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Abstract

This article consists of a new concept of generalized metric space, called ϕ-metric space which is developed by making
a suitable modification in the ‘triangle inequality. The notion of ϕ-metric generalizes the concept of some existing
metrizable generalized spaces like S-metric, b-metric, etc. It is shown that one can easily construct a ϕ-metric from
those generalized metric functions and the notion of convergence of a sequence on those generalized metric spaces are
identical with the respective induced ϕ-metric spaces. Moreover, ϕ-metric space is metrizable and its properties are
pretty similar to the metric functions. So ϕ-metric functions substantially may play the role of metric functions. Also,
the structure of ϕ-metric space is studied and some well-known fixed point theorems are established.
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1 Introduction

In modern mathematics metric spaces and topological spaces are two widely used concepts. Metric spaces are
considered as a particular case of topological spaces. The notion of metric was developed by Frechet[1] and later
Hausdorff [2] presented axiomatically. The proposed three metric axioms are very fundamental and geometrically
appreciable. The properties of metric spaces are easier to check than general topological spaces. Because of this reason,
metrizability is an interesting topic for topological spaces. Unfortunately, there are spaces which are not metrizable. So
researchers try to develop functions which are more general than metric spaces. In 1963, Gahler[3] introduced 2-metric
and later n-metric which are not metrizable. In another process of generalization, Dhage introduced D-metric[4], but
it was a defective structure. To rectify the error in D-metric, Mustafa and Sims introduced a new concept called G-
metric space [5], Sedghi introduced S-metric space[6]. There is another generalized metric called b-metric, introduced
by Czerwik [7, 8].

In 2013, Chaipuniya and Kumam introduced the notion of g-3ps [9] and claimed that it is the general structure of
the distance between three points. They proved the G-metric and S-metric spaces are also g-3ps and a g-3ps is not
metrizable in general. But it has been proved that b-metric, G-metric and S-metric spaces are metrizable. So we think
that instead of g-3ps, which is much more general in nature, a general structure closer to those distance functions may
be a better alternative.

Following the different approaches of generalized metric spaces as mention above by several authors, in this paper
we introduce a new notion of generalized metric which is called ϕ-metric. In this approach, we only change the ‘triangle
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inequality’ by adding a suitable non-negative real valued function in the right hand side. We show the b-metric, S-
metric spaces are particular examples of ϕ-metric spaces. We study its topological properties and also prove that
ϕ-metric spaces are metrizable. We have mentioned earlier that S-metric, b-metric spaces are also metrizable but in
the line of proof of metrizability for ϕ-metric, b-metric or S-metric shows that one can not construct the respective
metric easily whose metric topology is identical with the corresponding topology of each such generalized metric spaces.
In this manuscript, we study some properties of ϕ-metric spaces and we observe that those are similar to usual metric.
Since ϕ-metric can be induced from a b-metric or S-metric, so it is easy to study the topological properties of such
spaces with the help of the respective induced ϕ-metric space. Another important advantage of ϕ-metric is that we
can define ϕ-metric in lp-space for 0 < p < 1 which is not possible for usual metric. We also develop a parallel study
on some elementary results of completeness, compactness, totally boundedness, etc. like metric spaces. Lastly we
establish the famous Banach type, Kannan type and Edelstein type fixed point results in this new setting. All the
result are justified by suitable examples also.
We refer some recently published papers[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] in metric spaces
which help us to develop the concept of generalized metric spaces.

The organization of this article is as follows. Section 2 provides some preliminary results. In Section 3, ϕ-metric
space is defined, illustrated by examples and some elementary topological properties are studied. In Section 4, results
on compactness, completeness, and totally boundedness are discussed. Section 5 consists of some fixed point theorems
in ϕ-metric spaces. The straightforward proofs are omitted.

2 Preliminaries

In this section, we recollect some preliminary results which are used in this paper.

Definition 2.1. [3] Let X be a non-empty set. Then (X,D) is called a 2-metric space if the function D : X×X×X →
R, named 2-metric satisfies the following conditions:

(i) For every a, b ∈ X with a ̸= b there exists c ∈ X such that D(a, b, c) ̸= 0;

(ii) If at least two of a, b, c ∈ X are the same, then D(a, b, c) = 0;

(iii) For all a, b, c ∈ X, D(a, b, c) = D(a, c, b) = D(b, c, a) = D(b, a, c) = D(c, a, b) = D(c, b, a);

(iv) The rectangle inequality: for all a, b, c, d ∈ X, D(a, b, c) ≤ D(a, b, d) +D(b, c, d) +D(c, a, d).

Definition 2.2. [7] Let X be a nonempty set and d : X ×X → R≥0 be a function for all x, y, z ∈ X which satisfies
the following conditions:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ 2[d(x, y) + d(y, z)].

Then d is called a b-metric and the pair (X, d) is called a b-metric space.

Later in 1998, Czerwik[8] modified this notion of b-metric replacing 2 by a constant K ≥ 1 in the condition (b3)
of Definition 2.1. Khamsi and Hussian [10] took a step further and considered the constant K > 0 and they named it
as metric-type space. Another generalization of b-metric is Strong b-metric space, which was introduced by Kirk and
Shahzad [11].

Definition 2.3. [11] Let X be a nonempty set and K ≥ 1 be a given real number. A function d : X ×X → R≥0 is
called a strong b-metric if for all x, y, z ∈ X it satisfies the following conditions:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x);

(b3) d(x, z) ≤ Kd(x, y) + d(y, z).

Then (X, d,K) is called a strong b-metric space.

Definition 2.4. [6] Let X be a nonempty set. A function S : X ×X ×X → R is called an S-metric if it satisfies the
following properties:
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(S1) S(x, y, z) ≥ 0 for all x, y, z ∈ X;

(S2) S(x, y, z) = 0 if and only if x = y = z;

(S3) S(x, y, z) ≤ S(x, x, w) + S(y, y, w) + S(z, z, w) for all x, y, z, w ∈ X.

The pair (X,S) is called an S-metric space.

Proposition 2.5. [12] Let (X, d) be a b-metric space.

(i) A subset A of X is called open if for any a ∈ A, there exist t > 0 such that B(a, t) ⊂ A where

B(a, t) = {y ∈ X : d(a, y) < t}.

(ii) If τ is the collection of all open balls of (X, d) then τ defines a topology on X.

Proposition 2.6. [11] Every open ball B(a, r) = {x ∈ X : d(a, x) < r} in a strong b-metric space (X, d,K) is open.

Definition 2.7. [6] Let (X,S) be an S-metric space. Then for any x ∈ X and t > 0, open ball and closed ball are
defined by

BS(x, t) = {y ∈ X : S(y, y, x) < t} and BS [x, t] = {y ∈ X : S(y, y, x) ≤ t}

respectively.

So far, we have discussed some generalized metric spaces. In Section 3, we introduce ϕ-metric which is a general-
ization of many established distance functions. Later, we involve ourselves to study the metrizability and topological
properties of the discussed generalized spaces including ϕ-metric spaces. In this aspect, some topological definitions
and results on topological spaces and other generalized metric spaces are given below.

Definition 2.8. [13] Let X be a topological space and B = {Bs : s ∈ S} be a family of subsets of X. Then

(i) B is called locally finite if for each x ∈ X there exists a neighborhood U of x such that the set {s ∈ S : As∩U ̸= ϕ}
is finite.

(ii) B is called discrete if for each x ∈ X, there exists a neighborhood U of x such that the set Bs ∩ U ̸= ϕ for at
most one s ∈ S.

(iii) B is called σ-locally finite if B = ∪
i∈N

Bi where every Bi is locally finite.

(iv) B is called σ-discrete if B = ∪
i∈N

Bi where every Bi is discrete.

(v) B is called a cover of X if ∪
s∈S

Bs = X.

(vi) A cover A = {Ai : i ∈ I} of subsets of X is called a refinement of the cover Bi if for each i ∈ I there exists s ∈ S
such that Ai ⊂ Bs.

Definition 2.9. [13] Let (X, τ) be a topological space. Then X is said to be a

(i) regular space if for any closed subsets A ⊂ X and for x ∈ X \ A there exists two disjoint open sets U and V
containing A and x respectively.

(ii) normal space if for any two disjoint closed subsets A and B of X there exists two disjoint open sets U and V
containing A and B respectively.

Definition 2.10. [14, 15] Let (X, τ) be a topological space.

(a) A subset U of X is called sequentially open if each sequence {xn} ⊂ X converging to a point x ∈ U then there
exists N ∈ N such that xn ∈ U for all n ≥ N .

(b) A subset U of X is called sequentially closed if no sequence in U converges to a point not in U .

(c) X is called semi-metrizable if there exists a function d : X ×X → [0,∞) such that for all x, y ∈ X

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) x ∈ A if and only if d(x,A) = inf{d(x, y) : y ∈ A} = 0 for any subset A of X.

