ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2022.25878.3150

An example for the nonstability of multicubic mappings

Abasalt Bodaghi

Department of Mathematics, West Tehran Branch, Islamic Azad University, Tehran, Iran

(Communicated by Michael Th. Rassias)

Abstract

In this paper, we present a counterexample for the nonstability of multicubic mappings. In other words, we show that Corollary 3.5 of [A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory. 22 (2021), No. 1, 83–92] does not hold when $\alpha = 3n$.

Keywords: Banach space, Hyers-Ulam stability, multicubic mapping

2020 MSC: 39B52, 39B72, 39B82

1 Introduction

A functional equation \mathcal{F} is said to be *stable* if any function f satisfying the equation \mathcal{F} approximately must be near to an exact solution of \mathcal{F} . In two last decades, the stability problem for functional equations which has been initiated by the celebrated question of Ulam [11] for group homomorphisms (answered by Hyers [7], Aoki [1] and Th. M. Rassias [10] for Banach algebras), was studied for multivariable mappings. One of them is the multicubic mapping. Let V and W be vector spaces over the rational numbers \mathbb{Q} , $n \in \mathbb{N}$. A mapping $f: V^n \longrightarrow W$ is called n-cubic or multicubic if f satisfies

$$C(2x+y) + C(2x-y) = 2C(x+y) + 2C(x-y) + 12C(x)$$
(1.1)

in each variable [3]. Indeed, f is multicubic if

$$f(v_1, \dots, v_{i-1}, 2v_i + v_i', v_{i+1}, \dots, v_n) + f(v_1, \dots, v_{i-1}, 2v_i - v_i', v_{i+1}, \dots, v_n)$$

$$= 2f(v_1, \dots, v_{i-1}, v_i + v_i', v_{i+1}, \dots, v_n) + 2f(v_1, \dots, v_{i-1}, v_i - v_i', v_{i+1}, \dots, v_n) + 12f(v_1, \dots, v_n)$$

for all $i \in \{1, ..., n\}$. In [3], the authors unified the system of functional equations defining a multicubic mapping to a single equation, namely, multi-cubic functional equation (Proposition 2.1). Moreover, they studied the Hyers-Ulam stability of such mappings. A lot of information about miscellaneous versions of multicubic mappings and their stabilities in various spaces are available in [2], [4], [6] and [9].

In this paper, we show that the stability result in Corollary 3.5 of [3] for multicubic mappings is not valid for $\alpha = 3n$.

Email address: abasalt.bodaghi@gmail.com (Abasalt Bodaghi)

Received: January 2022 Accepted: September 2022

274 Bodaghi

2 Main results

Throughout this paper, \mathbb{N} stands for the set of all positive integers, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}, \mathbb{R}_+ := [0, \infty), n \in \mathbb{N}$. For any $l \in \mathbb{N}_0, m \in \mathbb{N}$, $t = (t_1, \ldots, t_m) \in \{-1, 1\}^m$ and $x = (x_1, \ldots, x_m) \in V^m$ we write $lx := (lx_1, \ldots, lx_m)$ and $tx := (t_1x_1, \ldots, t_mx_m)$, where lx stands, as usual, for the lth power of an element x of the commutative group V.

From now on, let V and W be vector spaces over \mathbb{Q} , $n \in \mathbb{N}$ and $x_i^n = (x_{i1}, x_{i2}, \dots, x_{in}) \in V^n$, where $i \in \{1, 2\}$. We will write x_i^n simply x_i when no confusion can arise. Given $x_1, x_2 \in V^n$. Put

$$\mathcal{M}^n = \{\mathfrak{N}_n = (N_1, \dots, N_n) | N_j \in \{x_{1j} \pm x_{2j}, x_{1j}\} \},$$

where $j \in \{1, ..., n\}$. For $k \in \mathbb{N}_0$ with $0 \le k \le n$, consider

$$\mathcal{M}_k^n := \{\mathfrak{N}_n \in \mathcal{M}^n | \operatorname{Card}\{N_i : N_i = x_{1i}\} = k\}.$$

The upcoming result was proved in [3, Proposition 2.2], which shows that every multicubic mapping can be described a single equation.

