) = f2l(x),
W2l(0, t) = 0, ∂

∂xW2l(0, t) = 0,
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LW3l(x, t) = 0,
W3l(x, 0) = 0, ∂

∂tW3l(x, 0) = 0,
W3l(0, t) = f3l(t),

∂
∂xW3l(0, t) = 0,

and 
LW4l(x, t) = 0,
W3l(x, 0) = 0, ∂

∂tW4l(x, 0) = 0,
W4l(0, t) = 0, ∂

∂xW3l(0, t) = f4l(t),

where

0 = ⟨W1l(x, t),

n∑
i=1

λiψi +

4∑
j=1

n∑
i=1

rjiφji⟩P 2
n

=

n∑
i=1

λiL(y,s)W1l(y, s)|(y,s)=(xi,ti) +

n∑
i=1

r1iW1l(xi, 0) +

n∑
i=1

r2i
∂

∂s
W1l(xi, 0) +

n∑
i=1

r3iW1l(0, ti) +

n∑
i=1

r4i
∂

∂y
W1l(0, ti)

= 0 +

n∑
i=1

r1if1l(xi)

= r1l.

Similarly, we have r2l = r3l = r4l = 0. Namely,

λl = r1l = r2l = r3l = r4l = 0, l = 1, 2, ..., n.

This ends the proof. □

Let S4n = span
{
{ψi}ni=1, {φji}(4,n)(j,i)=(1,1)

}
. next, we are going to look for an approximate solution of (4.1) in the

subspace S4n. let R4n denote the orthogonal projection from P 2
n(Ω) onto S4n, i.e. for any v ∈ P 2

n(Ω), we have

⟨v −R4nv⟩P 2
n
= 0,∀w ∈ S4n.

Now, in the following, we investigate the property of approximate solution vn to equation (4.1).

Theorem 4.3. If v ∈ P 2
n(Ω) is the solution (4.1), then vn = R4nv satisfies ⟨vn, ψ⟩ = F (xi, ti),

⟨vn, φ1i⟩ = ⟨vn, φ2i⟩ = 0, i = 1, 2, ... .
⟨vn, φ3i⟩ = ⟨vn, φ4i⟩ = 0.

(4.4)

Proof . In virtue of the self-conjugation of the operator Rn and the properties of the reproducing kernel, it can be
obtained that

⟨R4nv, ψi⟩P 2
n
= ⟨v,R4nψi⟩P 2

n
= ⟨v, ψi⟩P 2

n

= ⟨v, L(y,s)Kn(x, t, y, s)|(y,s)=(xi,ti)⟩P 2
n

= L(y,s)⟨v,Kn(x, t, y, s)⟩P 2
n
|(y,s)=(xi,ti)

= L(y,s)v(y, s)|(y,s)=(xi,ti)

= F (xi, ti), i = 1, 2, ..., n,

⟨R4nv, φ1i⟩P 2
n
= ⟨v,R4nφ1i⟩P 2

n
= ⟨v, φ1i⟩P 2

n

= ⟨v,Kn(x, t, xi, 0)⟩P 2
n

= v(xi, 0) = 0,

⟨R4nv, φ2i⟩P 2
n
= ⟨v,R4nφ2i⟩P 2

n
= ⟨v, φ2i⟩P 2

n

= ⟨v, ∂
∂s
Kn(x, t, xi, s)|s=0⟩P 2

n

=
∂

∂s
⟨v,Kn(x, t, xi, s)⟩P 2

n
|s=0

=
∂

∂s
v(xi, 0) = 0,
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Similarly, we have
⟨R4nv, φ3i⟩P 2

n
= 0, ⟨R4nv, φ4i⟩P 2

n
= 0, i = 1, 2, ..., n.

It can be shown that vn = R4nv is an approximate solution of v. □ Furthermore, we can prove the uniform convergence.

Theorem 4.4. vn(x, t) is the approximate solution of equation (4.1), and vn(x, t) converges to v(x) on Ω uniformly.

Moreover, ∂2

∂t∂xvn(x, t),
∂i

∂xi
vn(x, t),

∂i

∂ti
vn(x, t) uniformly convergence to ∂2

∂t∂xv(x, t),
∂i

∂xi
v(x, t), ∂i

∂ti
v(x, t) on Ω for

i = 0, 1, 2, respectively.

Proof . obviously, ∥vn − v∥P 2
n
−→ 0 holds as n −→ ∞. that is, vn(x, t) is the approximate solution of equation (4.1).