(d) (X, τ) is said to be metrizable if there exists a metric on X whose topology is same as the topology τ .
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Theorem 2.11. [13] (The Stone Theorem) Every open cover of a metrizable space has an open refinement which is
both locally finite and σ-discrete.

Theorem 2.12. [16] (The Bing Metrization Theorem) A topological space is metrizable if and only if it is regular
and has a σ-discrete base.

Recently, N. V. Dung et al.[12] prove the following results about semi-metrizability, metrizability, and some other
properties of b-metric spaces.

Theorem 2.13. [12] Every b-metric space (X, d) is a semi-metrizable space.

Theorem 2.14. [12] Let (X, d) be a b-metric space and d is continuous in one variable. Then

(i) X is regular.

(ii) Every open cover of X has an open refinement which is both locally finite and σ-discrete.

(iii) X has a σ-discrete base.

(iv) X is metrizable.

An important Corollary of Theorem 2.14 is given below.

Corollary 2.15. [12] Every S-metric space is metrizable.

3 Introduction to ϕ-metric

Recall that b-metric and S-metric spaces are metrizable (see Theorem 2.14, Corollary 2.15). However, the role of
induced metrics in such spaces is implicit in nature. Thus it is difficult to construct a metric for a given S-metric or
b-metric so that topology remains the same. In this connection, we introduce ϕ-metric in a new approach that helps
to study the metrizability of S-metric spaces, b-metric spaces, etc.

Definition 3.1. Let X be a nonempty set. A function dϕ : X ×X →R≥0 is said to be a ϕ-metric if it satisfies the
following conditions:

(dϕ1) dϕ(x, y) = 0 if and only if x = y;

(dϕ2) dϕ(x, y) = dϕ(y, x);

(dϕ3) dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) + ϕ(x, y, z);

for all x, y, z ∈ X where ϕ : X ×X ×X → R≥0 is a function satisfying

(ϕ1) ϕ(x, y, z) = 0 if x = z or y = z;

(ϕ2) ϕ(x, y, z) = ϕ(y, x, z);

(ϕ3) for all ϵ > 0 there exists δ > 0 such that ϕ(x, y, z) < ϵ whenever dϕ(x, z) < δ or dϕ(y, z) < δ;

for all x, y, z ∈ X. A set X together with the function dϕ, (X, dϕ) is called a ϕ-metric space.

Example 3.2. Let (X, d) be a metric space and define a function on X by dϕ(x, y) = (d(x, y))2 for all x, y ∈ X. Then
clearly dϕ(x, y) = 0 if and only if x = y and dϕ(x, y) = dϕ(y, x) for all x, y ∈ X. Now for any x, y, z ∈ X,

d(x, y) ≤ d(x, z) + d(z, y)

or (d(x, y))2 ≤ (d(x, z))2 + (d(z, y))2 + 2d(x, z)d(y, z).

This implies dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) + ϕ(x, y, z) where ϕ(x, y, z) = 2
√

dϕ(x, z)dϕ(z, y) for all x, y, z ∈ X. Hence
(X, dϕ) is a ϕ-metric space.

Remark 3.3. Every metric space is a ϕ-metric space but not conversely. To justify, in Example 3.2, we take X =
lp, 0 < p < 1 then the distance function dϕ in lp, 0 < p < 1 is not a metric but it satisfies the conditions of our new
notion of distance.



A new approach to generalize metric functions 283

Example 3.4. Let (X, dϕ) be a ϕ-metric space and define a function on X by Dϕ1
(x, y) = (dϕ(x, y))

2 for all x, y ∈ X.
Then (X,Dϕ1

) is a ϕ-metric space. (dϕ1) and (dϕ2) are obvious. So we only verify (dϕ3). For any x, y, z ∈ X,

dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) + ϕ(x, y, z)

or

(dϕ(x, y))
2 ≤ (dϕ(x, z))

2 + (dϕ(z, y))
2 + 2dϕ(x, z)dϕ(y, z) + (ϕ(x, y, z))2 + 2(dϕ(x, z) + dϕ(z, y))ϕ(x, y, z)

which implies Dϕ1
(x, y) ≤ Dϕ1

(x, z) + Dϕ1
(z, y) + ϕ1(x, y, z) where ϕ1(x, y, z) = 2dϕ(x, z)dϕ(z, y) + ϕ2(x, y, z) +

2ϕ(x, y, z)[dϕ(x, z) + dϕ(z, y)] for all x, y, z ∈ X. Moreover if (X, dϕi), i = 1, 2 · · ·n be ϕ-metric spaces, then (X,Dϕ)
is a ϕ-metric space where Dϕ(x, y) =

∏n
i=1 dϕi(x, y) for all x, y ∈ X. But in case of infinite product of ϕ-metrics that

is Dϕ(x, y) = lim
n→∞

(dϕ(x, y))
n for all x, y ∈ X is a ϕ-metric only if dϕ is the discrete metric.

Example 3.5. Let (X,S) be a S-metric space. Define dϕ(x, y) = S(x, x, y) for all x, y ∈ X and we choose ϕ(x, y, z) =
dϕ(x, z) + dϕ(y, z) for all x, y, z ∈ X.
Then the function ϕ satisfies the first and second conditions. For the third condition we take α > 0. If dϕ(x, z) <

α
2

and dϕ(y, z) < α
2 then ϕ(x, y, z) < α. Thus for all α > 0 there exists β > 0 such that ϕ(x, y, z) < α whenever

dϕ(x, z) < β and dϕ(y, z) < β where β = α
2 . Hence (X, dϕ) is ϕ-metric space.

Example 3.6. Let (X,B) be a b-metric space with constant coefficient K(> 1). For all x, y ∈ X, define dϕ(x, y) =
B(x, y) and we choose ϕ(x, y, z) = (K − 1)[dϕ(x, z) + dϕ(y, z)] for all x, y, z ∈ X.
To verify the third condition for ϕ function, take α > 0. Now if dϕ(x, z) <

α
2K and dϕ(y, z) <

α
2K then ϕ(x, y, z) <

(K − 1)α

K
< α. Thus for all α > 0 there exists β > 0 such that ϕ(x, y, z) < α whenever dϕ(x, z) < β and dϕ(y, z) < β

where β = α
2K . Hence (X, dϕ) is ϕ-metric space.

Example 3.7. Let (X,B) be a strong b-metric space with constant coefficient K(> 1). Define dϕ(x, y) = B(x, y) for
all x, y ∈ X and take ϕ(x, y, z) = (K − 1)[dϕ(x, z) + dϕ(y, z)] for all x, y, z ∈ X. Then (X, dϕ) is ϕ-metric space.

Remark 3.8. We call the ϕ-metrics defined in the Example 3.5, Example 3.6 and Example 3.7 as ϕ-metric induced
by S-metric, b-metric and strong b-metric respectively. So it is clear that one can easily construct a ϕ-metric from
those generalized distance functions.

To study the topological structure of ϕ-metric spaces, we define open and closed balls as given below.

Definition 3.9. For x ∈ X and r > 0 we define open ball and closed ball with radius r and center x respectively as:

Bϕ(x, r) = {y ∈ X : dϕ(x, y) < r} and Bϕ[x, r] = {y ∈ X : dϕ(x, y) ≤ r}.

Proposition 3.10. Let (X, dϕ) be a ϕ-metric space. Then for all r, s > 0 and for all a ∈ X,

(i) r ≤ s if and only if Bϕ(a, r) ⊆ Bϕ(a, s).

(ii) r ≤ s if and only if Bϕ[a, r] ⊆ Bϕ(a, s).

(iii) Bϕ(a, r) ⊆ Bϕ[a, r].

Theorem 3.11. Let (X, dϕ) be a ϕ-metric space and define

τϕ = {G ⊆ X : ∀ x ∈ G,∃ r > 0 such that Bϕ(x, r) ⊆ G}.

Then τϕ is a topology on X.

Proof . Obviously ϕ,X ∈ τϕ and τϕ is closed under arbitrary union. To check the closedness of τϕ under finite
intersection, let us consider G1, G2 ∈ τϕ. We need to show G1 ∩ G2 ∈ τϕ. Take any x ∈ G1 ∩ G2. Then x ∈ G1 and
x ∈ G2. So there exists r1, r2 > 0 such that Bϕ(x, r1) ⊆ G1 and Bϕ(x, r2) ⊆ G2.

Now if r = min{r1, r2} then Bϕ(x, r) ⊆ Bϕ(x, r1) ⊆ G1 and Bϕ(x, r) ⊆ Bϕ(x, r2) ⊆ G2. Thus Bϕ(x, r) ⊆ G1 ∩G2.
So, G1 ∩G2 ∈ τϕ. □
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Definition 3.12. Let (X, dϕ) be a ϕ-metric space and B ⊆ X. Then

(i) B is said to be open set if B ∈ τϕ.

(ii) B is said to be closed set if X \B is in τϕ.

(iii) x ∈ X is called a limit point of B if there exists r > 0 such that (B(x, r) \ {x}) ∩ B contains infinitely many
points of B.

