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Abstract

In this paper, we present a counterexample for the nonstability of multicubic mappings. In other words, we show that
Corollary 3.5 of [A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability
and hyperstability, Fixed Point Theory. 22 (2021), No. 1, 83–92] does not hold when α = 3n.
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1 Introduction

A functional equation F is said to be stable if any function f satisfying the equation F approximately must be
near to an exact solution of F . In two last decades, the stability problem for functional equations which has been
initiated by the celebrated question of Ulam [11] for group homomorphisms (answered by Hyers [7], Aoki [1] and Th.
M. Rassias [10] for Banach algebras), was studied for multivariable mappings. One of them is the multicubic mapping.
Let V and W be vector spaces over the rational numbers Q, n ∈ N. A mapping f : V n −→ W is called n-cubic or
multicubic if f satisfies

C(2x+ y) + C(2x− y) = 2C(x+ y) + 2C(x− y) + 12C(x) (1.1)

in each variable [3]. Indeed, f is multicubic if

f(v1, . . . , vi−1, 2vi + v′i, vi+1, . . . , vn) + f(v1, . . . , vi−1, 2vi − v′i, vi+1, . . . , vn)

= 2f(v1, . . . , vi−1, vi + v′i, vi+1, . . . , vn) + 2f(v1, . . . , vi−1, vi − v′i, vi+1, . . . , vn) + 12f(v1, . . . , vn)

for all i ∈ {1, . . . , n}. In [3], the authors unified the system of functional equations defining a multicubic mapping
to a single equation, namely, multi-cubic functional equation (Proposition 2.1). Moreover, they studied the Hyers-
Ulam stability of such mappings. A lot of information about miscellaneous versions of multicubic mappings and their
stabilities in various spaces are available in [2], [4], [6] and [9].

In this paper, we show that the stability result in Corollary 3.5 of [3] for multicubic mappings is not valid for
α = 3n.
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2 Main results

Throughout this paper, N stands for the set of all positive integers, N0 := N ∪ {0},R+ := [0,∞), n ∈ N. For
any l ∈ N0,m ∈ N, t = (t1, . . . , tm) ∈ {−1, 1}m and x = (x1, . . . , xm) ∈ V m we write lx := (lx1, . . . , lxm) and
tx := (t1x1, . . . , tmxm), where lx stands, as usual, for the lth power of an element x of the commutative group V .

From now on, let V and W be vector spaces over Q, n ∈ N and xni = (xi1, xi2, · · · , xin) ∈ V n, where i ∈ {1, 2}.
We will write xni simply xi when no confusion can arise. Given x1, x2 ∈ V n. Put

Mn = {Nn = (N1, . . . , Nn)| Nj ∈ {x1j ± x2j , x1j}} ,

where j ∈ {1, . . . , n}. For k ∈ N0 with 0 ≤ k ≤ n, consider

Mn
k := {Nn ∈ Mn| Card{Nj : Nj = x1j} = k} .

The upcoming result was proved in [3, Proposition 2.2], which shows that every multicubic mapping can be
described a single equation.

Proposition 2.1. If a mapping f : V n −→W is multi-cubic, then f satisfies the equation

∑
q∈{−1,1}n

f(2x1 + qx2) =

n∑
k=0

2n−k12kf(Mn
k ), (2.1)

where f (Mn
k ) :=

∑
Nn∈Mn

k
f(Nn).

Recall from [3] that a mapping f : V n −→W has the r-power condition in the jth variable if

f(z1, . . . , zj−1, 2zj , zj+1, . . . , zn) = 2rf(z1, . . . , zj−1, zj , zj+1, . . . , zn),

for all (z1, · · · , zn) ∈ V n. Note that 3-power condition is also called the cubic condition.

The following proposition is a direct consequence of main result in [3], which shows that the functional equation
(2.1) is stable. In fact, we improve Corollary 3.5 from [3].