Besides, from inequality

| ∂
i

∂xi
vn(x, t)−

∂i

∂xi
v(x, t)| = | ∂

i

∂xi
⟨vn(., .)− v(., .),Kn,(x,t)(., .)⟩|

= |⟨vn(., .)− v(., .),
∂i

∂xi
Kn,(x,t)(., .)⟩|

≤ ∥vn − v∥P 2
n
∥ ∂

i

∂xi
Kn,(x,t)∥P 2

n
,

Since ∥ ∂i

∂xi
Kn,(x,t)∥ is bounded on [0, 1], we have

| ∂
i

∂xi
vn(x, t)−

∂i

∂xi
v(x, t)| ≤M∥vn − v∥P 2

n
−→ 0,

where M is a positive real number. it follows the vn(x, t) converges uniformly to v(x, t) on [0, 1]. similarly, one can

prove ∂i

∂ti
vn(x, t) and

∂2

∂t∂xvn(x, t) uniformly convergence to ∂i

∂ti
v(x, t) and ∂2

∂t∂xv(x, t) on [0, 1], i = 1, 2. The prove is
completed. □

Hence, vn is a good approximate solution of (4.1). since vn ∈ S4n, we get

vn =

n∑
j=1

αjψj +

4∑
k=1

n∑
l=1

βklφkl. (4.5)

As vn is the solution of equation (4.4), we have

∑n
j=1 αj⟨ψj , ψi⟩+

∑4
k=1

∑n
l=1 βkl⟨φkl, ψi⟩ = F (xi, ti),∑n

j=1 αj⟨ψj , φ1i⟩+
∑4

k=1

∑n
l=1 βkl⟨φkl, φ1i⟩ = 0,∑n

j=1 αj⟨ψj , φ2i⟩+
∑4

k=1

∑n
l=1 βkl⟨φkl, φ2i⟩ = 0, i = 1, 2, ..., n,∑n

j=1 αj⟨ψj , φ3i⟩+
∑4

k=1

∑n
l=1 βkl⟨φkl, φ3i⟩ = 0,∑n

j=1 αj⟨ψj , φ4i⟩+
∑4

k=1

∑n
l=1 βkl⟨φkl, φ4i⟩ = 0.

(4.6)

To obtain the approximate solution vn, we only need to obtain the coefficients of each ψj and φkl. Let

G =


⟨ψj , ψi⟩n×n ⟨φ1j , ψi⟩n×n ⟨φ2j , ψi⟩n×n ⟨φ3j , ψi⟩n×n ⟨φ4j , ψi⟩n×n

⟨ψj , φ1j⟩n×n ⟨φ1j , φ1j⟩n×n ⟨φ2j , φ1j⟩n×n ⟨φ3j , φ1j⟩n×n ⟨φ4j , φ1j⟩n×n

⟨ψj , φ2j⟩n×n ⟨φ1j , φ2j⟩n×n ⟨φ2j , φ2j⟩n×n ⟨φ3j , φ2j⟩n×n ⟨φ4j , φ2j⟩n×n

⟨ψj , φ3j⟩n×n ⟨φ1j , φ3j⟩n×n ⟨φ2j , φ3j⟩n×n ⟨φ3j , φ3j⟩n×n ⟨φ4j , φ3j⟩n×n

⟨ψj , φ4j⟩n×n ⟨φ1j , φ4j⟩n×n ⟨φ2j , φ4j⟩n×n ⟨φ3j , φ4j⟩n×n ⟨φ4j , φ4j⟩n×n

 ,

X = (α1, ..., αn, β11, β12, ..., β1n, β21, β22, ..., β2n, ..., β41, β42, ..., β4n)
⊤
,

F = (F (x1, t1), F (x2, t2), ..., F (xn, tn), 0, 0, ..., 0)
⊤
1×5n ,

then, we overwrite the linear equations (4.6) into matrix form: GX = F . Note that G is Gram matrix which is
symmetric and positive definite, so the scheme (4.4) is uniquely solvable.

Theorem 4.5. |v(x, t)− vn(x, t)| = O( 1n ).
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Proof . Let S = {(x1, t1), (x2, t2), ...} be a dense subset of [0, 1] × [0, 1], for any (xj , tj) ∈ S, j ≤ n, in virtue of the
operator R4n and the properties of the reproducing kernel, we have

Lvn(xj , tj) = ⟨vn(y, s), L(y,s)Kn(xj , tj , y, s)⟩P 2
n
= ⟨vn(y, s), ψj(y, s)⟩P 2

n

= ⟨R4nvn(y, s), ψj(y, s)⟩P 2
n
= ⟨vn(y, s),R4nψj(y, s)⟩P 2

n

= ⟨vn(y, s), ψj(y, s)⟩P 2
n
= ⟨v(y, s), L(y,s)Kn(xj , tj , y, s)⟩P 2

n

= L(y,s)⟨v(y, s),Kn(xj , tj , y, s)⟩P 2
n

= Lv(xj , tj).