(iv) The set of all limit points of B is called the derived set of B denoted by B′.

(v) A set that contains the points of B as well as limit points of B is called the closure of the set B denoted by B.

The following two propositions in ϕ-metric space are obvious.

Proposition 3.13. Let (X, dϕ) be a ϕ-metric space and A ⊆ X. Then

(i) A is a closed set.

(ii) A is a closed set if and only if A = A.

(iii) x /∈ A if and only if dϕ(x, a) > 0 for all a ∈ A.

Proposition 3.14. In a ϕ-metric space (X, dϕ),

(i) arbitrary union of open set is open.

(ii) arbitrary intersection of closed set is closed.

Remark 3.15. Arbitrary union (respectively intersection) of closed (respectively open) set is not closed (respectively
open), which can be justified by examples of metric spaces.

Now we are interested to find a basis for τϕ. In fact, we want to show that the set of all open balls form a basis.
For the first step, we prove the next result.

Theorem 3.16. In a ϕ-metric space, every open ball is an open set.

Proof . For some x ∈ X and r > 0, we consider the open ball Bϕ(x, r) and choose y ∈ Bϕ(x, r). Then dϕ(x, y) =
r′(say) < r. We need to find some s > 0 such that Bϕ(y, s) ⊂ Bϕ(x, r). Again for x ∈ X, y ∈ Bϕ(x, r) and a ∈ X we
have

dϕ(x, a) ≤ dϕ(x, y) + dϕ(y, a) + ϕ(x, a, y). (3.1)

Now for
r − r′

2
(> 0) there exists t > 0 such that ϕ(x, z, y) <

r − r′

2
whenever dϕ(z, y) < t and z ∈ X. Let

s = min{r − r′

2
, t}. Let us choose z ∈ Bϕ(y, s). Then dϕ(y, z) < s and hence ϕ(x, z, y) <

r − r′

2
. Therefore from the

inequality (3.1) we have,

dϕ(x, z) ≤dϕ(x, y) + dϕ(y, z) + ϕ(x, z, y)

<r′ + s+
r − r′

2

≤r′ + 2(
r − r′

2
) = r.

Thus, dϕ(x, z) < r whenever z ∈ Bϕ(y, s) where s = min{r − r′

2
, t}. Hence Bϕ(y, s) ⊂ Bϕ(x, r) and this proves

that Bϕ(x, r) is an open set. □

Consider the collection of open balls β = {Bϕ(x, r) : x ∈ X, r > 0}. Now we will show that it generates a topology on
X.

Theorem 3.17. Let (X, dϕ) be a ϕ-metric space. Then β is a base for (X, τϕ).

Proof . Let x ∈ X. Then for any r > 0, x ∈ Bϕ(x, r). Next suppose for some x and y in X and for r1, r2 > 0 there is
z ∈ Bϕ(x, r1)∩Bϕ(y, r2). Since z ∈ Bϕ(x, r1) so there exists s1 > 0 such that Bϕ(z, s1) ⊆ Bϕ(x, r1) and z ∈ Bϕ(y, r2)
implies there exists s2 > 0 such that Bϕ(z, s2) ⊆ Bϕ(x, r2).

Now take s = min{s1, s2}. Then z ∈ Bϕ(z, s) ⊂ Bϕ(x, r1) ∩Bϕ(y, r2). □
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Theorem 3.18. In a ϕ-metric space (X, dϕ) every closed ball is a closed set.

Proof . For any x ∈ X, and r > 0, consider the closed ball Bϕ[x, r]. To prove that Bϕ[x, r] is closed, it is enough to
show that X \Bϕ[x, r] = A(say) is open. Choose y ∈ A. Then dϕ(x, y) = r′(say) > r.

Now we need to find some s > 0 such that Bϕ(y, s) ⊂ A. For (
r′ − r

2
) > 0, there exists t > 0 such that ϕ(x, y, z) <

r′ − r

2
whenever dϕ(y, z) < t and z ∈ X. Let s = min{r

′ − r

2
, t}. Choose a ∈ Bϕ(y, s). Then dϕ(a, y) < s and so

ϕ(x, y, a) <
r′ − r

2
. So for x ∈ X, y ∈ A and a ∈ Bϕ(y, s), we have

dϕ(x, y) ≤ dϕ(x, a) + dϕ(y, a) + ϕ(x, y, a)

or dϕ(x, a) ≥ dϕ(x, y)− dϕ(y, a)− ϕ(x, y, a).

Hence,

dϕ(x, a) > r′ − s− (
r′ − r

2
) ≥ r′ − 2(

r′ − r

2
) = r.

Therefore, dϕ(x, a) > r whenever a ∈ Bϕ(y, s) where s = min{r
′ − r

2
, t}, which implies that A is an open set and

consequently Bϕ[x, r] is a closed set. □

Theorem 3.19. Every ϕ-metric space is regular.

Proof . Let A be a closed set in (X, dϕ) and x ∈ X \A. So dϕ(x, a) > 0 for all a ∈ A. Let 3r = inf{dϕ(x, a) : a ∈ A}.
Consider the open ball B(x, r) = V (say). Now for any a ∈ A and r > 0 there exists β > 0 such that ϕ(x, a, y) < r
whenever dϕ(a, y) < β and y ∈ X. Take min{β, r} = r∗(say) and consider the open set U = ∪

a∈A
Bϕ(a, r

∗). Then

A ⊂ U . We claim that U ∩ V = ϕ. If possible suppose there exists c ∈ U ∩ V . Then for any a ∈ A, dϕ(a, c) < r∗ and
ϕ(x, a, c) < r. Now for any a ∈ A,

dϕ(x, a) ≤ dϕ(x, c) + dϕ(c, a) + ϕ(a, x, c) < r∗ + r + r ≤ 3r.

This is a contradiction to our assumption and hence U and V are two disjoint open sets in X containing A and x
respectively. □

Theorem 3.20. Every ϕ-metric space is normal.

Proof . Let A and B be two closed disjoint sets in (X, dϕ). Then for any a ∈ A and b ∈ B, dϕ(a, b) > 0. Let
3r = inf{dϕ(a, b) : a ∈ A, b ∈ B}. Consider the open set V = ∪

b∈B
Bϕ(b, r) containing B. For any a ∈ A, b ∈ B

and r > 0 there exists δ > 0 such that ϕ(a, b, z) < r whenever dϕ(a, z) < δ and z ∈ X. Let r∗ = min{δ, r} and
U = ∪

a∈A
Bϕ(a, r

∗). Then U is open and A ⊂ U . Next, we claim that U and V are disjoint. If not, then there exists

c ∈ U ∩ V . Then for all a ∈ A and for all b ∈ B, dϕ(a, c) < r∗, dϕ(b, c) < r and ϕ(a, b, c) < r. So for a ∈ A, b ∈ B
and c ∈ U ∩ V ,

dϕ(a, b) ≤ dϕ(a, c) + dϕ(c, b) + ϕ(a, b, c) < r∗ + r + r ≤ 3r.

This contradicts our assumption and hence the theorem is proved. □

Now we prove the Stone-type theorem in a ϕ-metric space and use Bing metrization theorem to obtain a sufficient
condition of metrizability.

Theorem 3.21. (Stone-type theorem) In a ϕ−metric space (X, dϕ) every open cover of X has an open refinement
which is both σ-locally finite and σ-discrete.

Proof . Let {Us : s ∈ S} be an open cover of X. By the Zermelo theorem on well-ordering[13], we can take a
well-ordering relation < on S. Define the families Vi = {Vs,i : s ∈ S} of subsets of X by letting Vs,i = ∪

c∈C
Bϕ(c,

1
2i )

where C is the set of all points c ∈ X satisfying following conditions:

(i) s is the smallest element of S such that c ∈ Us.

(ii) c /∈ Vt,j for all j < i and for all t ∈ S.
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(iii) Bϕ(c,
5
2i ) ⊂ Us.

Obviously the sets Vs,i are open and by condition (iii), we have Vs,i ⊂ Us. For each x ∈ X take the smallest s ∈ S
such that x ∈ Us and a natural number i such that Bϕ(x,

5
2i ) ⊂ Us. It implies that x ∈ C if and only if x /∈ Vt,j for all

j < i and for all t ∈ S. Then x ∈ Vs,i. Thus we have either x ∈ Vt,j for all j < i and for all t ∈ S or x ∈ Vs,i. This
proves that V = ∪

i∈N
Vi is an open refinement of the cover {Us : s ∈ S}.

