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Abstract

In this paper, some important features of Traub’s method are studied: Analysis of the stability behavior, obtaining
the 4th root of a matrix, semi-local convergence, and local convergence. The stability of Traub’s method is studied
by using the dynamic behavior of a family of 4th-degree polynomials. The obtained equations are very complex and
do not solve with the software. Therefore, we find the results by plotting diagrams and pictures, and then we show
the very stable behavior of Traub’s method. Then Traub’s method is extended to a matrix iterative method for
calculating the 4th root of a square matrix. We also present the local and semi-local convergence of the method based
on the divided differences, and therefore, the benefits of our approach are more precise error estimation in semi-local
convergence and a large ball of convergence in local convergence. We confirm our theoretical results by some numerical
examples such as the nonlinear integral equation of mixed Hammerstein type.
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1 Introduction

In this paper, we concern with the approximation of the solution of nonlinear equation

F (x) = 0. (1.1)

The study of dynamical stability, local and semi-local convergence are powerful tools for choosing the best initial
values and finding the nearest approximate to the solution of (1.1). There exist many studies about these problems
such as [1, 12, 18, 14, 32, 33]. In this paper, we have studied the dynamical behavior, local and semi-local convergence
of Traub’s scheme [37] given by {

yn = xn − F ′(xn)
−1F (xn)

xn+1 = yn − F ′(xn)
−1F (yn),

(1.2)
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where x0 is given. We analyze the stability of third-order Traub’s method on a family of fourth-degree polynomials
p(x) = (x2−1)(x2+ c), where c is an arbitrary parameter in the complex plane C. Also, the dynamic properties of the
given method such as stability regions of strange fixed points, parameter planes, and basins of attraction are shown.
Dynamic analysis have been mostly done on the second and third degree polynomials, such as [13, 35] and references
therein. We able to do this for a family of fourth-order polynomials, and it can be a novelty according to complexity
of the software. Also, we have plotted the stability regions in a new form with respect to the other papers such as [9].

Furthermore, we use and adapt Traub’s method for finding the 4th principal root of a given matrix A. Some
examples are also given. Solving the equation Xp − A = 0, where A is a matrix, is an important problem in many
areas of applications such as control theory, lattice quantum chromo-dynamics and nuclear magnetic resonance (see,
for example, [25, 26, 19, 20]). Obtaining the pth root of a matrix is an important problem that many researches
studied on it, for example [15, 4].

Additionally, in[3, 2], the behavior of the third-order Traub method is studied for quadratic polynomials, and it is
not globally convergent, but it is quite stable. Argyros et. al. have shown in[9] that Traub’s method has extremely
stable behavior on cubic polynomials in the complex parameter planes except very small regions that appear as basin
of attracting strange fixed points. In this paper, for a family of fourth-degree polynomials, we will show the very stable
behavior of Traub’s method.

Also, in this paper, local and semi-local convergence of the method (1.2) are presented based on the divided differ-
ences. The matter of the semi-local convergence is to determine the initial conditions that guarantee the convergence,
while the matter of the local convergence is to compute the radius of convergence ball by using the information
about solution x∗ [7, 5, 11, 29, 30, 13]. Two of the important problems which are to be considered for iterative
methods are enlarging the radius of convergence ball in local convergence and increasing the precision of the error
estimates on the distances ||xn+1 − xn|| and ||xn − x∗||. Also, some advantages of our work over other studies such
as[31, 8, 17, 22, 21, 6] are: we present semi-local convergence in more precise in error estimates than the others by
using majorizing sequences and divided differences. In the local convergence a larger convergence ball than others is
obtained. Finally, some numerical examples confirm our theoretical results.

This paper is organized as follow: In Sections 2 and 3, we analyze the dynamics of the Traub’s method on a
family of fourth-degree polynomials. Stability regions, parameter and dynamic planes are obtained. In Section 4,
the application of Traub’s method for obtaining 4th-root of a matrix A is given. We illustrate our results by some
numerical examples. In Sections 5 and 6, the semi-local and local convergence of Traub’s scheme are presented. Finally,
some numerical examples such as nonlinear integral equation of mixed Hammerstein type are also given in Section 7.

2 Dynamic concepts

In this section, we will study the general convergence the method (1.2) over forth-degree polynomials. First, we
recall some dynamical concepts of the complex dynamics. One can see more details in[16]. We define the function f

on Riemann sphere Ĉ that is C ∪ {∞}. We have an iteration map ϕ that acts on the arbitrary function f and R is
the rational operator associated with ϕ. In this paper, we suppose the function f is a polynomial ”p” of degree four.
The sequence

O+(z0) = {z0, R(z0), R
2(z0), . . . , R

n(z0), . . . }

is called the otbit of z0 ∈ Ĉ. Now, we study the phase plane of the rational map R by the behavior of the points in
the orbits. If we have Rn(z0) = z0, for some natural number n, then z0 is called a periodic point of period n. Also, if
n = 1, z0 is a fixed point of the map R. Moreover, a fixed point z0 is called

attractor if |R′(z0)| < 1,

superattractor if |R′(z0)| = 0,

parabolic if |R′(z0)| = 1, and

repulsive if |R′(z0)| > 1.

The fixed point z0 of the rational map R that is not the root of the polynomial p is called a strange fixed point.
The roots of the equation R′(z) = 0 are critical points. For a iterative method of order of convergence greater than
one, it is obvious that the roots of p are critical points, too. If the critical point z0 is not one of the roots of the
polynomial p, it is called a free critical point. All of the points that the orbits of them converge to an attractor α are
the basin of attraction α:

A(α) = {z0 ∈ Ĉ : Rn(z0) → α, n → ∞}.
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Figure 1: Diagram for conjugacy of functions

Now, we shall define Fatou and Julia set. For this, we need some definitions:

• Let X be a metric space with metric d. An equicontinuous family of functions {fi : X → X} has the following
property:

∀ϵ > 0, ∃δ > 0, s.t. d(x, y) < δ ⇒ d(fi(x), fi(y)) < ϵ for all i.

• A meromorphic function is a rational function where its numerator and denominator are entire functions, and
the denominator is not zero.

• A normal family is an equicontinuous family {fi : U → Ĉ} on every compact subset U that each fi is a
meromorphic function.

Thus, the Fatou set, F (R), is the all of the points z0 where there exists a neighborhood U(z0) ⊆ Ĉ such that the

family of iterates {Rn : U(z0) → Ĉ} is a normal family. The Julia set J (R) is the complement of the Fatou set.

In other word, when z0 is a (super)attracting period point, it is contained in Fatou set, and when it is repulsive
point, it is contained in Julia set.

Blanchard shows in[16] that the Julia set is nonempty, but the Fatou set can be void. For example, the Julia set

of the map f(z) = (z2+1)2

4z(z2−1) is the entire Riemann Sphere.