Proposition 2.1. If a mapping $f: V^n \longrightarrow W$ is multi-cubic, then f satisfies the equation

$$\sum_{q \in \{-1,1\}^n} f(2x_1 + qx_2) = \sum_{k=0}^n 2^{n-k} 12^k f(\mathcal{M}_k^n), \tag{2.1}$$

where $f(\mathcal{M}_k^n) := \sum_{\mathfrak{N}_n \in \mathcal{M}_r^n} f(\mathfrak{N}_n)$.

Recall from [3] that a mapping $f: V^n \longrightarrow W$ has the r-power condition in the jth variable if

$$f(z_1,\ldots,z_{j-1},2z_j,z_{j+1},\ldots,z_n)=2^r f(z_1,\ldots,z_{j-1},z_j,z_{j+1},\ldots,z_n),$$

for all $(z_1, \dots, z_n) \in V^n$. Note that 3-power condition is also called the *cubic condition*.

The following proposition is a direct consequence of main result in [3], which shows that the functional equation (2.1) is stable. In fact, we improve Corollary 3.5 from [3].

Proposition 2.2. Given $\delta > 0$ and $\alpha \in \mathbb{R}$ with $\alpha \neq 3n$. Let V be a normed space and W be a Banach space. If $f: V^n \longrightarrow W$ is a mapping satisfying the inequality

$$\left\| \sum_{q \in \{-1,1\}^n} f(2x_1 + qx_2) - \sum_{k=0}^n 2^{n-k} 12^k f(\mathcal{M}_k^n) \right\| \le \sum_{i=1}^2 \sum_{j=1}^n \|x_{ij}\|^{\alpha} \delta,$$

for all $x_1, x_2 \in V^n$, then there exists a unique solution $\mathcal{C}: V^n \longrightarrow W$ of (2.1) such that

$$||f(x) - C(x)|| \le \begin{cases} \frac{\delta}{2^{4n} - 2^{\alpha + n}} \sum_{j=1}^{n} ||x_{1j}||^{\alpha} & \alpha < 3n, \\ \frac{2^{\alpha}}{2^{\alpha + n} - 2^{4n}} \delta \sum_{j=1}^{n} ||x_{1j}||^{\alpha} & \alpha > 3n, \end{cases}$$

for all $x = x_1 \in V^n$. Moreover, if C has the cubic condition in each variable, then it is a multicubic mapping.

We bring an elementary lemma without the proof as follows.

Lemma 2.3. If a function $g: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and satisfies (1.1), then it has the form $g(x) = cx^3$, for all $x \in \mathbb{R}$, where c = f(1).

In the next result, we extend Lemma 2.3 for several variables functions. For doing this, we use an idea taken from the proof of [8, Theorem 13.4.3].

Proposition 2.4. Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuous *n*-cubic function. Then, there exists a constant $c \in \mathbb{R}$ such that

$$f(x_1, \dots, x_n) = c \prod_{j=1}^n x_j^3$$
 (2.2)

for all $x_1, \ldots, x_n \in \mathbb{R}$.

Proof. We argue the proof by induction on n. For n=1, (2.2) is valid in view of Lemma 2.3. Let (2.2) hold for a $n \in \mathbb{N}$. Assume that $f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ is a continuous (n+1)-cubic function. Fix the n variables x_1, \ldots, x_n . Then, the function $y \mapsto f(x_1, \ldots, x_n, y)$ as a function of y is cubic and continuous, and so by Lemma 2.3, there exists a constant $c \in \mathbb{R}$ such that

$$f(x_1, \dots, x_n, y) = cy^3, \qquad (y \in \mathbb{R}). \tag{2.3}$$

Note that c depends on x_1, \ldots, x_n , and indeed

$$c = c(x_1, \dots, x_n). \tag{2.4}$$

Letting y = 1 in (2.3) and applying (2.4), we get

$$c = c(x_1, \dots, x_n) = f(x_1, \dots, x_n, 1).$$

Since f is (n+1)-cubic, it follows that c is an n-cubic function and hence by the induction hypothesis there exists a real number c' such that

$$c = c(x_1, \dots, x_n) = c' \prod_{j=1}^{n} x_j^3.$$
 (2.5)

Now, the result follows from (2.3) and (2.5). \square

Remark 2.5. Note that in the proof of Proposition 2.4 only the continuity of g with respect to each variable separately was used. Therefore, the result is again true if and only if f is supposed separately continuous with respect to each variable. On the other hand, in virtue of the proof of Proposition 2.4, if the continuity condition of g is removed, then the result remains valid for a function $g: \mathbb{Q}^p \longrightarrow \mathbb{Q}$. We use this fact to make a non-stable example.