Now for every i ∈ N, let x1 ∈ Vs1,i and x2 ∈ Vs2,i with s1 ̸= s2. Let us assume s1 < s2. By the definition of Vs1,i

and Vs2,i there exists c1, c2 ∈ X satisfying conditions (i), (ii), (iii) and
x1 ∈ Bϕ(c1,

1
2i ), x2 ∈ Bϕ(c2,

1
2i ). Again we have Bϕ(c1,

5
2i ) ⊂ Us1 and c2 /∈ Us1 and this implies dϕ(c1, c2) ≥ 5

2i . But
we have

dϕ(c1, c2) ≤ dϕ(c1, x1) + dϕ(x1, x2) + dϕ(x2, c2) + ϕ(c1, c2, x1) + ϕ(x1, c2, x2)

which implies

dϕ(x1, x2) ≥
5

2i
− dϕ(c1, x1)− dϕ(x2, c2)− ϕ(c1, c2, x1)− ϕ(x1, c2, x2). (3.2)

Again for 1
2i+1 (> 0) there exists β1, β2(> 0) such that ϕ(c1, c2, x1) < 1

2i+1 whenever dϕ(c1, x1) < β1 and
ϕ(c1, c2, x2) < 1

2i+1 whenever dϕ(c2, x2) < β2. Let min{β1, β2,
1
2i } = β. Then dϕ(c1, x1) < β, dϕ(c2, x2) < β

and ϕ(c1, c2, x1) <
1

2i+1 , ϕ(c1, c2, x2) <
1

2i+1 . Then (3.2) gives,

dϕ(x1, x2) >
5

2i
− 2β − 2× 1

2i+1
≥ 5

2i
− 2× 1

2i
− 1

2i
=

1

2i−1
.

To prove that the families Vi are σ-discrete, suppose there exists x ∈ X such that x1, x2 ∈ Bϕ(x,
1

2i+1 ). Then we
have dϕ(x, x1) <

1
2i+1 , dϕ(x, x2) <

1
2i+1 and

1

2i−1
< dϕ(x1, x2) ≤ dϕ(x1, x) + dϕ(x, x2) + ϕ(x1, x2, x). (3.3)

Now for 1
2i+1 > 0 there exists β′ > 0 such that ϕ(x1, x2, x) <

1
2i+1 whenever dϕ(x2, x) < β′. If δ = min{β′, 1

2i+1 }
then dϕ(x2, x) < δ and ϕ(x1, x2, x) <

1
2i+1 . The inequality (3.3) gives,

1

2i−1
< dϕ(x1, x2) <

1

2i+1
+ δ +

1

2i+1
≤ 2× 1

2i+1
+

1

2i+1
<

1

2i
+

1

2i
=

1

2i−1
.

This is a contradiction and hence it proves that each ball of radius 1
2i+1 meets at most one element of Vi that is

V = ∪i∈NVi is σ-discrete. Let i ∈ N then for all t ∈ S, i ≥ j + k and c ∈ C implies c /∈ Vt,j . Now if Bϕ(x,
1

2k−1 ) ⊂ Vt,j

then c /∈ Bϕ(x,
1

2k−1 ) and dϕ(x, c) ≥ 1
2k−1 . Again j+ k ≥ k+1 and i ≥ k+1 implies 1

2j+k ≤ 1
2k+1 and 1

2i ≤ 1
2k+1 . Next

suppose there exists y ∈ Bϕ(x,
1

2j+k ) ∩Bϕ(c,
1
2i ). Then

dϕ(x, c) ≤ dϕ(x, y) + dϕ(y, c) + ϕ(x, c, y). (3.4)

For 1
2k

> 0 there exists α > 0 such that ϕ(x, c, y) < 1
2k

whenever dϕ(x, y) < α. Let γ = min{α, 1
2j+k }. Then

dϕ(x, y) < γ and ϕ(x, c, y) < 1
2k
. Therefore from (3.4) we obtain,

1

2k−1
≤ dϕ(x, c) < γ +

1

2i
+

1

2k
≤ 1

2j+k
+

1

2k+1
+

1

2k
≤ 1

2k+1
+

1

2k+1
+

1

2k
=

1

2k−1
.

Which concludes Bϕ(x,
1

2j+k ) ∩ Bϕ(c,
1
2i ) = ϕ and this implies Bϕ(x,

1
2j+k ) ∩ Vs,i = ϕ for i ≥ j + k and s ∈ S

with Bϕ(x,
1

2k−1 ) ⊂ Vt,j . Since V is a refinement of {Us : s ∈ S}, so for each x ∈ X, there exists l, j and t such that

Bϕ(x,
1
2l
) ⊂ Vt,j and thus there exists k, j and t such that Bϕ(x,

1
2k−1 ) ⊂ Vt,j . Then the ball Bϕ(x,

1
2j+k ) meets at

most (j + k − 1) members of V. This proves that Vi is locally finite that is V is σ-locally finite. □

Corollary 3.22. Let (X, dϕ) be a ϕ-metric space. Then X has σ-discrete base.

Proof . For every i ∈ N, let Ai = {Bϕ(x,
1
i ) : x ∈ X}. Then Ai is an open cover of X. By Theorem 3.21, there exists

an open σ-discrete refinement Bi of Ai. Put B = ∪
i∈N

Bi. Then B is a σ-discrete base of X. □
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Corollary 3.23. Every ϕ-metric space is metrizable.

Proof . From Theorem 3.19 and Corollary 3.22 it follows that X is regular space with σ−discrete base. Then from
Bing metrization theorem(Theorem 2.12), X is metrizable. □

Corollary 3.24. Let (X, dϕ) be a ϕ-metric space and τϕ is a topology on X. Then τϕ is a Hausdorff topology on X.

Proof . Since (X, τϕ) is a regular topological space, so it is Hausdorff. □

Remark 3.25. Till now we have shown that ϕ-metric can be induced from a b-metric, S-metric, etc. From this,
we deduce that open balls of S-metric(or b-metric) are the same as the open balls of induced ϕ-metric. Therefore
topology generated by the open balls of S-metric(or b-metric) is identical to the topology generated by the open balls
of respective induced ϕ-metric. Thus S-metric and b-metric spaces are ϕ-metrizable.

Next, we discuss the convergence of a sequence in ϕ-metric space including its basic properties.

Definition 3.26. A sequence {xn} ⊆ X is said to converge to x if for any ϵ > 0 there exists a positive integer N such
that

dϕ(xn, x) < ϵ for all n ≥ N that is d(xn, x) → 0 as n → ∞.

We denote this by lim
n→∞

xn = x.

Proposition 3.27. In a ϕ-metric space (X, dϕ), every convergent sequence has unique limit.

Proof . Since (X, τϕ) is a Hausdorff topological space, the result is obvious. □

Proposition 3.28. Let (X, dϕ) be a ϕ-metric space and d be the metric on X whose topology is identical to the
ϕ-metric topology. Then for any sequence {xn} ⊆ X and x ∈ X,

lim
n→∞

dϕ(xn, x) = 0 if and only if lim
n→∞

d(xn, x) = 0.

Proof . First assume that lim
n→∞

dϕ(xn, x) = 0. Then for all ϵ > 0 there exists N ∈ N such that

dϕ(xn, x) < ϵ for all n ≥ N that is xn ∈ Bϕ(x, ϵ) for all n ≥ N.

Hence, there exists δ(ϵ) > 0 such that xn ∈ Bϕ(x, ϵ) ⊂ B(x, δ) for all n ≥ N . Therefore, lim
n→∞

d(xn, x) = 0.

Conversely assume lim
n→∞

d(xn, x) = 0. Then for all ϵ > 0 there exists N ∈ N such that

d(xn, x) < ϵ for all n ≥ N

or xn ∈ B(x, ϵ) for all n ≥ N.

Hence there exists δ(ϵ) > 0 such that xn ∈ B(x, ϵ) ⊂ Bϕ(x, δ) for all n ≥ N . Thus, lim
n→∞

dϕ(xn, x) = 0. Hence the

proof is complete. □

Proposition 3.29. Let (X, dϕ) be a ϕ-metric space and {xn} and {yn} be two sequences in X converging to x and
y respectively. Then the sequence {dϕ(xn, yn)} converges to dϕ(x, y).

Proof . Let ϵ > 0. We have,

dϕ(x, y) ≤ dϕ(x, xn) + dϕ(xn, y) + ϕ(x, y, xn)

≤ dϕ(x, xn) + dϕ(xn, yn) + dϕ(yn, y) + ϕ(xn, y, yn) + ϕ(x, y, xn)

and

dϕ(xn, yn) ≤dϕ(xn, x) + dϕ(x, yn) + ϕ(xn, yn, x)

≤dϕ(xn, x) + dϕ(x, y) + dϕ(y, yn) + ϕ(x, yn, y) + ϕ(xn, yn, x).
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Now for ϵ
4 (> 0) there exists β1, β2 > 0 such that ϕ(z, y, yn) <

ϵ
4 , ϕ(z, yn, y) <

ϵ
4 whenever dϕ(yn, y) < β1, z ∈ X

and ϕ(x,w, xn) <
ϵ
4 , ϕ(xn, w, x) <

ϵ
4 whenever dϕ(xn, x) < β2, w ∈ X. Let δ = min{β1, β2,

ϵ
4}. Then for δ > 0 there

exists N1, N2 ∈ N such that dϕ(xn, x) < δ for all n ≥ N1 and dϕ(yn, y) < δ for all n ≥ N2. Take max{N1, N2} =
N(say). Then for all n ≥ N , dϕ(xn, x) < δ and dϕ(yn, y) < δ implies ϕ(x, y, xn) <

ϵ
4 , ϕ(xn, y, yn) <

ϵ
4 , ϕ(xn, yn, x) <

ϵ
4

and ϕ(x, yn, y) <
ϵ
4 . Thus for all n ≥ N we have,

dϕ(x, y) < δ + dϕ(xn, yn) + δ +
ϵ

4
+

ϵ

4
≤ 4 · ϵ

4
+ dϕ(xn, yn) = ϵ+ dϕ(xn, yn)

and
dϕ(xn, yn) < δ + dϕ(x, y) + δ +

ϵ

4
+

ϵ

4
≤ 4 · ϵ

4
+ dϕ(x, y) = ϵ+ dϕ(x, y).