Proposition 2.2. Given δ > 0 and α ∈ R with α ̸= 3n. Let V be a normed space and W be a Banach space. If
f : V n −→W is a mapping satisfying the inequality∥∥∥∥∥∥

∑
q∈{−1,1}n

f(2x1 + qx2)−
n∑

k=0

2n−k12kf (Mn
k )

∥∥∥∥∥∥ ≤
2∑

i=1

n∑
j=1

∥xij∥αδ,

for all x1, x2 ∈ V n, then there exists a unique solution C : V n −→W of (2.1) such that

∥f(x)− C(x)∥ ≤


δ

24n−2α+n

∑n
j=1 ∥x1j∥α α < 3n,

2α

2α+n−24n δ
∑n

j=1 ∥x1j∥α α > 3n,

for all x = x1 ∈ V n. Moreover, if C has the cubic condition in each variable, then it is a multicubic mapping.

We bring an elementary lemma without the proof as follows.

Lemma 2.3. If a function g : R −→ R is continuous and satisfies (1.1), then it has the form g(x) = cx3, for all x ∈ R,
where c = f(1).

In the next result, we extend Lemma 2.3 for several variables functions. For doing this, we use an idea taken from
the proof of [8, Theorem 13.4.3].
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Proposition 2.4. Let f : Rn −→ R be a continuous n-cubic function. Then, there exists a constant c ∈ R such that

f(x1, . . . , xn) = c

n∏
j=1

x3j (2.2)

for all x1, . . . , xn ∈ R.

Proof . We argue the proof by induction on n. For n = 1, (2.2) is valid in view of Lemma 2.3. Let (2.2) hold for a
n ∈ N. Assume that f : Rn+1 −→ R is a continuous (n+ 1)-cubic function. Fix the n variables x1, . . . , xn. Then, the
function y 7→ f(x1, . . . , xn, y) as a function of y is cubic and continuous, and so by Lemma 2.3, there exists a constant
c ∈ R such that

f(x1, . . . , xn, y) = cy3, (y ∈ R). (2.3)

Note that c depends on x1, . . . , xn, and indeed

c = c(x1, . . . , xn). (2.4)

Letting y = 1 in (2.3) and applying (2.4), we get

c = c(x1, . . . , xn) = f(x1, . . . , xn, 1).

Since f is (n+1)-cubic, it follows that c is an n-cubic function and hence by the induction hypothesis there exists
a real number c′ such that

c = c(x1, . . . , xn) = c′
n∏

j=1

x3j . (2.5)

Now, the result follows from (2.3) and (2.5). □

Remark 2.5. Note that in the proof of Proposition 2.4 only the continuity of g with respect to each variable separately
was used. Therefore, the result is again true if and only if f is supposed separately continuous with respect to each
variable. On the other hand, in virtue of the proof of Proposition 2.4, if the continuity condition of g is removed, then
the result remains valid for a function g : Qp −→ Q. We use this fact to make a non-stable example.

Here, we present the main result of this paper that is a nonstable example for the multicubic mappings on Qn.
Indeed, we show the hypothesis α ̸= 3n cannot be removed in Proposition 2.2. Remember that the method of the
proof is taken from [5].

Example 2.6. Let δ > 0 and n ∈ N and consider S ≥ 6n
∑n

k=0 6
k. Put µ = 23n−1

26nS δ. Define the function ψ : Qn −→ Q
through

ψ(r1, . . . , rn) =

{
µ
∏n

j=1 r
3
j for all rj with |rj | < 1,

µ otherwise.

Moreover, define the function f : Qn −→ Q by

f(r1, . . . , rn) =

∞∑
l=0

ψ(2lr1, . . . , 2
lrn)

23nl
, (rj ∈ Q).

It is obvious that ψ is bounded by µ. Indeed, for each (r1, . . . , rn) ∈ Qn, we have

|f(r1, . . . , rn)| ≤
23n

23n − 1
µ.