In the following, we explain some key facts that are used in the interpretation of parameter planes.

Theorem 2.1. (Fatou-Julia) Let R be a rational function. There exists, at least, one critical point in the connected
component of the basin of attraction of an attracting fixed periodic point[23, 27].

One of the useful objects that is used in the theory of dynamical systems is the equivalence relation conjugation.
Two rational functions R and S mapping Riemann Sphere into itself are analytically conjugate if for a diffeomorphism
h : Ĉ → Ĉ the diagram in Figure 1 commutes, i.e. Roh = hoS .Thus, R and S are holomorphically the same dynamical
system.

Theorem 2.2. (Scaling Theorem[2]) Let T (z) = αz + β, with α ̸= 0, be an affine map. Let g(z) = (foT )(z) such
that f(z) be a polynomial. Then the fixed point operators of Traub’s method on f and g, Rf and Rg, respectively,
are affinely conjugated by T , that is, (ToRg)(z) = (RfoT )(z) for all z.

Our aim is to analyze the stability of Traub’s method on a family of the polynomials of the form p(z) = (z2−1)(z2+
c) where the parameter c is an arbitrary complex number. Hence, all of the polynomials that can be parametrized by
means of an affine map to p(z) are considered in this paper.

3 Dynamical behavior of Traub’s method

The fixed point operator associated to Traub’s method (1.2) on polynomial p(z, c) = (z2 − 1)(z2 + c) is applied.

So, we get the rational operator Rp(z, c) =
hp(z,c)
gp(z,c)

depending on z ∈ Ĉ and c ∈ Ĉ where

hp(z, c) =− c4 + (4c2 − 8c3 + 8c4 − 4c5)z2 + (24c− 118c2 + 176c3 − 118c4 + 24c5)z4

+ (−12− 136c+ 520c2 − 520c3 + 136c4 + 12c5)z6

+ (135 + 64c− 452c2 + 64c3 + 135c4)z8 + (−608 + 1004c− 1004c2 + 608c3)z10

+ (1370− 2336c+ 1370c2)z12 + (−1540 + 1540c)z14 + 687z16

(3.1)
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and
gp(z, c) = 32z5(−1 + c+ 2z2)5 (3.2)

It is clear that Rp(z, c) is equal to infinity when z = ∞. Hence, infinity is a fixed point. For other fixed points we
have:

Strange fixed points

Fixed points are the roots of equation Rp(z, c) = z. Strange fixed points are the roots of equation s(z, c) = 0,

where s(z, c) =
hp(z,c)−zgp(z,c)

p(z,c) .

s(z, c) =c3 + (−1 + c)c(4 + c(−3 + 4c))z2 + (−20 + c(107 + c(−161 + (107− 20c)c)))z4

− 5(−1 + c)(33 + c(−80 + 33c))z6 + (−507 + (1081− 507c)c)z8 − 683(−1 + c)z10 − 337z12.
(3.3)

s(z, c) has twelve distinct strange fixed points s1(c), s2(c), . . . , s12(c). The equation s(z, c) has only even powers of z,
so the relations |si(c)| = |si+1(c)|, for i = 1, 3, 5, 7, 9, 11 are satisfied. Due to complexity, they have not any explicit
form. Hence, we plot the graphs of si(c) for 1 ≤ i ≤ 12 when the parameter c ∈ [−7, 7] changes with a step 0.1.
In Figure 3, the Figures of Figure 2 are combined. So, Figure (c) in Figure 3 shows all of the points of complex plane

(a) (b) (c)

(d) (e) (f)

Figure 2: Strange fixed points for different values of c

where they can be strange fixed point.

To determine the identity of the strange fixed points, we must get the derivative of the rational function Rp(z, c):

R′
p(z, c) = (−1 + z2)2(c+ z2)2(−1 + c+ 6z2)A,

where

A =
(5c2 + 2(−1 + c)(6− c+ 6c2)z2 + 3(31− 44c+ 31c2)z4 + 250(−1 + c)z6 + 229z8)

32z6(−1 + c+ 2z2)6
.

Then, |R′
p(si(c), c)|, i = 1, 2, . . . , 12, must be computed. Also, R′

p(z, c) has even powers of z, so, the behavior of
|R′

p(si(c), c)| on si(c) is similar to si+1(c) for i = 1, 3, 5, 7, 9, 11. Hence, the identity of those si(c) are studied that the
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(a) (b)
(c)

Figure 3: Combination of the figures in Figure 2

index of them is odd. In Figure 4, the stability regions of complex plane (in new perspective) where some of these
strange fixed points become attractive are plotted. In Figures (a)-(g) in the Figure 4, the red areas are attracting, the
blue areas are repulsive, the yellow areas, between red and blue regions, are parabolic points, and the green point in
the middle of the cardioid is supperattracting, but in the Figures (h) and (i), the pink and orange areas are attracting
fixed points related to complementary stability regions of 3th and 5th strange fixed points. The strange fixed points
s9(c), s11(c) are repulsive for all c ∈ C. Moreover,

s1(c) is superattracting for c=–5.50779 and c=–0.181561,
s3(c) is superattracting for c=0.352618,
s5(c) is superattracting for c=2.83593, c = 0.053876 – 0.350882 I, c = 0.053876 + 0.350882 I, c = 0.427516 – 2.78432
I, and c = 0.427516 + 2.78432 I
s7(c) is superattracting for c=–6 and c=–0.166667.

Parameter and Dynamic planes

In order to find more kinds of the behavior of the iterative method, the critical points must be calculated. They
are roots of the derivative of R[z, c]. But the roots of p[z, c] are also critical points and they are supperattracting. We
need critical points different from the roots of p[z, c] that they denoted by free critical points. Free critical points are

roots of the equation
R′

p(z,c)

p2(z,c) = 0.

R′
p(z, c)

p2(z, c)
=

1

(32z6(−1 + c+ 2z2)6)
(12c4z2 + c3(5− 26z2 + 165z4) + c2(−5 + 58z2 − 309z4 + 808z6)

+ cz2(−26 + 309z2 − 1292z4 + 1729z6) + z2(12− 165z2 + 808z4 − 1729z6 + 1374z8)).

(3.4)

This equation is also function of the powers of z2, so their roots are symmetric. The equation (3.4) has ten roots
ri(c), i = 1, . . . , 10, where |ri(c)| = |ri+1(c)| for i = 1, 3, 5, 7, 9. So, five of them are independent. For the independent
free critical points, we can obtain the parameter planes. We have five parameter planes P1, P2, P3, P4, P5 associated
to five free critical points r1(c), r3(c), r5(c), r7(c) and r9(c), respectively. We obtain a parameter plane by applying
Rp(z, c) on an independent free critical point, so, this point will be an initial estimation for iterative method. If
the iterative scheme converges to any roots of p(z, c), the point is colored by red, and it is colored by black if the
iterative method diverges. In all of them, red points are very stable points. We have used the codes in with a mesh
1000×1000 points, a maximum number of iteration of 100 and a tolerance of 10−3. In Figures 5, 6, 7, 8 and 9 contain
the Parameter planes P1, P2, P3, P4 and P5 in the left, respectively and another Figure in right is a detail.