Since ϵ > 0 is arbitrary, by taking limit as n → ∞ on both side, we obtain dϕ(x, y) ≤ lim
n→∞

dϕ(xn, yn) and

lim
n→∞

dϕ(xn, yn) ≤ dϕ(x, y). Which implies lim
n→∞

dϕ(xn, yn) = d(x, y). □

Definition 3.30. In a ϕ-metric space (X, dϕ), a sequence {xn} ⊆ X is said to be Cauchy if for any ϵ > 0, there exists
a positive integer N such that

dϕ(xn, xm) < ϵ for all m,n ≥ N that is dϕ(xn, xm) → 0 as m,n → ∞.

Proposition 3.31. In a ϕ-metric space (X, dϕ), every convergent sequence is Cauchy.

Proof . Let ϵ > 0 and {xn} ⊆ X converges to x. Now,

dϕ(xm, xn) ≤ dϕ(xm, x) + dϕ(x, xn) + ϕ(xm, xn, x) for all m,n ∈ N.

For ϵ
3 there exists β > 0 such that ϕ(xm, xn, x) <

ϵ
3 whenever dϕ(xm, x) < β. Let δ = min{β, ϵ

3}. Again for δ > 0
there exists a natural number N such that dϕ(xn, x) < δ for all n ≥ N . So for all m,n ≥ N, dϕ(xm, x) < δ, dϕ(xn, x) <
δ and ϕ(xm, xn, x) <

ϵ
3 . Thus for all m,n ≥ N ,

dϕ(xm, xn) < δ + δ +
ϵ

3
≤ 2 · ϵ

3
+

ϵ

3
= ϵ.

Hence {xn} is a Cauchy sequence in X. □

As in metric space, we can define the boundedness of a set in a ϕ-metric space.

Definition 3.32. Let (X, dϕ) be a ϕ-metric space. A ⊆ X is said to be bounded if there exists a non-negative real
number K such that dϕ(x, y) < K for all x, y ∈ A.

Proposition 3.33. Every convergent sequence a ϕ-metric space (X, dϕ) is bounded.

Proof . Let ϵ > 0 and {xn} be a sequence in X converging to x ∈ X. Again we have,

dϕ(xn, xm) ≤ dϕ(xn, x) + dϕ(xm, x) + ϕ(xn, xm, x) for all m,n ∈ N.

Let us choose ϵ = 1. For ϵ = 1 there exists β > 0 such that ϕ(xn, xm, x) < 1 whenever dϕ(xm, x) < β. Let
δ = min{β, 1}. Then for δ > 0 there exists N ∈ N such that dϕ(xm, x) < δ for all m ≥ N . So for m,n ≥
N, dϕ(xn, x) < δ, dϕ(xm, x) < δ and ϕ(xn, xm, x) < 1. Then for all m,n ≥ N ,

dϕ(xn, xm) < δ + δ + 1 ≤ 3.

Now suppose M = max{dϕ(xr, xs) : 1 ≤ r, s < N}. Then dϕ(xn, xm) ≤ M for all m,n < N . If K = max{M, 3}
then dϕ(xn, xm) ≤ K for all m,n ∈ N. This completes the proof. □

Remark 3.34. The converse of Proposition 3.31 and Proposition 3.33 are not true in general, since converse result
of those statements do not hold for metric spaces.

Remark 3.35. As open ball in an S-metric (or b-metric) space is same as the open ball in induced ϕ-metric space,
so the definition convergence of a sequence is also same in both cases.
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4 Some basic properties of ϕ-metric spaces

In Example 3.4, we have shown that the product of a finite number of ϕ-metrics on a non-empty set is also a
ϕ-metric on that set. Now if we consider the set of all ϕ-metrics on a non-empty set X with the binary operation
multiplication(·) then we obtain an algebraic structure, say (D, ·). Let us discuss its structure in detail. Already
we have shown D is closed under ‘·’ and obviously ‘·’ is both commutative and associative on D. So (D, ·) forms a
commutative semigroup. The discrete metric is the only idempotent element and there is no nilpotent element in
(D, ·). Moreover (D, ·) is a commutative monoid as the discrete metric on X acts as the identity element. Next, we
are interested to study the topology generated by a finite number of ϕ-metrics. It is enough to study for the product
of only two ϕ-metrics.

Proposition 4.1. Consider the ϕ-metrics Dϕ, dϕ1
, dϕ2

where Dϕ = dϕ1
· dϕ2

and τϕ, τϕ1
, τϕ2

are the topologies
induced by the open balls of Dϕ, dϕ1

and dϕ2
respectively. Then τϕ = τϕ1

∩ τϕ2
.

Proof . Let us denote the open balls of (X, dϕi
) by Bϕi

(x, r), i = 1, 2 and that of (X,Dϕ) by Bϕ(x, r), for some
x ∈ X, r > 0. Choose x ∈ X and r > 0 such that y ∈ Bϕ1

(x, r)∩Bϕ2
(x, r). Then, dϕi

(x, y) < r for i = 1, 2. Therefore,

Dϕ(x, y) < r2 that is y ∈ Bϕ(x, r
2).

This implies τϕ1
∩ τϕ2

⊆ τϕ. Again if {xn} converges to x in (X, dϕ1
) then {xn} converges to x in (X,Dϕ). So, for

all ϵ > 0 there exists two positive integers N1, N2 such that

dϕ1(xn, x) < ϵ for all n ≥ N1 implies Dϕ(xn, x) < ϵ for all n ≥ N2

or for all n ≥ N, xn ∈ Bϕ1(x, ϵ) implies xn ∈ Bϕ(x, ϵ) where N = max{N1, N2}

This implies τϕ ⊆ τϕ1
. Similarly, τϕ ⊆ τϕ2

. Therefore, τϕ ⊆ τϕ1
∩ τϕ2

. This completes the proof. □

In the previous section, we have defined a bounded set in which the distance between two elements is finite. This
leads us to define the diameter of a set and encourages us to check the relation between the diameter of a set and its
closure.

Definition 4.2. Let (X, dϕ) be a ϕ-metric space. Diameter of a set F ⊆ X denoted by δ(F ) and defined by δ(F ) =
sup

x,y∈F
dϕ(x, y). Therefore F is said to be bounded if δ(F ) < ∞, otherwise unbounded.

Theorem 4.3. For a subset A of a ϕ-metric space (X, dϕ), δ(A) = δ(A) where A denotes closure of A.

Proof . Since A ⊆ A,
δ(A) ≤ δ(A). (4.1)

Next choose any ϵ > 0 and x, y ∈ A. Now for x, y ∈ A and a, b ∈ X,

dϕ(x, y) ≤ dϕ(x, a) + dϕ(a, y) + ϕ(x, y, a)

≤ dϕ(x, a) + dϕ(a, b) + dϕ(b, y) + ϕ(a, y, b) + ϕ(x, y, a).

Again for ϵ
4 there exists β1, β2 > 0 such that ϕ(a, y, b) < ϵ

4 whenever dϕ(b, y) < β1 and ϕ(x, y, a) < ϵ
4 whenever

dϕ(a, x) < β2. Let γ = min{β1, β2,
ϵ
4}. Since x, y ∈ A, there exists x1 ∈ A ∩ Bϕ(x, γ) and y1 ∈ A ∩ Bϕ(y, γ).

Therefore, dϕ(x, x1) < γ, dϕ(y1, y) < γ and hence ϕ(x, y, x1) < ϵ
4 , ϕ(x1, y, y1) < ϵ

4 . Hence for x, y ∈ A and
x1 ∈ A ∩Bϕ(x, γ), y1 ∈ A ∩Bϕ(y, γ), we have

dϕ(x, y) ≤ dϕ(x, x1) + dϕ(x1, y1) + dϕ(y1, y) + ϕ(x1, y, y1) + ϕ(x, y, x1)

< γ + dϕ(x1, y1) + γ +
ϵ

4
+

ϵ

4

≤ 4 · ϵ
4
+ dϕ(x1, y1) ≤ ϵ+ sup

a,b∈A
dϕ(a, b)

Since ϵ > 0 is arbitrary, we obtain
sup
a,b∈A

dϕ(a, b) ≤ sup
a,b∈A

dϕ(a, b),
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that is
δ(A) ≤ δ(A). (4.2)

The relations (4.1) and (4.2) together gives δ(A) = δ(A). □

We now discuss compactness, the most useful notion of a topological space including completeness.