It follows from the last inequality that

|Df (x1, x2)| ≤ µS, (2.6)

where

Df (x1, x2) := f(2x1 + qx2)−
n∑

k=0

2n−k12kf(Mn
k )
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in which xj = (xj1, . . . , xjn) ∈ Qn with j ∈ {1, 2}. We wish to show that

|Df (x1, x2)| ≤ δ

2∑
i=1

n∑
j=1

|xij |3n, (2.7)

for all x1, x2 ∈ Qn. We have three cases as follows:
(i) If x1 = x2 = 0, then it is clear that (2.7) holds.
(ii) Let x1, x2 ∈ Qn with

2∑
i=1

n∑
j=1

|xij |3n <
1

23n
.

Thus, there exists a positive integer N such that

1

23n(N+1)
<

2∑
i=1

n∑
j=1

|xij |3n <
1

23nN
, (2.8)

and hence

|xij |3n <
2∑

i=1

n∑
j=1

|xij |3n <
1

23nN
. (2.9)

Relation (2.9) implies that 2N |xij | < 1 for all i ∈ {1, 2} and j ∈ {1, . . . , n}. Therefore, 2N−1|xij | < 1. If y1, y2 ∈
{xij | i ∈ {1, 2}, j ∈ {1, . . . , n}}, then

2N−1| y1 ± y2| < 1, 2N−1| 2y1 ± y2| < 1.

Since ψ is a multicubic function on (−1, 1)n, we have Dψ
(
2lx1, 2

lx2
)
= 0 for all l ∈ {0, 1, 2, . . . , N −1}. We conclude

from the last equality and (2.8) that∣∣Df (2lx1, 2lx2)∣∣∑2
i=1

∑n
j=1 |xij |3n

≤
∞∑

l=N

∣∣Dψ (
2lx1, 2

lx2
)∣∣

23nl
∑2

i=1

∑n
j=1 |xij |3n

≤
∞∑
l=0

µS

23n(l+N)
∑2

i=1

∑n
j=1 |xij |3n

≤ µ23nS

∞∑
l=0

1

23nl

= µS
26n

23n − 1
= δ,

for all x1, x2 ∈ Qn and thus (2.7) is true in this case.

(iii) Assume that
∑2

i=1

∑n
j=1 |xij |3n ≥ 1

23n . Using (2.6), we have∣∣Df (2lx1, 2lx2)∣∣∑2
i=1

∑n
j=1 |xij |n

≤ 23n
23n

23n − 1
µS = δ.

Therefore, f satisfies (2.7) for all x1, x2 ∈ Qn.
Now, suppose the assertion is false, that is, there exist a number b ∈ [0,∞) and a multicubic function C : Qn −→ Q
such that |f(r1, . . . , rn) − C(r1, . . . , rn)| < b

∏n
j=1 rj for all (r1, . . . , rn) ∈ Qn. It follows now from Lemma 2.5 that

there is a constant c ∈ R such that C(r1, . . . , rn) = c
∏n

j=1 r
3
j for all (r1, . . . , rn) ∈ Qn and therefore

|f(r1, . . . , rn)| ≤ (|c|+ b)

n∏
j=1

|rj |3, (2.10)
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for all (r1, . . . , rn) ∈ Qn. On the other hand, one can choose N ∈ N such that Nµ > |c|+ b. If r = (r1, . . . , rn) ∈ Qn

such that rj ∈
(
0, 1

2N−1

)
for all j ∈ {1, . . . , n}, then 2lrj ∈ (0, 1) for all l = 0, 1, . . . , N − 1. Hence

|f(r1, . . . , rn)| =

∣∣∣∣∣
∞∑
l=0

ψ
(
2lr1, . . . , 2

lr2
)

23nl

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
l=0

µ23nl
∏n

j=1 r
3
j

23nl

∣∣∣∣∣
= Nµ

n∏
j=1

|rj |3

> (|c|+ b)

n∏
j=1

|rj |3,

that leads us to a contradiction with (2.10).
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