Also, we have shown Fatou and Julia sets by dynamic planes for different values of ”c” according to parameter
planes in Figure 10. Because the polynomial p has four distinct roots, there exist four colors, red, yellow, blue, and
green, in the dynamic planes. They are the basins of attraction of roots. The roots of polynomials are always plotted
with black points. The strange fixed points of the rational map R associated with the iteration method are plotted
with white points. Strange fixed points stand in the range of roots perfectly symmetrical. Some basins of attraction
are immersed in another one such as Figures 10c, 10e, 10a, and 10g.



266 Moccari, Lotfi, Torkashvand

(a) s1(c)
(b) s1(c) (c) s3(c)

(d) s5(c) (e) s5(c) (f) s7(c)

(g) s7(c) (h) s3(c) and s5(c) (i) s3(c) and s5(c)

Figure 4: Stability regions for si(c) where strange fixed points become attractive in different areas

As we see these basins of attraction and parameter planes, we conclude that the Traub method is stable.That’s
why, black regions in parameter planes are small areas. Moreover, when we choose any point on the Fauto set, the
method converges to a superattracting point, because there is no basin of attraction for infinity. Also, the basin of
attraction for attracting strange fixed points are very small regions that are not in the immediate basins of attraction
of the roots of the polynomial p. For example, in Figures 11 and 12, values of c are chosen that there exist for them
attracting strange fixed points. We must zoom at them until we can see the very small basins of attraction that they
have lightblue color. All of these reasons show us the Traub method is very stable method.
Remark 1. In this paper, for numerical results and plotting the pictures, Mathematica 12 is used. The computer

specifications are Intel(R) Xeon(R), CPU E7-4870 2.40 GHz (2 processors), with 16 GB of RAM.

Remark 2. For plotting the pictures, we have used the codes that base of them presented in [36] and some changes
that we must add them. For example, while we have no explicit relation to find the strange fixed points, we apply
from this routine:

p[x_] = (x^2 - 1) (x^2 + c);

y[x_] = x - p[x]/p’[x];

R[x_, c_] = y[x] - p[y[x]]/p’[x] // Together;

s[x_, c_] = Numerator[R[x, c]] - x Denominator[R[x, c]] // Simplify;

fixedpoints[c_]= x /. NSolve[s[x, c]/((-1 + x^2) (c + x^2) ) == 0, x];
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Figure 5: Parameter plane P1 for the critical point r1(c) and detail

Figure 6: Parameter plane P2 for the critical point r3(c) and detail

4 Application on matrix function

We also want to show the applicability of Traub’s method for matrix functions. There are many papers about
the pth root of matrix such as [24, 4, 15, 25]. Let A be a non-singular complex matrix that belongs to Cn×n and
let L : Cn×n → Cn×n be the Fréchet-derivative of the matrix function F where F (X) = X4 − A. The zeroes of the
function F are the 4th roots of the matrix A. In this Section, we want to find the principal 4th root of the matrix A.
We need some concepts that we mention them in the following:

Theorem 4.1. [25](principal pth root) A principal pth root of A ∈ Cn×n, X, is the unique pth root of A, has no

eigenvalues on R− and all of its eigenvalues lie in the segment {z : −π
p < arg(z) < π

p }. So, we write X = A
1
p .

Definition 4.2. [25] The Fréchet derivative of a matrix function F : Cn×n → Cn×n at a point X ∈ Cn×n is a linear
mapping L : Cn×n → Cn×n such that

F (X + E)− F (X)− L(X,E) = o(||E||),

for all E ∈ Cn×n.

Theorem 4.3. [34, 25] (existence of pth root) A ∈ Cn×n has a pth root if and only if the ”ascent sequence” of integers
d1, d2, . . . defined by

di = dim(null(Ai))− dim(null(Ai−1))

has the property that for every integer k ≥ 0 no more than one element of the sequence lies strictly between pk and
p(k + 1).
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Figure 7: Parameter plane P3 for the critical point r5(c) and detail

Figure 8: Parameter plane P4 for the critical point r7(c) and detail

Now, we are going to obtain the adapted Traub’s method for solving the equation F (X) = X4 −A and obtaining

A
1
4 .

The first step of Traub’s scheme defines a sequence of iterates {Yk}k≥0 by

Yk = Xk + Ek

where Ek is to be determined. For obtaining the Ek, we use the Fréchet derivative of the function F as the following
form:

F (Xk + Ek)− F (Xk) = LF (Xk, Ek) + o(||Ek||).

We assume that F (Xk + Ek) = 0, and ignore o(||Ek||) and by using the fact that Lf (X,E) =
∑n

i=1 X
n−iEXi−1

for the matrix function f(X) = Xn, we obtain that

−X4
k +A = X3

kEk +X2
kEkXk +XkEkX

2
k + EkX

3
k ,

and by assuming XkEk = EkXk, we get the following relation:

Ek =
1

4
(X−3

k A−Xk),

and therefore the first step of adapted Traub’s method for finding A
1
4 is

Yk =
1

4
(X−3

k A+ 3Xk)

where X−3
k denotes the 3th power of the inverse of Xk.
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Figure 9: Parameter plane P5 for the critical point r9(c) and detail

The first step of Traub’s method that is the same Newton’s method is quadratically converges to A
1
4 when the

matrix A is non-singular, and X0A = AX0 where X0 is initial guess. By the relation

Xk+1 = Yk + Ek,

we can obtain the sequence {Xk} for the second step of the adapted Traub’s method. By assuming F (Yk + Ek) = 0,
ignoring o(||Ek||), letting LF (Xk, Ek) instead of LF (Yk, Ek), and assuming XkEk = EkXk in the Freéchet derivative
of Xk+1, we again obtain

Ek =
1

4
X−3

k (A− Y 4
k ).

Therefore, we get the second step of the adapted Traub’s method by

Xk+1 =
1

4
(X−3

k A+ 3Xk) +
1

4
X−3

k (A− Y 4
k ) =

1

4
(3Xk + 2X−3

k A−X−3
k Y 4

k ).

For enhancing the initial speed of convergence, we scale the iterates of the Traub method. We replace Xk by µkXk

in the Traub method that µk is given by

µk = |Det(Xk)

Det(A)
1
4

|− 1
n , (4.1)

where n is the size of the matrix A. So, the scaled Traub’s method for 4th root of a matrix A is given by:{
Yk = 1

4 (µ
−3
k X−3

k A+ 3µkXk)

Xk+1 = 1
4 (3µkXk + 2µ−3

k X−3
k A− µ−3

k X−3
k Y 4

k ).
(4.2)

Now, we examine Traub’s method and scaled Traub’s method for different sizes of matrices and different initial
guess.