Thus for any n ∈ N and (x, t) ∈ [0, 1]× [0, 1], take (xj , tj) ∈ S, such that |x− xj | < 1
n and |t− tj | < 1

n , we get

Lvn(x, t)− Lv(x, t) = (Lvn(x, t)− Lvn(xj , tj))− (Lv(x, t)− Lvn(xj , tj))

= ⟨vn(y, s), L(y,s)Kn(x, t, y, s)− L(y,s)Kn(xj , tj , y, s)⟩P 2
n

− ⟨v(y, s), L(y,s)Kn(x, t, y, s)− L(y,s)Kn(xj , tj , y, s)⟩P 2
n

= ⟨vn(y, s)− v(y, s), L(y,s)Kn(x, t, y, s)− L(y,s)Kn(xj , tj , y, s)⟩P 2
n
.

By the mean value theorem, we have

L(y,s)Kn(x, t, y, s)− L(y,s)Kn(xj , tj , y, s) = (x− xj)
∂

∂η
L(y,s)Kn(η, t, y, s)− (t− tj)

∂

∂ζ
L(y,s)Kn(x, ζ, y, s).

□

Finally, the following conclusion follows from the above

|vn(x, t)− v(x, t)| = ⟨vn − v, L−1(LKn(x, t, ., .)− LKn(xj , tj , ., .))⟩P 2
n

≤ ∥L−1∥
P2
n
∥vn − v∥

P2
n
∥LKn(x, t, ., .)− LKn(xj , tj , ., .)∥P2

n

≤ ∥L−1∥
P2
n
∥vn − v∥

P2
n
(|x− xj |∥

∂

∂η
Kn(η, t, ., .)∥P2

n
+ |t− tj |∥

∂

∂ζ
Kn(x, ζ, ., .)∥P2

n
).

Thus according to ∥vn(x, t)− v(x, t)∥
P2
n
−→ 0, |x− xj | < 1

n , |t− tj | < 1
n and the boundedness of ∂

∂ηKn(η, t, ., .)∥P2
n

and ∥ ∂
∂ζKn(x, ζ, ., .)∥P2

n
, we get |vn(x, t)− v(x, t)| = O( 1n ).

5 Numerical experiments

In this section, some numerical examples with exact solution are considered to illustrate the performance and
accuracy of the Chebyshev reproducing kernel method. The results obtained by the method are compared with the
analytical solution and are found to be in good agreement with each other. To show the efficiency of the presented
method as well as the accuracy of approximate solution un, the maximum absolute errors are reported. Throughout
this work, all computations are implemented by using Maple 16 software package. To show the rate of convergence of
the present method, the values of the order of convergence of the method with respect to the norm infinity with the
following formula have been reported

rn =
ln

(
en/e2n

)
ln 2

,

where
en = ∥en(.)∥∞ = max

x,t∈[0,1]
|u(x, t)− un(x, t)|.

Table 3 shows the order of convergence for different values of n. The results are reported in this table confirm the
results of Theorem 4.5.

Example 5.1. [15] As our first example, we consider the following second order linear equation uxx − 3uxt + utt = 3 exp(−t) cos(x),
u(x, 0) = sin(x), ut(x, 0) = − sin(x), x ∈ [0, 1],
u(0, t) = 0, ux(0, t) = exp(−t), t ∈ (0, 1].

(5.1)
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Figure 1: Absolute values of the error |u(x, t)− un(x, t)| with n = 10 at the selected points of numerical example 5.1.

x t Scheme in [15] Proposed scheme Proposed scheme
with n = 10 with n = 10 with n = 14

0.1 0.1 2.192e-009 3.055804e-014 4.645834e-016
0.2 0.2 2.556e-009 2.652734e-014 1.772636e-016
0.3 0.3 9.950e-010 7.214098e-014 6.772352e-016
0.4 0.4 1.469e-009 8.953055e-013 1.546248e-015
0.5 0.5 3.178e-009 6.223302e-012 1.016362e-014
0.6 0.6 2.959e-009 1.160306e-012 6.511884e-014
0.7 0.7 9.250e-010 5.100531e-012 3.222006e-013
0.8 0.8 1.591e-009 6.081960e-011 8.532298e-013
0.9 0.9 2.947e-009 3.508839e-010 4.680387e-013
1.0 1.0 2.331e-009 4.014137e-010 8.751284e-012

Table 1: Absolute values of the error |u(x, t)− un(x, t)| at the selected points of numerical example 5.1.