Theorem 4.4. A ϕ-metric space (X, dϕ) is compact if and only if it is sequentially compact.

Proof . Since (X, dϕ) is metrizable, there exists a metric on X, say d whose topology is identical with the ϕ-metric
topology. Then (X, dϕ) is compact if and only if (X, d) is compact if and only if (X, d) is sequentially compact if and
only if (X, dϕ) is sequentially compact. □

Theorem 4.5. Every compact ϕ-metric space (X, dϕ) is closed and bounded.

Proof . If possible, suppose X is not closed. So there exists a sequence of points {xn} such that xn ∈ X converges
to a point x /∈ X. Since X is compact, {xn} has a subsequence which converges to a point in X. But subsequence
must converge to x which does not belong to X. This contradicts the compactness of X. Hence X is closed. Next,
we prove that X is bounded. If possible suppose that X is unbounded and choose x0 ∈ X any fixed element. Since
X is unbounded, there exist x1 ∈ A such that dϕ(x1, x0) > 1. Similarly, there exists x2 ∈ X such that dϕ(x2, x0) > 2.
Continuing in this way, there exists xn ∈ X such that dϕ(xn, x0) > n for all n ∈ N. Since X is compact, so there
exists a subsequence {xnk

} of {xn} such that lim
n→∞

xnk
= x ∈ X. But we have, dϕ(xnk

, x0) > nk. Again,

dϕ(xnk
, x0) ≤ dϕ(xnk

, x) + dϕ(x, x0) + ϕ(xnk
, x0, x) (4.3)

Let ϵ > 0 be given. Now for ϵ > 0 there exists δ > 0 such that ϕ(xl, x0, x) < ϵ
2 whenever dϕ(xl, x) < δ. Let

β = min{ ϵ
2 , δ}. Since xnk

→ x as k → ∞, there exists N ∈ N such that dϕ(xnk
, x) < β for all k ≥ N .

Therefore for all k ≥ N, dϕ(xnk
, x) < β and ϕ(xnk

, x0, x) <
ϵ
2 . Thus the relation (4.3) gives, for all k ≥ N ,

nk < dϕ(xnk
, x0) < β + dϕ(x0, x) +

ϵ

2
≤ ϵ

2
+ dϕ(x0, x) +

ϵ

2
= ϵ+ dϕ(x0, x).

Taking limit as k → ∞ on both sides of the above inequality, we obtain ∞ ≤ dϕ(x, x0). This contradicts that dϕ
is a real valued function. Hence X is bounded. □

Remark 4.6. Since each metric space is also a ϕ-metric space and the converse result of Theorem 4.5 does not hold
in metric space, thus the converse result of Theorem 4.5 may not be true.

Definition 4.7. A ϕ-metric space (X, dϕ) is said to be complete if every Cauchy sequence in X converges to some
point in X.

Theorem 4.8. Every compact ϕ-metric space (X, dϕ) is complete.

Proof . Let ϵ > 0 and {xn} be a Cauchy sequence in the compact ϕ-metric space (X, dϕ). So there exists a subsequence
{xkn} of {xn} such that lim

n→∞
xkn = x ∈ X. Now we have,

dϕ(xn, x) ≤ dϕ(xn, xl) + dϕ(xl, x) + ϕ(xn, x, xl)

≤ dϕ(xn, xl) + dϕ(xkm
, xl) + dϕ(xkm

, x) + ϕ(xl, x, xkm
) + ϕ(xn, x, xl).

For ϵ
5 > 0 there exists δ1, δ2 > 0 such that ϕ(xn, x, xl) < ϵ

5 whenever dϕ(xn, xl) < δ1 and ϕ(xl, x, xkm
) < ϵ

5
whenever dϕ(xkm

, x) < δ2. Let δ = min{δ1, δ2, ϵ
5}. Since {xn} is a Cauchy sequence, for δ > 0 there exists a positive

integer n0 such that
dϕ(xn, xm) < δ for all n,m ≥ n0.

In particular,
dϕ(xn, xn0

) < δ for all n ≥ n0. (4.4)
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Again xkn
→ x as n → ∞ implies there exists m ∈ N such that

dϕ(xkm , x) < δ for all m ≥ n0. (4.5)

Since km ≥ m ≥ n0, from (4.4),
dϕ(xkm , xn0) < δ. (4.6)

Therefore for n ≥ n0, dϕ(xn, xn0
) < δ, dϕ(xkn

, x) < δ and ϕ(xn, x, xn0
) < ϵ

5 , ϕ(xn0
, x, xkm

) < ϵ
5 . So for all n ≥ n0,

dϕ(xn, x) ≤ dϕ(xn, xn0) + dϕ(xkn , xn0) + dϕ(xkn , x) + ϕ(xn0 , x, xkn) + ϕ(xn, x, xn0)

< δ + δ + δ +
ϵ

5
+

ϵ

5

≤ ϵ

5
+

ϵ

5
+

ϵ

5
+ 2

ϵ

5
= ϵ.

Hence the Cauchy sequence {xn} converges to x ∈ X and this proves that X is complete. □

Remark 4.9. Since each metric space is also a ϕ-metric space and the converse result of Theorem 4.8 does not hold
in metric space, thus the converse result of Theorem 4.8 may not be true.

Cantor’s intersection theorem ensures the completeness of a metric space. Our next theorem is the generalization of
such theorem in a ϕ-metric space.

Theorem 4.10. A necessary and sufficient condition that the ϕ-metric space (X, dϕ) be complete is that every nested
sequence of non-empty closed subsets {Fi} with δ(Fi) → 0 as i → ∞ be such that F = ∩∞

i=1Fi contains exactly one
point.

Proof . First suppose that X is complete. Consider a sequence of closed subsets {Fi} such that F1 ⊃ F2 ⊃ F3 ⊃ · · ·
and δ(Fi) → 0 as i → ∞. For all n ∈ N choose an ∈ Fn. Hence we generate a sequence {an} in X. We verify that the
sequence {an} is a Cauchy sequence. Now for some n ∈ N, an ∈ Fn implies an+p ∈ Fn+p ⊂ Fn for all p = 1, 2, · · · . So,
for all p = 1, 2, · · · , dϕ(an, an+p) ≤ δ(Fn) for all n ∈ N which implies lim

n→∞
dϕ(an, an+p) = 0. Hence {an} is a Cauchy

sequence in X. Since X is complete, there exists a ∈ X such that an → a as n → ∞. For a fixed positive integer
k, consider the subset Fk. Then each ak, ak+1, ak+2, · · · ∈ Fk. Since Fk is closed, a ∈ Fk. Now k being an arbitrary
positive integer, so we can conclude a ∈ ∩

i∈N
Fi. Finally we show that a is unique. For, let there exists b( ̸= a) ∈ ∩

i∈N
Fi.

Then for each k ∈ N,
a, b ∈ Fk that is dϕ(a, b) ≤ δ(Fk).

Therefore, dϕ(a, b) = 0, since δ(Fk) → 0 as k → ∞ and hence a = b.

Conversely suppose that the condition of the theorem holds. To show that X is complete, take a Cauchy sequence
{xn} in X. Let Fn = {xn, xn+1, xn+2, · · · } for all n ∈ N. If we choose any ϵ > 0, then there exists a positive integer
n0(say) such that

dϕ(xn, xm) < ϵ for all n > m ≥ n0

or δ(Fn) ≤ ϵ for all n ≥ n0

or δ(Fn) ≤ ϵ for all n ≥ n0

or δ(Fn) → 0 as n → ∞.

Clearly Fn+1 ⊂ Fn for each n and thus Fn+1 ⊂ Fn for each n. So {Fn} constitutes a closed, nested sequence of
non-empty sets in X whose diameter tends to zero. By hypothesis, there exists a unique point x ∈ ∩

n∈N
Fn. Now for

each n = 1, 2, · · · , xn ∈ Fn ⊆ Fn implies

dϕ(xn, x) ≤ δ(Fn) for all n ∈ N.

Therefore, dϕ(xn, x) → 0 as n → ∞. This shows that the Cauchy sequence {xn} converges to x ∈ X and hence
X is complete. □

Now we introduce an idea which is stronger than boundedness.
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Definition 4.11. Let (X, dϕ) be a ϕ-metric space and B ⊆ X. B is said to be totally bounded if for every ϵ > 0
there exists a finite subset Aϵ of X such that B = ∪

a∈Aϵ

Bϕ(a, ϵ).

Theorem 4.12. Every totally bounded subset of a ϕ-metric space (X, dϕ) is bounded.