Example 1. We are going to apply Traub’s method and scaled Traub’s method on the non-singular and diago-
nalizable matrix A that is given by: 

4 1 1 1
2 4 2 1
1 0 4 1
0 2 1 4

 , (4.3)

with 100 significant digits, and a stopping criterion using the 2-norm, ||X4
k −A|| < 10−40.

In 1, we show the results of applying of Traub’s method and scaled Traub’s method on the matrix A for different
initial guess, which they are number of iterations, the error in the last iteration, and approximated computational
order of convergence (ACOC) that is:

ACOC =
ln( ||Xk+1−Xk||

||Xk−Xk−1|| )

ln( ||Xk−Xk−1||
||Xk−1−Xk−2|| )

. (4.4)
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(a) c=-5.34562 I (b) c=2.6543 (c) c=0.88115 I

(d) c=0.352618 (e) c=0.02+0.352618 I (f) c=0.02-0.352618 I

(g) c=6

Figure 10: Dynamic planes for different values of c

We remark that I4 is the identity matrix of size 4× 4 and ||X|| is the 2-norm of matrix X.

1 shows that Traub’s method converges to the 4th root of the matrix A for all of the initial guess. When Traub’s
scheme has a large number of iterations, or order of convergence of it has been less than three, scaled Traub’s method
can overcome these issues. Hence, we illustrate the stability of Traub’s method.

Example 2. In the following example, we present the matrix B of different size n × n. The matrix B is the
total of a upper triangular matrix, Hilbert matrix, and a random factor of Identity matrix in different size b that its
Mathematica code is given by:

b =number;

g[i_, j_] := (j - i)/10 /; i < j

g[i_, j_] := 1 /; i == j

g[i_, j_] := 0 /; i > j

G[b_] := Table[g[i, j], {i, 1, b}, {j, 1, b}];

SeedRandom[1234];

K[b_] := HilbertMatrix[b] + RandomReal[{1, b}]IdentityMatrix[b];

B[b_] := G[b]+K[b];

In 2, we show the number of iterations, ACOC, and the error in the last iteration for different size of matrix B.
The stopping criterion is ||X4

k − B|| < 10−12 with 100 significant digits. Moreover, we suppose that the initial guess
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(a) c=-6 (b) Details (c) Details

Figure 11: Dynamic plane for c=-6 and details

(a) c=2.83593 (b) Details (c) Details

Figure 12: Dynamic plane for c=2.83593 and details

is the matrix B[b] for each size b. Also, we show the condition number for any size of matrix B, according to

κ(B) = ||B||||B−1||.

This example also confirms the stability of Traub’s method due to convergence of Traub’s method of order three
with independence of size and condition number of matrix B.

5 Semi-local convergence of the method (1.2)

In this section, we are going to present the semi-local convergence of Traub’s method. According to [7], if the
Lipschitz condition

||F ′(x0)
−1(F ′(x)− F ′(y))|| ≤ M ||x− y||, for every x, y ∈ D (5.1)

as well as ||F ′(x0)
−1F (x0)|| ≤ s0 holds for some M > 0 and s0 > 0, then the sufficient semi-local convergence condition

for the method (1.2) is given by the well-known Newton–Kantorovich hypothesis [28]:

h = Ms0 ≤ 1

2
. (5.2)

In this paper, we use the following Lipschitz condition:

||F ′(x0)
−1([x, y;F ]− [z, t;F ])|| ≤ L(||x− z||+ ||y − t||), for every x, y, z, t ∈ D (5.3)

for some L > 0. Also, [., .;F ] is divided difference of order one. Based on the relation [x, x;F ] = F ′(x), it is concluded
that 2L = M . Hence,

h = Ls0 ≤ 1

4
, (5.4)

and therfore, based on the [28, 7, 10] and references there in, the error estimates ||xn+1−xn|| and ||xn−x∗|| are more
precise by the relation (5.3). That is why we study the semi-local convergence of the method (1.2). Now, we want to
present the majorizing sequences that they are obtained by the relations (5.28) and (5.29).
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Table 1

Traub’s method scaled Traub’s method
X0 Iter ACOC Error X0 Iter ACOC Error
A 8 3.0000 2.21e-69 A 5 3.0000 8.96e-45
A+I4
10 39 3.0053 1.14e-67 A+I4

10 5 3.0014 1.41e-76
I4 9 3.0000 3.3e-101 I4 5 2.9991 5.9e-101
12I4 10 2.9613 2.23e-79 12I4 5 2.9991 5.9e-101

Table 2

Matrix B Traub’s method scaled Traub’s method
b κ(B) Iter ACOC Error Iter ACOC Error
4 1.39202 7 2.9758 2.6808e-15 4 2.9936 1.8414e-15
8 1.39294 8 2.8898 1.8879e-15 4 2.9940 1.8828e-15
16 1.6127 10 3.0833 8.9267e-15 4 2.9987 8.9533e-15
32 2.30588 11 3.2679 2.5402e-14 4 2.9755 2.9755e-14
64 4.04788 12 3.0424 5.8682e-14 4 2.8597 9.9800e-14
128 7.59455 13 3.2088 1.3662e-13 4 2.9376 1.4862e-13

Lemma 5.1. (majorizing sequences for the method (1.2)) Let L ≥ 0, L0 ≥ 0 and s0 ≥ 0 be parameters. We
define the polynomial q by

q(t) = L(t+ 2)(t− 1) + 2L0t
3. (5.5)

q(t) has a unique root α in the interval (0, 1). We suppose that

0 <
L(t1 + s0)

1− 2L0t1
< α < 1− 2L0s0. (5.6)

Define the sequence {tn} for n = 1, 2, . . . by

t0 = 0, t1 = s0(1 + Ls0), (5.7)

sn = tn +
L(tn − tn−1 + sn−1 − tn−1)

1− 2L0tn
(tn − sn−1),

tn+1 = sn +
L(sn − tn)

1− 2L0tn
(sn − tn).

(5.8)

Then the sequence {tn} is an increasing and bounded above by t∗∗ = s0
1−α .Therefore, {tn} converges to its least

upper bound t∗. Moreover, the following relations are hold:

tn+1 − sn ≤ α(sn − tn) ≤ α2n+1(s0 − t0), (5.9)

sn − tn ≤ α(tn − sn−1) ≤ α2n(s0 − t0), (5.10)

tn ≤ sn ≤ tn+1, (5.11)

for n = 0, 1, . . . .