Here, we present the main result of this paper that is a nonstable example for the multicubic mappings on \mathbb{Q}^n . Indeed, we show the hypothesis $\alpha \neq 3n$ cannot be removed in Proposition 2.2. Remember that the method of the proof is taken from [5].

Example 2.6. Let $\delta > 0$ and $n \in \mathbb{N}$ and consider $S \geq 6^n \sum_{k=0}^n 6^k$. Put $\mu = \frac{2^{3n}-1}{2^{6n}S}\delta$. Define the function $\psi : \mathbb{Q}^n \longrightarrow \mathbb{Q}$ through

$$\psi(r_1, \dots, r_n) = \begin{cases} \mu \prod_{j=1}^n r_j^3 & \text{for all } r_j \text{ with } |r_j| < 1, \\ \mu & \text{otherwise.} \end{cases}$$

Moreover, define the function $f: \mathbb{Q}^n \longrightarrow \mathbb{Q}$ by

$$f(r_1, \dots, r_n) = \sum_{l=0}^{\infty} \frac{\psi(2^l r_1, \dots, 2^l r_n)}{2^{3nl}}, \qquad (r_j \in \mathbb{Q}).$$

It is obvious that ψ is bounded by μ . Indeed, for each $(r_1, \ldots, r_n) \in \mathbb{Q}^n$, we have

$$|f(r_1,\ldots,r_n)| \le \frac{2^{3n}}{2^{3n}-1}\mu.$$

It follows from the last inequality that

$$|\mathbf{D}f(x_1, x_2)| \le \mu S,\tag{2.6}$$

where

$$\mathbf{D}f(x_1, x_2) := f(2x_1 + qx_2) - \sum_{k=0}^{n} 2^{n-k} 12^k f(\mathcal{M}_k^n)$$

276 Bodaghi

in which $x_j = (x_{j1}, \dots, x_{jn}) \in Q^n$ with $j \in \{1, 2\}$. We wish to show that

$$|\mathbf{D}f(x_1, x_2)| \le \delta \sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n},$$
 (2.7)

for all $x_1, x_2 \in \mathbb{Q}^n$. We have three cases as follows:

- (i) If $x_1 = x_2 = 0$, then it is clear that (2.7) holds.
- (ii) Let $x_1, x_2 \in \mathbb{Q}^n$ with

$$\sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n} < \frac{1}{2^{3n}}.$$

Thus, there exists a positive integer N such that

$$\frac{1}{2^{3n(N+1)}} < \sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n} < \frac{1}{2^{3nN}}, \tag{2.8}$$

and hence

$$|x_{ij}|^{3n} < \sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n} < \frac{1}{2^{3nN}}.$$
 (2.9)

Relation (2.9) implies that $2^N |x_{ij}| < 1$ for all $i \in \{1, 2\}$ and $j \in \{1, ..., n\}$. Therefore, $2^{N-1} |x_{ij}| < 1$. If $y_1, y_2 \in \{x_{ij} | i \in \{1, 2\}, j \in \{1, ..., n\}\}$, then

$$2^{N-1}|y_1 \pm y_2| < 1,$$
 $2^{N-1}|2y_1 \pm y_2| < 1.$

Since ψ is a multicubic function on $(-1,1)^n$, we have $\mathbf{D}\psi\left(2^lx_1,2^lx_2\right)=0$ for all $l\in\{0,1,2,\ldots,N-1\}$. We conclude from the last equality and (2.8) that

$$\frac{\left|\mathbf{D}f\left(2^{l}x_{1}, 2^{l}x_{2}\right)\right|}{\sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n}} \leq \sum_{l=N}^{\infty} \frac{\left|\mathbf{D}\psi\left(2^{l}x_{1}, 2^{l}x_{2}\right)\right|}{2^{3nl} \sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n}}$$

$$\leq \sum_{l=0}^{\infty} \frac{\mu S}{2^{3n(l+N)} \sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n}}$$

$$\leq \mu 2^{3n} S \sum_{l=0}^{\infty} \frac{1}{2^{3nl}}$$

$$= \mu S \frac{2^{6n}}{2^{3n} - 1} = \delta,$$

for all $x_1, x_2 \in \mathbb{Q}^n$ and thus (2.7) is true in this case.