Proof . Let ϵ > 0, and B be a totally bounded subset of (X, dϕ). For any α, β ∈ B and for any x, y ∈ X,

dϕ(α, β) ≤ dϕ(α, x) + dϕ(x, β) + ϕ(α, β, x)

≤ dϕ(α, x) + dϕ(x, y) + dϕ(y, β) + ϕ(x, β, y) + ϕ(α, β, x).

We choose ϵ = 1. Then for ϵ = 1 there exists δ1, δ2 > 0 such that for any α, β ∈ B, ϕ(x, β, y) < 1 whenever
dϕ(y, β) < δ1, x, y ∈ X and ϕ(α, β, x) < 1 whenever dϕ(x, α) < δ2, x ∈ X. Let δ = min{1, δ1, δ2}. Since B is a
totally bounded set, so for δ > 0, there exists a finite subset S = {x1, x2, · · · , xn} of X such that B = ∪n

xi=1Bϕ(xi, δ).
Choose any α, β ∈ B. Then there exists xi, xj ∈ S such that α ∈ Bϕ(xi, δ) and β ∈ Bϕ(xj , δ). Hence we obtain
dϕ(α, xi) < δ, dϕ(xj , β) < δ and ϕ(xi, β, xj) < 1, ϕ(α, β, xi) < 1. Suppose K = max{dϕ(xi, xj) : xi, xj ∈ S}.
Therefore for any xi, xj ∈ S and α, β ∈ B,

dϕ(α, β) < δ + dϕ(xi, xj) + δ + 1 + 1

≤ 1 + max{dϕ(xi, xj) : xi, xj ∈ S}+ 1 + 2 = 4 +K.

Since α, β ∈ B are arbitrary, dϕ(α, β) ≤ K + 4 for all α, β ∈ B. This proves that B is bounded. □

Theorem 4.13. In a totally bounded ϕ-metric space (X, dϕ), every sequence has a Cauchy subsequence.

Proof . Let {xn} be a sequence in X. Since X is totally bounded so it can be covered by a finite number of open
balls of any radius. Let us consider balls of radius 1. Then at least one of these open balls, say A1 contains infinitely
many elements of the sequence. Choose xk1 ∈ A1 for some k1 ∈ N. Similarly, A1 being totally bounded can be covered
by a finite number of open balls each of radius 1

2 . Then at least one of these open balls, say A2 contains infinitely
many elements of the sequence. We choose xk2

∈ A2 for some k1 < k2 ∈ N. Continuing in this way we obtain a
sequence {An} of open balls with radius 1

n such that A1 ⊃ A2 ⊃ · · · and xkn
∈ Akn

with k1 < k2 · · · . Clearly {xkn
} is

a subsequence of {xn}. Choose ϵ > 0. Then there exists N ∈ N such that 2
N < ϵ. Now for all r, s ≥ N, xkr

, xks
∈ AN

and hence dϕ(xkr
, xks

) < 2
N < ϵ which implies {xkn

} is a Cauchy sequence in X. □

Theorem 4.14. Every compact ϕ-metric space (X, dϕ) is totally bounded.

Proof . From the compactness of X it follows that, for every ϵ > 0, β = {Bϕ(a, ϵ) : a ∈ X} is an open cover of X
and there exists a finite subset of β which covers X. Therefore X is totally bounded. □

Remark 4.15. The converse of the Theorem 4.12 and Theorem 4.14 do not hold in general. Since metric spaces are
also ϕ-metric spaces, so this can be justified by the examples of metric spaces.

But totally boundedness and completeness together force the ϕ-metric space to be compact. We prove this in our
next theorem.

Theorem 4.16. Let (X, dϕ) be a ϕ-metric space. If X is totally bounded and complete then X is compact.

Proof . Let {xn} be a Cauchy sequence in X. So totally boundedness of X implies that {xn} has a Cauchy
subsequence, say {xkn

}. Since X is complete, thus {xkn
} converges in X. Therefore X is sequentially compact and

hence compact. □

5 Some fixed point theorems in ϕ-metric spaces

In this section, we establish the existence of a fixed point for the Banach type and the Kannan type contraction
principle and also develop the Edelstein theorem in ϕ-metric spaces.
Before going to the main results, we prove a useful lemma.
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Lemma 5.1. Let (X, dϕ) be a ϕ-metric space. If {xn}∞n=0 be a sequence in X which satisfies

dϕ(xn, xn+1) ≤ kdϕ(xn−1, xn), n = 1, 2, · · ·

where 0 < k < 1, then {xn} is a Cauchy sequence in X.

Proof . Suppose {xn}∞n=0 is a sequence in X which satisfies the mentioned conditions. Let ϵ > 0. Now for all
n = 1, 2, · · · ,

dϕ(xn, xn+1) ≤ kdϕ(xn−1, xn)

implies

dϕ(xn, xn+1) ≤ k2dϕ(xn−2, xn−1)

≤ k3dϕ(xn−3, xn−2) ≤ · · · ≤ kndϕ(x0, x1).

Therefore, lim
n→∞

dϕ(xn, xn+1) = 0 since 0 < k < 1. Again for m > n we have,

dϕ(xm, xn) ≤ dϕ(xm, xn+1) + dϕ(xn+1, xn) + ϕ(xm, xn, xn+1)

≤ {dϕ(xm, xn+2) + dϕ(xn+2, xn+1) + ϕ(xm, xn+1, xn+2)}+ dϕ(xn, xn+1)+

ϕ(xm, xn, xn+1)

≤ {dϕ(xm, xm−1) + ...+ dϕ(xn+1, xn+2) + dϕ(xn+1, xn)}+
{ϕ(xm, xn, xn+1) + ϕ(xm, xn+1, xn+2) + ...+ ϕ(xm, xm−2, xm−1)}

≤ {km−1 + km−2 + ...+ kn+1 + kn}dϕ(x1, x0) +

m−2∑
i=n

ϕ(xm, xi, xi+1)

≤ kn{1 + k + k2 + · · · }dϕ(x1, x0) +

m−2∑
i=n

ϕ(xm, xi, xi+1).

So,

dϕ(xm, xn) ≤
kn

1− k
dϕ(x1, x0) +

m−2∑
i=n

ϕ(xm, xi, xi+1) for all m > n. (5.1)

Now for ϵ > 0 there exists δ > 0 such that ϕ(xt, xl, xl+1) < ϵ whenever dϕ(xl, xl+1) < δ. Let β = min{ϵ, δ}. Then
since lim

i→∞
dϕ(xi, xi+1) = 0 so for that β > 0 there exists a positive integer N such that dϕ(xi, xi+1) < β for all i ≥ N .

Thus for all m > n ≥ N we have dϕ(xn, xn+1) < β and ϕ(xm, xn, xn+1) < ϵ. Since ϵ > 0 arbitrarily chosen,
so lim

n→∞
dϕ(xn, xn+1) = 0 implies lim

m,n→∞
ϕ(xm, xn, xn+1) = 0. Hence the relation ( 5.1 ) gives lim

m,n→∞
dϕ(xn, xm) = 0

which implies {xn} is a Cauchy sequence in X. □

Theorem 5.2. (Banach type contraction) Let (X, dϕ) be a complete ϕ-metric space and T be a self-mapping on X
satisfying

dϕ(Tx, Ty) ≤ kdϕ(x, y)

for all x, y ∈ X where k ∈ (0, 1). Then T has a unique fixed point in X.

Proof . If any fixed point of T exists then uniqueness directly follows from the contraction condition. Here we only
prove the existence of a fixed point. For, consider an iterative sequence, x0, x1 = Tx0, x2 = Tx1, ..., xn+1 = Txn, · · · ,
for some fixed x0 ∈ X. Then,

dϕ(xn+1, xn) = dϕ(Txn, Txn − 1) ≤ kdϕ(xn, xn−1) for all n = 1, 2, · · · .

Hence by Lemma 5.1, we can conclude {xn} is a Cauchy sequence in (X, dϕ). Since X is complete, so {xn}
converges to some ζ ∈ X. Lastly, we will prove that ζ is a fixed point for T . Now

dϕ(Tζ, ζ) = lim
n→∞

dϕ(Tζ, xn) ≤ k lim
n→∞

dϕ(ζ, xn−1)

which implies dϕ(Tζ, ζ) = 0 that is Tζ = ζ. □
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Figure 1: Tx =
sinx

2
x ∈ R

Example 5.3. Consider the complete ϕ-metric space (X, dϕ) where X = R and the ϕ-metric defined by dϕ(x, y) =
(x− y)2 for all x, y ∈ R. Let us define a self-mapping T on R defined by Tx = sin x

2 for all x ∈ R. Then

dϕ(Tx, Ty) =
1

4
(sinx− sin y)2 = [cos(

x+ y

2
) · sin(x− y

2
)]2 ≤ 1

4
(x− y)2 =

1

4
dϕ(x, y).