Proof . First, we shall show that q(t) has roots. We have that q(0) = −2L < 0 and q(1) = 2L0 > 0. Hence, by
intermediate value Theorem, q(t) has roots in the interval (0, 1). q′(t) = L(2t+ 1) + 6L0t

2 > 0 for all of the points in
the interval (0,1). So, q is an increasing function in the interval (0,1). Hence, the graph of q only intersects the x-axis
once in the interval (0,1). Therefore, q has a unique root in the interval (0,1). Denote this root by α. Next, we want



On the stability of a two-step method for a fourth-degree family by computer designs along with applications 273

to prove that {tn} is an increasing and bounded sequence. For showing this, it is enough that we present the relations
(5.9)-(5.11). The relations (5.9)-(5.11) are true if the following relations are true for k = 0, 1, 2, . . . :

0 <
L(sk − tk)

1− 2L0tk
< α, (5.12)

0 <
L(tk+1 − tk + sk − tk)

1− 2L0tk+1
< α, (5.13)

tk ≤ sk ≤ tk+1. (5.14)

We prove (5.12)-(5.14) by induction on k. By the relation (5.7) and the left hand sides of inequalities (5.6), we
have

0 < Ls0
2 + Ls0
1− 2L0t1

< α < 1. (5.15)

Because 2+Ls0
1−2L0t1

> 1, Ls0 < α. Hence, the relation (5.12) is true for k = 0. By the relation (5.7) and the left hand
sides of inequalities (5.6), the relations (5.13) and (5.14) are true for k=0, too. Using the hypotheses of induction, we
suppose that the relations (5.12)-(5.14) are true for k = 1, 2, . . . , n. Using these assumptions and by (5.9) and (5.10),
we have the following estimates:

sk ≤ tk + α2k(s0 − t0) ≤ sk−1 + α2k−1(s0 − t0) + α2k(s0 − t0)

≤ (s0 − t0) + · · ·+ α2k(s0 − t0) =
1− α2k+1

1− α
(s0 − t0) ≤

s0
1− α

= t∗∗,
(5.16)

and

tk+1 ≤ sk + α2k+1(s0 − t0) ≤ tk + α2k(s0 − t0) + α2k+1(s0 − t0)

≤ (s0 − t0) + · · ·+ α2k+1(s0 − t0) =
1− α2k+2

1− α
(s0 − t0) ≤

s0
1− α

= t∗∗.
(5.17)

By (5.6) and the hypotheses of induction, we get that

0 <
1

1− 2L0t1
<

1

1− 2L0tk
, (5.18)

and

0 <
L(sk − tk)

1− 2L0tk
<

L(tk+1 − tk + sk − tk)

1− 2L0tk+1
. (5.19)

We get the left hand side of inequalities (5.12) and (5.13) by the relation (5.19). Now, we shall show the relations
(5.12)-(5.14) for k > n. By (5.19) we only show that the relation (5.13) holds. We must show that the following
relation is true for each k = 1, 2, . . . .

L( 1−α2k+2

1−α − 1−α2k

1−α + α2k)(s0 − t0)

1− 2L0(1 + · · ·+ α2k+1)(s0 − t0)
< α, (5.20)

or
Lα2k−1(α+ 2)(s0 − t0)

1− 2L0(1 + · · ·+ α2k+1)(s0 − t0)
< 1. (5.21)

We define the function fk(t) on the interval (0,1) by the following relation:

fk(t) = Lt2k−1(t+ 2)(s0 − t0) + 2L0(1 + · · ·+ t2k+1)(s0 − t0)− 1. (5.22)

The relation (5.21) is true, if fk(α) < 0 is true for each k = 1, 2, . . . . For this aim, we decide to make the following
relationship:

fk+1(t)− fk(t) = t2k−1(s0 − t0)(t+ 1)q(t). (5.23)

Using (5.5), we get that for each k = 1, 2, . . .

fk+1(α) = fk(α) = f∞(α), (5.24)
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where f∞(t) = limk→∞fk(t). By the right hand of the inequalities (5.6), we get that

f∞(α) =
2L0(s0 − t0)

1− α
− 1 < 0. (5.25)

We deduce that fk(α) < 0 for each k = 1, 2, . . . so that the relations (5.9)-(5.11) are true. Hence, {tn} is a
increasing and bounded above by t∗∗, so it converges to least upper bound t∗. Therefore, the proof of the Lemma is
complete. □

Now, by using the Lemma 1, we shall present the semi-local convergence of the method(1.2). The open and closed
ball U(s, r) in the Banach space X is the set {x ∈ X | ||x− s|| < r} and {x ∈ X | ||x− s|| ≤ r}, respectively, such that
||.|| is a norm in the Banach space X. For example, in the Banach space Rn, the norm ||x− s|| is the Euclidean-norm
(
∑n

i=1(xi − si)
n)1/n where x and s are n-dimensional vectors in Rn.

Theorem 5.2. Let F : D ⊆ X → Y be a Fréchet-differentiable operator and [., .;F ] be a divided difference of order
one for operator F on D ×D . X and Y are Banach spaces and D is a convex subset of X. Moreover, suppose that
there exist x0 ∈ D, L0 > 0, L > 0, and s0 > 0 with L0 ≤ L such that for every x, y, z, and t ∈ D

F ′(x0)
−1 ∈ L(Y,X), (5.26)

||F ′(x0)
−1F (x0)|| ≤ s0, (5.27)

||F ′(x0)
−1([x, y;F ]− F ′(x0))|| ≤ L0(||x− x0||+ ||y − x0||), (5.28)

||F ′(x0)
−1([x, y;F ]− [z, t;F ])|| ≤ L(||x− z||+ ||y − t||), (5.29)

and all of the hypotheses of Lemma 1 are confirmed. Also, F ′(x) = [x, x;F ]. Then the sequence {xn}, generated by
the method(1.2), converges to x∗ ∈ U(x0, t

∗) ⊆ D and remains in U(x0, t
∗). Moreover, x∗ is the unique solution of

F (x) = 0 in the U(x0, t
∗)

Proof . By induction on n, we shall show that

||xn+1 − yn|| ≤ tn+1 − sn (5.30)

and
||yn − xn|| ≤ sn − tn. (5.31)

For n = 0, by (5.27), we have

||y0 − x0|| = ||F ′(x0)
−1F (x0)|| ≤ s0 = s0 − t0 ≤ t∗. (5.32)

So, y0 ∈ U(x0, t
∗), and (5.31) holds for n = 0. Using the first and second substeps of the method(1.2) and relations

(5.7) and (5.28), we get that

||x1 − y0|| = ||F ′(x0)
−1F (y0)|| ≤ ||F ′(x0)

−1([y0, x0;F ]− F ′(x0))||||y0 − x0||
≤ L0(||y0 − x0||)||y0 − x0||
≤ L(||y0 − x0||)||y0 − x0|| = t1 − s0.