(iii) Assume that $\sum_{i=1}^{2} \sum_{j=1}^{n} |x_{ij}|^{3n} \ge \frac{1}{2^{3n}}$. Using (2.6), we have

$$\frac{\left|\mathbf{D}f\left(2^{l}x_{1}, 2^{l}x_{2}\right)\right|}{\sum_{i=1}^{2}\sum_{j=1}^{n}\left|x_{ij}\right|^{n}} \leq 2^{3n} \frac{2^{3n}}{2^{3n} - 1} \mu S = \delta.$$

Therefore, f satisfies (2.7) for all $x_1, x_2 \in \mathbb{Q}^n$.

Now, suppose the assertion is false, that is, there exist a number $b \in [0, \infty)$ and a multicubic function $C: \mathbb{Q}^n \longrightarrow \mathbb{Q}$ such that $|f(r_1, \ldots, r_n) - C(r_1, \ldots, r_n)| < b \prod_{j=1}^n r_j$ for all $(r_1, \ldots, r_n) \in \mathbb{Q}^n$. It follows now from Lemma 2.5 that there is a constant $c \in \mathbb{R}$ such that $C(r_1, \ldots, r_n) = c \prod_{j=1}^n r_j^3$ for all $(r_1, \ldots, r_n) \in \mathbb{Q}^n$ and therefore

$$|f(r_1, \dots, r_n)| \le (|c| + b) \prod_{j=1}^n |r_j|^3,$$
 (2.10)

for all $(r_1, \ldots, r_n) \in \mathbb{Q}^n$. On the other hand, one can choose $N \in \mathbb{N}$ such that $N\mu > |c| + b$. If $r = (r_1, \ldots, r_n) \in \mathbb{Q}^n$ such that $r_j \in (0, \frac{1}{2^{N-1}})$ for all $j \in \{1, \ldots, n\}$, then $2^l r_j \in (0, 1)$ for all $l = 0, 1, \ldots, N-1$. Hence

$$|f(r_1, \dots, r_n)| = \left| \sum_{l=0}^{\infty} \frac{\psi\left(2^l r_1, \dots, 2^l r_2\right)}{2^{3nl}} \right|$$

$$= \left| \sum_{l=0}^{N-1} \frac{\mu 2^{3nl} \prod_{j=1}^n r_j^3}{2^{3nl}} \right|$$

$$= N\mu \prod_{j=1}^n |r_j|^3$$

$$> (|c| + b) \prod_{j=1}^n |r_j|^3,$$

that leads us to a contradiction with (2.10).

Acknowledgments

The author sincerely thanks the anonymous reviewer for the careful reading and suggesting the comments that improved the first draft.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.
- [2] A. Bodaghi, Equalities and inequalities for several variables mappings, J. Inequal. Appl. **2022** (2022), Paper No. 6.
- [3] A. Bodaghi and B. Shojaee, On an equation characterizing multi-cubic mappings and its stability and hyperstability, Fixed Point Theory 22 (2021), no. 1, 83–92.
- [4] N. Ebrahimi Hoseinzadeh, A. Bodaghi and M.R. Mardanbeigi, Almost multi-cubic mappings and a fixed point application, Sahand Commun. Math. Anal. 17 (2020), no. 3, 131–143.
- [5] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
- [6] M.B. Ghaemi, M. Majani and M. Eshaghi Gordji, General system of cubic functional equations in non-Archimedean spaces, Tamsui Oxford J. Inf. Math. Sci. 28 (2012), no. 4, 407–423.
- [7] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [8] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, Birkhäuser Verlag, Basel, 2009.
- [9] C. Park and A. Bodaghi, Two multi-cubic functional equations and some results on the stability in modular spaces,
 J. Inequal. Appl. 2020 (2020), Paper No. 6. https://doi.org/10.1186/s13660-019-2274-5
- [10] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2) (1978), no. 2, 297–300.
- [11] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.