The exact solution in [0, 1]× [0, 1] is given by u(x, t) = exp(−t)sin(x). After homogenizing the initial conditions and
using our method, we obtain the results presented in Tables and Figures. We apply the reproducing kernel Hilbert

space method on this problem with xi = ti = 1
2cos(

(i+1)π
n ) + 1

2 , i = 0, 1, 2, ..., n − 1 for n = 10 and n = 14. The
absolute values of the error is calculated and compared in Table 1 with those available in the literature. It can be
noted from Table 1 and Figure 1 that the results of the proposed method is better than the Bernoulli matrix method
presented in [15].

Example 5.2. [19] As our second example, we consider the following second-order linear telegraph equation in one-
space variable given by 

utt + 20ut + 25u− uxx = −12 exp(−2t) sinh(x),

u(x, 0) = sinh(x), ut(x, 0) = −2 sinh(x), x ∈ [0, 1],

u(0, t) = 0, ux(0, t) = exp(−2t), t ∈ (0, 1].

(5.2)

The exact solution in [0, 1]× [0, 1] is given by u(x, t) = exp(−2t) sinh(x). Figure 2 shows the absolute error graph for
n = 10. Numerical results show that the present method is more accurate than the unconditionally stable scheme [19].
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Figure 2: Absolute values of the error |u(x, t)− un(x, t)| with n = 10 at the selected points of numerical example 5.2.

Figure 3: Absolute values of the error |u(x, t)− un(x, t)| with n = 10 at the selected points of numerical example 5.3.
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x t Scheme in [1] Proposed scheme Proposed scheme
with n = 10 with n = 10 with n = 14

0.1 0.1 0.00003843767 4.603421e-012 3.459243e-016
0.2 0.2 0.00015152539 1.639043e-011 1.167257e-015
0.3 0.3 0.00028528437 2.954963e-011 2.010931e-015
0.4 0.4 0.00039472077 3.921268e-011 2.667901e-015
0.5 0.5 0.00044524883 4.020648e-011 2.761894e-015
0.6 0.6 0.00041530665 3.480960e-011 2.344389e-015
0.7 0.7 0.00032602776 2.300791e-011 1.531764e-015
0.8 0.8 0.00019090592 1.592087e-011 7.622561e-016
0.9 0.9 0.00008009819 2.542232e-011 1.676249e-016
1.0 1.0 3.40220513e-09 1.060000e-015 9.067000e-020

Table 2: Absolute values of the error |u(x, t)− un(x, t)| at the selected points of numerical example 5.3.

rn example 5.1 example 5.2 example 5.3
r10 1.83652 1.90046 1.80735
r14 1.90689 1.85561 1.45066

Table 3: The rate of convergence for Examples

Example 5.3. [1] As our third example, we consider the following telegraph equation
utt + ut + u− uxx = (2− 2t+ t2)(x− x2) exp(−t) + 2t2 exp(−t),
u(x, 0) = 0, ut(x, 0) = 0, x ∈ [0, 1],

u(0, t) = 0, ux(0, t) = t exp(−t), t ∈ (0, 1].

(5.3)

The exact solution in [0, 1] × [0, 1] is given by u(x, t) = (x − x2)t exp(−t). After homogenizing the initial conditions
and using our method, we compare the numerical results with the result of [1]. It can be concluded that the proposed
scheme has a higher efficiency and accuracy than the scheme in [1]. The results on interval [0, 1]× [0, 1] when n = 10
and n = 14 are shown in Table 2. It confirms that higher accuracy can be reached by increasing the number of basis
functions. Figure 3 depict the absolute error functions on [0, 1]× [0, 1] when n = 10.

Conclusions

In this paper, the shifted Chebyshev reproducing kernel method is employed to compute approximate solutions
of a second order linear partial differential equation under nonhomogeneous initial conditions. In this approach, a
truncated series based on shifted Chebyshev reproducing kernel functions with easily computable components. Based
on the orthogonal basis established in the reproducing kernel space, an efficient algorithm is provided to solve the
nonlinear system of a second order linear partial differential equation on [0, 1] × [0, 1]. The convergence analysis and
error estimation of the approximate solution using the proposed method are investigated. The validity and applicability
of the method is demonstrated by solving several numerical examples. The proposed method is a well-performance
technique for calculating the best approximate solution of linear and nonlinear boundary value problems. The main
advantage of the present method lies in the lower computational cost and high accuracy.
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