(5.33)

Hence,
||x1 − x0|| ≤ ||x1 − y0||+ ||y0 − x0|| ≤ t1 − s0 + s0 − t0 = t1 ≤ t∗, (5.34)

so, x1 ∈ U(x0, t
∗), and (5.30) holds for n = 0. By (5.6) and (5.28), we get that

||F ′(x0)
−1(F ′(x1)− F ′(x0))|| ≤ L0(||x1 − x0||+ ||x1 − x0||) = 2L0t1 < 1. (5.35)

It follows by the Banach lemma on invertible operators that F ′(x1)
−1 exists and

||F ′(x1)
−1F ′(x0)|| ≤

1

1− 2L0||x1 − x0||
. (5.36)
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Also, by the second substep of the method(1.2) and (5.28), we deduce that

||F ′(x0)
−1F (x1)|| = ||F ′(x0)([x1, y0;F ]− F ′(x0))(x1 − y0)||

≤ L0(||x1 − x0||+ ||y0 − x0||)||x1 − y0||
≤ L(||x1 − x0||+ ||y0 − x0||)||x1 − y0||.

(5.37)

Now, by (5.36), (5.37), and the first substep of the method(1.2), we get that

||y1 − x1|| ≤ ||F ′(x1)
−1F ′(x0)F

′(x0)
−1F (x1)||

≤ L(||x1 − x0||+ ||y0 − x0||)
1− 2L0||x1 − x0||

||x1 − y0||

≤ L(t1 − t0 + s0 − t0)

1− 2L0t1
(t1 − s0)

= s1 − t1,

(5.38)

and
||y1 − x0|| ≤ ||y1 − x1||+ ||x1 − x0|| ≤ s1 − t1 + t1 − t0 = s1 ≤ t∗. (5.39)

So, y1 ∈ U(x0, t
∗), and (5.31) holds for n = 1. Also, using the first substep of the method(1.2), we get that

||F ′(x0)
−1F (y1)|| = ||F ′(x0)

−1([x1, y1;F ]− F ′(x1))(y1 − x1)||
≤ L(||y1 − x1||)||y1 − x1||,

(5.40)

and using the second substep of the method(1.2), we have

||x2 − y1|| ≤ ||F ′(x1)
−1F ′(x0)||||F ′(x0)

−1F (y1)||

≤ L(||y1 − x1||)||y1 − x1||
1− 2L0||x1 − x0||

≤ L(s1 − t1)(s1 − t1)

1− 2L0t1
= t2 − s1.

(5.41)

Hence, (5.30) holds forn = 1, and

||x2 − x0|| ≤ ||x2 − y1||+ ||y1 − x1||+ ||x1 − x0|| ≤ t2 − s1 + s1 − t1 + t1 − t0 = t2 ≤ t∗, (5.42)

so, x2 ∈ U(x0, t
∗). If we replace the role of x1, y1, x2 with xk, yk, xk+1, we obtain that for each k = 0, 1, 2, . . . the

relations (5.31) and (5.30) are true. Therefore, we get that

||xk+1 − xk|| ≤ ||xk+1 − yk||+ ||yk − xk|| ≤ tk+1 − sk + sk − tk = tk+1 − tk (5.43)

so that {xk} is a Cauchy sequence. Also, we have for each k = 1, 2, . . .

||xk − x0|| ≤ ||xk − yk−1||+ ||yk−1 − xk−1||+ · · ·+ ||x1 − y0||+ ||y0 − x0||
≤ tk − sk−1 + sk−1 − tk−1 + · · ·+ t1 − s0 + s0 − t0 = tk ≤ t∗,

(5.44)

so, xk ∈ U(x0, t
∗). Thus, we deduce that {xk} is a Cauchy sequence in the closed subset, U(x0, t

∗), of the Banach
space X so that {xk} converges to x∗ in the U(x0, t

∗).Moreover, by the second substep of the method(1.2), we obtain
that

||F ′(x0)
−1F (xk+1)|| ≤ L(||xk+1 − xk||+ ||yk − xk||)||xk+1 − yk||, (5.45)

and by letting k → ∞ and continuity of F, we get that

F (x∗) = lim
k→∞

F (xk+1) = 0 (5.46)

so that x∗ is a solution of F (x) = 0. If y∗ be another solution of F (x) = 0 in the U(x0, t
∗), we have by (5.25) that

||F ′(x0)
−1([x∗, y∗;F ]− F ′(x0))|| ≤ L0(||x∗ − x0||+ ||y∗ − x0||)

≤ L0(t
∗ + t∗) ≤ L0(

2s0
1− α

)

≤ 1

(5.47)
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so that by the Banach lemma on invertible operators [x∗, y∗;F ]−1 exists. Therefore, it follows from the following
relation that x∗ = y∗ :

[x∗, y∗;F ](x∗ − y∗) = F (x∗)− F (y∗) = 0. (5.48)

Hence, the proof of Theorem is completed. □

6 Local convergence of the method(1.2)

For the local convergence, we also use the Lipschitz conditions (6.10) and (6.11) based on the divided difference.
In the reference [7], the following relations are used:

||F ′(x∗)−1(F ′(x)− F ′(x∗))|| ≤ l′0||x− x∗||, (6.1)

and
||F ′(x∗)−1(F ′(x)− F ′(y))|| ≤ l′||x− y||. (6.2)

By definition the divided differences, it is deduced that 2l0 = l′0 and 2l = l′. In [7], then they obtained the following
convergence radius for the method (1.2)

R =
2

2l′0 + 5l′
. (6.3)

In this paper, based on the relations (6.10) and (6.11), we obtain the following convergence radius:

r =
2

4l0 + (1 +
√
5)l

=
2

2l′0 +
1
2 (1 +

√
5)l′

>
2

2l′0 + 5l′
= R. (6.4)

So, we enlarge the convergence domain of the method (1.2) in this paper. In order to find the convenient convergence
radius r, we introduce some functions that they also have essential role to verify the local convergence. Let l > 0 and
l0 > 0 with l0 ≤ l be parameters. Define functions g1 and h1 on the interval (0, 1

2l0
) by

g1(t) =
lt

1− 2l0t
and h1(t) = g1(t)− 1. (6.5)

We have h1(0) = −1 and h1(t) → +∞ as t → 1
l0

−
. Hence, h1 has root, r1 = 1

l+2l0
, in the interval (0, 1

2l0
) by

intermediate value Theorem. Then we define the functions g2 and h2 on the interval (0, r1) by

g2(t) =
lt(2 + g1(t))g1(t)

1− 2l0t
and h2(t) = g2(t)− 1. (6.6)

Also, h2(0) = −1 and h2(r1) = 3lr1
1−2l0r1

− 1 =
1

l+2l0
(3l+2l0)−1

1−2l0r1
> 0 so that h2 has roots in the interval (0, r1) by

intermediate value theorem. Define the smallest of these roots by r. Also, g′1(t) > 0 and g′2(t) > 0 on the interval
(0, r). Hence, g1 and g2 are increasing functions on the interval (0, r), so we have on the interval (0, r)

0 ≤ g1(t) < 1, (6.7)

0 ≤ g2(t) < 1. (6.8)

In the other hand, we have g2(r) = 1 and g2(r) = g1(r)
2(2 + g1(r)) so that g1(r) =

2
1+

√
5
. Hence, r = 2

4l0+(1+
√
5)l

.