Thus T satisfies the Banach type contraction for 1
4 ≤ k < 1 and x = 0 is the unique fixed point for T .

Theorem 5.4. (Kannan type contraction) Let (X, dϕ) be a complete ϕ-metric space and T be a self-mapping on X
satisfying

dϕ(Tx, Ty) ≤ k[dϕ(x, Tx) + dϕ(y, Ty)]

for all x, y ∈ X, where k ∈ (0, 1
2 ). Then T has a unique fixed point in X.

Proof . For some fixed x0 ∈ X, consider the iterative sequence, x0, x1 = Tx0, x2 = Tx1, · · · , xn+1 = Txn, · · · .
Then,

dϕ(x2, x1) = dϕ(Tx1, Tx0) ≤ k[dϕ(x1, x2) + dϕ(x0, x1)]

or dϕ(x2, x1) ≤ αdϕ(x1, x0) where α =
k

1− k
and 0 < α < 1

Proceeding in this way, we can write dϕ(xn+1, xn) ≤ αdϕ(xn, xn−1) for all n ∈ N where 0 < α < 1. Applying
Lemma 5.1, we can conclude {xn} is a Cauchy sequence in (X, dϕ) and since X is complete, so {xn} converges to some
ζ ∈ X. Now,

dϕ(Tζ, ζ) = lim
n→∞

dϕ(Tζ, xn) ≤ k lim
n→∞

[dϕ(ζ, T ζ) + dϕ(xn−1, xn)]

or dϕ(Tζ, ζ) ≤ kdϕ(Tζ, ζ)

Therefore, dϕ(Tζ, ζ) = 0 as 0 < k < 1
2 which implies Tζ = ζ. Hence ζ is a fixed point of T and uniqueness easily

follows from the contraction condition. □

Example 5.5. Define a function dϕ on a set X = [−2, 2] by dϕ(x, y) = (x− y)2 for all x, y ∈ [−2, 2]. Then (X, dϕ) is
a complete ϕ-metric space. Define T : X → X by

T (x) =

{
x
10 when − 2 ≤ x < 1
x
5 when 1 ≤ x ≤ 2

For all x, y ∈ R, |x|2 + |y|2 ≥ 2|x||y|. Hence we obtain,

|x− y|2 ≤ [|x|+ |y|]2

= |x|2 + |y|2 + 2|x||y|
≤ (|x|2 + |y|2) + (|x|2 + |y|2) for all x, y ∈ R.
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Figure 2: Tx = x
10

if − 2 ≤ x < 1; x
5

if 1 ≤ x ≤ 2

That is
|x− y|2 ≤ 2(|x|2 + |y|2) for all x, y ∈ R. (5.2)

Case:I Let x, y ∈ [−2, 1). Then

dϕ(x, Tx) + dϕ(y, Ty) = (x− x

10
)2 + (y − y

10
)2 =

81

100
[|x|2 + |y|2]

and

dϕ(Tx, Ty) =
1

100
(x− y)2

≤ 2

100
[|x|2 + |y|2], using the relation (5.2)

=
2

81
[dϕ(x, Tx) + dϕ(y, Ty)].

Case:II Let x, y ∈ [1, 2]. Then

dϕ(x, Tx) + dϕ(y, Ty) = (x− x

5
)2 + (y − y

5
)2 =

16

25
[|x|2 + |y|2]

and

dϕ(Tx, Ty) =
1

25
(x− y)2

≤ 2

25
[|x|2 + |y|2], using the relation (5.2)

=
1

8
[dϕ(x, Tx) + dϕ(y, Ty)].

Case:III Let x ∈ [−2, 1), y ∈ [1, 2]. Then

dϕ(x, Tx) + dϕ(y, Ty) = (x− x

10
)2 + (y − y

5
)2 =

81

100
|x|2 + 16

25
|y|2

and

dϕ(Tx, Ty) = (
x

10
− y

5
)2

≤ 2[
|x|2

100
+

|y|2

25
], using the relation (5.2)

=
2

81
· 81

100
|x|2 + 2

16
· 16
25

|y|2

<
1

8
[dϕ(x, Tx) + dϕ(y, Ty)].

Therefore for all x, y ∈ [−2, 2], dϕ(Tx, Ty) ≤ k[dϕ(x, Tx) + dϕ(y, Ty)] where k = 1
8 .
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Theorem 5.6. Let (X, dϕ) be a ϕ-metric space and T be a self-mapping on X satisfying

dϕ(Tx, Ty) < dϕ(x, y)

for all x, y ∈ X. If there exists x ∈ X such that the sequence {Tnx} has a subsequence converging to ζ then ζ is the
unique fixed point of T .

Proof . Let {Tnix} be a subsequence of {Tnx} converging to ζ. If T kx = T k+1x for some k ∈ N, then ζ is a fixed
point of T . If T kx ̸= T k+1x for any k ∈ N and Tζ ̸= ζ then

dϕ(Tζ, T
2ζ) < dϕ(ζ, T ζ). (5.3)

For x ∈ X and for fixed nl, we have for all n > nl + 1,

dϕ(T
nx, Tn+1x) < dϕ(T

nl+1x, Tnl+2x).

Clearly dϕ(ζ, T ζ) is a limit point of the sequence {dϕ(Tnx, Tn+1x)} and so

dϕ(ζ, T ζ) ≤ dϕ(T
nl+1x, Tnl+2x) (5.4)

In equation (5.4) letting l → ∞, we get dϕ(ζ, T ζ) ≤ dϕ(Tζ, T
2ζ) which contradicts equation (5.3). So either

T kx = T k+1x for some k ∈ N or Tζ = ζ or both. Hence ζ is a fixed point of T which is unique also. □

Example 5.7. Consider the ϕ-metric space (X, dϕ) whereX = [−π
2 ,

π
2 ] and the ϕ-metric defined by dϕ(x, y) = (x−y)2

for all x, y ∈ [−π
2 ,

π
2 ]. Let us define a self-mapping T on [−π

2 ,
π
2 ] defined by Tx = tan−1 x − x for all x ∈ [−π

2 ,
π
2 ].

Then,

dϕ(Tx, Ty) =| tan−1 x− x− tan−1 y + y|2

=|(y − x)− (tan−1 y − tan−1 x)|2

=|(y − x)− (
y − x

1 + η2
)|2, min{x, y} < η < max{x, y} (by Lagrange’s mean value theorem)

=|y − x|2 η2

1 + η2

<(x− y)2 = dϕ(x, y).

Thus T satisfies contractive condition and for x = 0, all subsequence of {Tn0} = {0} converges to 0. Hence from
the Theorem 5.6 we conclude that x = 0 is the unique fixed point for T .

Figure 3: Tx = tan−1 x− x x ∈ [−π
2
.π
2
]

Moreover, from the given self-mapping it is clear that x = 0 is the unique fixed point for T .

Remark 5.8. (a) If we take S-metric space (X,S) then dϕ(x, y) = S(x, x, y) for all x, y ∈ X defines a ϕ-metric on X.
Then Theorem 5.2 and Theorem 5.6 reduce to Theorem 3.1 and Theorem 3.3 respectively of Section 3 of Sedghi
et al. [6].

(b) If we consider b-metric space (X,B) then dϕ(x, y) = B(x, y) for all x, y ∈ X defines a ϕ-metric on X. Then
Theorem 5.2 and Theorem 5.4 reduce to Theorem 1 and Theorem 2 of the main results of respectively Mehmet
Kir et al. [17].
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6 Conclusion

In this article, we introduce a notion of generalized metric function called ϕ–metric, which generalizes the concept
of many existing metric functions such as S-metric, b-metric etc. In the definition of ϕ–metric, the ‘triangle inequality’
of metric axioms has been modified by adding a suitable function. We also study the notion of convergence of a
sequence, some elementary topological properties and some well known fixed point theorems in this new setting. We
also have established the metrizability of ϕ-metric space.

ϕ-metric is not only for seeking generalization but also it helps to study S-metric, b-metric spaces and may play the
role of metrics in many scenarios. As we have mentioned earlier, though S-metric and b-metric spaces are metrizable,
it is very troublesome to find a metric for S-metric and b-metric spaces. This is true for ϕ-metric space also. However,
one can easily construct a ϕ-metric from S-metric and b-metric which may help to study the topological properties
for such spaces. We hope our developments will motivate researchers to work further on S-metric, b-metric, strong
b-metric spaces with the help of ϕ-metric space. There is a lot of scope to exercise on metric fixed point theory and its
applications on ϕ-metric spaces. We think one most important applicable direction of ϕ-metric space is that this idea
may be applied to calculate distance between any two points on non-planer surfaces. We know that ‘triangle inequality’
is not necessarily affirm on non-planer surfaces, so usual metric is not suitable to develop topological properties in
such spaces. In that case, ϕ-metric may play a pivotal role to study several properties of non-planer surfaces. In our
subsequent work, we have a plan to study the topological properties of non-Euclidean geometry using ϕ-metric.
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