Theorem 6.1. Let F : D ⊆ X → Y be Fréchet-differentiable function. Suppose parameters l, l0, r and functions
g1, g2 are the same defined previously. Also, suppose there exists x∗ ∈ D such that we have for every x, y, z, t ∈ D

F (x∗) = 0 , F ′(x∗)−1 ∈ L(Y,X), (6.9)

||F ′(x∗)−1([x, y;F ]− F ′(x∗))|| ≤ l0(||x− x∗||+ ||y − x∗||), (6.10)

||F ′(x∗)−1([x, y;F ]− [z, t;F ])|| ≤ l(||x− z||+ ||y − t||), (6.11)
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and
U(x∗, r) ⊆ D, (6.12)

where

r =
2

4l0 + (1 +
√
5)l

. (6.13)

Then the sequence {xn} generated by the method(1.2) remains in U(x∗, r) and converges to x∗ provided that
x0 ∈ U(x∗, r). Moreover, the following estimates hold for every n = 0, 1, 2, . . .

||yn − x∗|| ≤ g1(||xn − x∗||)||xn − x∗|| ≤ ||xn − x∗||, (6.14)

and
||xn+1 − x∗|| ≤ g2(||xn − x∗||)||xn − x∗|| ≤ ||xn − x∗|| < r. (6.15)

Proof . By induction on n, we will show the estimates (6.14) and (6.15) are true. First, by hypotheses, we have
x0 ∈ U(x∗, r), and by the (6.10), we get that

||F ′(x∗)−1(F ′(x0)− F ′(x∗))|| ≤ 2l0||x0 − x∗||

≤ 4l0

4l0 + (1 +
√
5)l

< 1

(6.16)

so that by the Banach lemma on invertible operators F ′(x0)
−1 exists and

||F ′(x0)
−1F ′(x∗)|| ≤ 1

1− 2l0||x0 − x∗||
. (6.17)

Also, by first substep of the method(1.2), (6.5), and (6.7) we have

||y0 − x∗|| = ||x0 − x∗ − F ′(x0)
−1F (x0)||

≤ ||F ′(x0)
−1F ′(x∗)||||F ′(x∗)−1(F ′(x0)− [x0, x

∗;F ])||||x0 − x∗||

≤ l||x0 − x∗||
1− 2l0||x0 − x∗||

||x0 − x∗||

= g1(||x0 − x∗||)||x0 − x∗|| ≤ ||x0 − x∗|| < r.

(6.18)

Hence, the estimate (6.14) holds for n=0, and y0 ∈ U(x∗, r).

Next, using second substep of method(1.2), (6.6), and (6.8) we have

||x1 − x∗|| = ||y0 − x∗ − F ′(x0)
−1F (y0)||

≤ ||F ′(x0)
−1F ′(x∗)||||F ′(x∗)−1(F ′(x0)− [y0, x

∗;F ])||||y0 − x∗||

≤ l(||x0 − y0||+ ||x0 − x∗||)
1− 2l0||x0 − x∗||

||y0 − x∗||

≤ l(||x0 − x∗||+ ||y0 − x∗||+ ||x0 − x∗||)
1− 2l0||x0 − x∗||

||y0 − x∗||

≤ l(g1(||x0 − x∗||)||x0 − x∗||+ 2||x0 − x∗||)
1− 2l0||x0 − x∗||

g1(||x0 − x∗||)||x0 − x∗||

= g2(||x0 − x∗||)||x0 − x∗|| < ||x0 − x∗|| < r.

(6.19)

Hence, (6.15) holds for n=0, and x1 ∈ U(x∗, r). Suppose (6.14) and (6.15) are true for n = 1, 2, . . . , k, so verify
them for n = k + 1. Therefore, we get that

||yk+1 − x∗|| = ||xk+1 − x∗ − F ′(xk+1)
−1F (xk+1)||

≤ ||F ′(xk+1)
−1F ′(x∗)||||F ′(x∗)−1(F ′(xk+1)− [xk+1, x

∗;F ])||||xk+1 − x∗||

≤ l||xk+1 − x∗||
1− 2l0||xk+1 − x∗||

||xk+1 − x∗||

= g1(||xk+1 − x∗||)||xk+1 − x∗|| ≤ ||xk+1 − x∗|| < r.

(6.20)
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Hence, the estimate (6.14) holds for n=k+1, and yk+1 ∈ U(x∗, r). Also, we have

||xk+2 − x∗|| = ||yk+1 − x∗ − F ′(xk+1)
−1F (yk+1)||

≤ ||F ′(xk+1)
−1F ′(x∗)||||F ′(x∗)−1(F ′(xk+1)− [yk+1, x

∗;F ])||||yk+1 − x∗||

≤ l(||xk+1 − yk+1||+ ||xk+1 − x∗||)
1− 2l0||xk+1 − x∗||

||yk+1 − x∗||

≤ l(||xk+1 − x∗||+ ||yk+1 − x∗||+ ||xk+1 − x∗||)
1− 2l0||xk+1 − x∗||

||yk+1 − x∗||

≤ l(g1(||xk+1 − x∗||)||xk+1 − x∗||+ 2||xk+1 − x∗||)
1− 2l0||xk+1 − x∗||

g1(||xk+1 − x∗||)||xk+1 − x∗||

= g2(||xk+1 − x∗||)||xk+1 − x∗|| < ||xk+1 − x∗|| < r.

(6.21)

Hence, (6.15) holds for n=k+1, and xk+2 ∈ U(x∗, r). Finally, we have g2 is an increasing function, and using (6.15)
we have that

||xn+1 − x∗|| ≤ ||xn − x∗||, (6.22)

so
g2(||xn+1 − x∗||) ≤ g2(||xn − x∗||). (6.23)

By (6.22), (6.23), and induction on n, the following estimate

||xn+1 − x∗|| ≤ g2(||x0 − x∗||)n+1||x0 − x∗|| (6.24)

is true for n = 0, 1, . . . . Hence, by letting n → ∞, we obtain that

lim
n→∞

xn+1 = x∗. (6.25)

Therefore, the Theorem was proved. □

7 Examples

In this section, we confirm the theoretical results in Sections 5 and 6 by using numerical examples.

Example 3. Let F : R3 →: R3 be a Fréchet-differentiable function where

F (x1, x2, x3) = (ex1 − 1, ex2 − 1, ex3 − 1) , xi ∈ (−1, 1), i = 1, 2, 3.

The Fréchet-derivative of function F is given by ex1 0 0
0 ex2 0
0 0 ex3

 , (7.1)

and divided difference of F is given by 
ex1−ey1

x1−y1
0 0

0 ex2−ey2

x2−y2
0

0 0 ex3−ey3

x3−y3

 . (7.2)

Let X0 = (0.1, 0.1, 0.1), and ||.|| be max-norm. For computing L in the relation 5.29, by using ex ≈ 1+ x+ x2

2 , we
have

||F ′(X0)
−1([X,Y ;F ]− [Z, T ;F ])|| ≤ ||F ′(X0)

−1||Max1≤i≤3(|
exi − eyi

xi − yi
− ezi − eti

zi − ti
|)

≤ 0.904837Max1≤i≤3(1 +
1

2
(xi + yi)− 1− 1

2
(zi + ti))

≤ 0.904837

2
(||X − Z||+ ||Y − T ||),

(7.3)
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also for computing L0 in the relation 5.28, we get that

||F ′(X0)
−1([X,Y ;F ]− [X0, X0;F ])|| ≤ ||F ′(X0)

−1||Max1≤i≤3(|
exi − eyi

xi − yi
− F ′(X0)|)

≤ 0.904837Max1≤i≤3(1 +
1

2
(xi + yi)− 1− 1

2
(0.2))

≤ 0.904837

2
(||X −X0||+ ||Y −X0||).

(7.4)

Therefore L = L0 ≈ 0.452419 and by relation (5.27), we have

||F ′(X0)
−1F (X0)|| = s0 ≈ 0.0951626.

Moreover, using (5.5) and (5.7), we deduce that α ≈ 0.722714, t1 ≈ 0.0992597, respectively. Now, we confirm our
unique condition for semi-local convergence:

0 <
L(t1 + s0)

1− 2L0t1
≈ 0.0966398 < α ≈ 0.722714 < 1− 2L0s0 ≈ 0.913893. (7.5)

Example 4. Let us consider the following equation that is a nonlinear integral equation of mixed Hammerstein
type.

F (x)(s) = x(s)−
∫ 1

0

G(s, t)(
4

7
x(t)3 +

9

21
x(t)2)dt, x ∈ C[0, 1], s ∈ [0, 1]. (7.6)

where F is a Fréchet-differentiable operator that F : C[0, 1] → C[0, 1], and C[0, 1] is the space of continuous functions
on [0, 1] with the norm-max. Also, the kernel G is Green’s function defined by

G(s, t) =

{
(1− s)t if t ≤ s

(1− t)s if s ≤ t.
(7.7)

For y ∈ C[0, 1] and s ∈ [0, 1], the Fréchet derivative of F is defined by

F ′(x)(y)(s) = y(s)−
∫ 1

0

G(s, t)(
12

7
x(t)2 +

18

21
x(t))y(t)dt. (7.8)

It is clear that x∗(s) = 0 is the root of equation F (x) = 0 and ||F ′(x∗)−1|| = 1. By using the relations [x, y;F ] =∫ 1

0
F ′(xθ + y(1− θ))dθ and ||

∫ 1

0

∫ 1

0
G(s, t)dtds|| ≤ 1

8 , for computing the l0 in the relation (6.10), we have that

||[x, y;F ]− [x∗, x∗;F ]|| =
∫ 1

0

F ′(xθ + y(1− θ))dθ −
∫ 1

0

F ′(x∗θ + x∗(1− θ))dθ

= ||
∫ 1

0

∫ 1

0

G(s, t)(
12

7
[(xθ + y(1− θ))2 − (x∗θ + x∗(1− θ))2]

+
18

21
[(xθ + y(1− θ))− (x∗θ + x∗(1− θ))])y(t)dtdθ||

≤
∫ 1

0

∫ 1

0

G(s, t)[
12

7
(||xθ + y(1− θ)||+ ||x∗θ + x∗(1− θ)||)(||xθ

+ y(1− θ)|| − ||x∗θ + x∗(1− θ)||) + 18

21
(||x− x∗||θ + ||y − x∗||(1− θ))]

≤
∫ 1

0

1

8
[
12

7
+ (

18

21
)](||x− x∗||θ + ||y − x∗||(1− θ))dθ

≤ 9

56
(||x− x∗||+ ||y − x∗||),

(7.9)
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so, l0 = 9
56 . Also, for computing l from relation (6.11), we get that

||[x, y;F ]− [u, v;F ]|| =
∫ 1

0

F ′(xθ + y(1− θ))dθ −
∫ 1

0

F ′(uθ + v(1− θ))dθ

= ||
∫ 1

0

∫ 1

0

G(s, t)(
12

7
[(xθ + y(1− θ))2 − (uθ + v(1− θ))2]

+
18

21
[(xθ + y(1− θ))− (uθ + v(1− θ))])y(t)dtdθ||

≤
∫ 1

0

∫ 1

0

G(s, t)[
12

7
(||xθ + y(1− θ)||+ ||uθ + v(1− θ)||)(||xθ

+ y(1− θ)|| − ||uθ + v(1− θ)||) + 18

21
(||x− u||θ + ||y − v||(1− θ))]

≤
∫ 1

0

1

8
[
24

7
+ (

18

21
)](||x− u||θ + ||y − v||(1− θ))dθ

≤ 15

56
(||x− u||+ ||y − v||),

(7.10)

hence, l = 15
56 . Therefore, we deduce the following large radius of convergence:

r =
2

4l0 + (1 +
√
5)l

= 1.3248. (7.11)

Example 5. LetX = Y = C[0, 1] be the space of continuous functions defined on the interval [0, 1] with max-norm.
Define F on X by

F (x)(s) = x(s)− 5

∫ 1

0

sθx(θ)3dθ, (7.12)

and we have

F ′(x(y))(s) = y(s)− 15

∫ 1

0

sθx(θ)2y(θ)dθ for all y ∈ X. (7.13)

We obtain by hypotheses of Theorem 1 that l = 15 and l0 = 7.5. Hence, the radius of convergence is 2
4l0+(1+

√
5)l

≈
0.0254644 while the radius ball of convergence that Magrenan et. al. have obtained in [31], the earliest work in this
matter, is 1

45 ≈ 0.222222. So, we obtain a larger radius of ball convergence than earlier studies.

8 Conclusions

In this paper we have studied the behavior of Traub’s method. We have shown the stability behavior of Traub’s
method on a big family of fourth-degree polynomials. In parameter planes, there exist small black regions. Also, the
strange fixed points are attractive in very small regions of complex plane. There exists no basin attraction for infinity.
All in all, the behavior of Traub’s method is very stable.Meanwhile, the application of Traub’s method on functions
of matrices for computing 4th root of a matrix confirms the good stability of it as well. Moreover, we have presented
semi-local and local convergence of Traub’s method based on the divided differences. In semi-local convergence, we
have obtained more precision in the error estimates, and in local convergence we have obtained a larger convergence
ball than other studies while the numerical examples confirm our results.
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