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Abstract

In this paper, we study a new system of generalized variational-like inclusion problems involving generalized H (-, -)-
p-n-accretive operators in real g-uniformly smooth Banach spaces. We define the resolvent operator associated with
H(-,-)-¢-n-accretive operator and prove it is single-valued and Lipschitz continuous. Moreover, we suggest a perturbed
Mann-type iterative algorithm with errors for approximating the solution of a system of generalized variational-like
inclusion problems. Furthermore, we discuss the convergence and stability analysis of the iterative sequence generated
by the algorithm.
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1 Introduction

The mathematical study of variational inequality was initially started independently by Stampacchia [24] and
Fichera [7] in the early 1960’s to study the problems in potential theory and elasticity, respectively. Since then the
ideas and techniques of variational inequalities are being used to interpret the basic principles of pure and applied
sciences in elegant and simple form. An important aspect in the theory of variational inequalities is the approximation
solvability of its solution. In the recent past several researchers studied the approximation solvability of some important
classes of variational inequalities and their generalizations.

Motivated and inspired by the research work going on in the approximation solvability of variational inequalities
and their generalizations (see for example [1]-[6],[8]-[22],[25]-[30]), in this paper, we introduce and study a new system
of generalized variational-like inclusion problem involving generalized H (-, -)-p-n-accretive operator in real g-uniformly
smooth Banach spaces. Using resolvent operator associated with H(-,-)-p-n-accretive operator, we prove it is single-
valued and Lipschitz continuous. Moreover, we prove the existence of solution for the system of generalized variational-
like inclusion problem. Further, we suggest a perturbed Mann-type iterative algorithm with errors for approximating
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the solution of the system of generalized variational-like inclusion problem. Also, we discuss the convergence and
stability analysis of the iterative sequences generated by the iterative algorithm.

2 Preliminaries and Formulation of Problem

Let X be a real Banach space equipped with norm || - | and X* be the topological dual space of X. Let (-,-) be
the dual pair between X and X* and 2% be the power set of X.

Definition 2.1. 25] For ¢ > 1, J,: X — 2X" is said to be a generalized duality mapping, if it is defined by
Jo(w) ={f € X*: (u, f) = [u]| % [Jul ™" = || f]}, VueX.

In particular, J5 is the usual normalized duality mapping on X. It is well known (see, e.g., [25]) that
Jg(u) = [[u]| """ Ja(u), Vu(#0) € X.

Note that if X = H, a real Hilbert space, then J, becomes the identity mapping on X.

Definition 2.2. [25] A Banach space X is said to be smooth if, for every u € X with |Ju|| = 1, there exists a unique
f € X* such that || f|| = f(u) = 1.
The modulus of smoothness of X is the function px : [0,00) — [0, 00), defined by

[[u+ vl + [lu —f
2

Px(t)ZSUp{ —1:u,vex,|u||:1,||v=t}-

Definition 2.3. [25] A Banach space X is said to be

t
(i) uniformly smooth if lim px(®)
0

= O7
(ii) g-uniformly smooth, for ¢ > 1, if there exists a constant ¢ > 0 such that px (t) < c¢t?, t € [0, 00).
It is well known (see, e.g., [28]) that

. g-uniformly smooth, if 1 < ¢ <2,
L, (orl,) is

2-uniformly smooth, if ¢ > 2.

Note that if X is uniformly smooth, J, becomes single-valued. In the study of characteristic inequalities in g-uniformly
smooth Banach spaces, Xu [25] established the following lemma.

Lemma 2.4. Let ¢ > 1 be a real number and let X be a smooth Banach space. Then the following statements are
equivalent:

(i) X is g-uniformly smooth.
(ii) There is a constant ¢, > 0 such that for every u,v € X, the following inequality holds
lu+ o)l < fJull* + g{v, Jo(w)) + cqlv]|”.

Definition 2.5. [I] Let X be a g-uniformly smooth Banach space. Let A,B : X — X, n,H : X x X — X be
single-valued mappings and M : X x X — 2% be a multi-valued mapping. Then

(i) A is said to be n-accretive, if
<Au — Av, J, (n(u,v))> >0, Vu,ve X.

(ii) A is said to be strictly n-accretive, if
<Au — Av, J, (n(u7v))> >0, Vu,ve X

and equality holds if and only if u = v.
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(iii) A is said to be §-strongly n-accretive, if there exists a constant § > 0 such that

(Au— Av, Jg(n(u,v))) = 6llu — v[|?, Vu,v e X.

(iv) A is said to be A-Lipschitz continuous, if there exists a constant A > 0 such that

|Au — Av|| < Au—v|, Vu,ve X.

(v) H(A,-) is said to be a-strongly n-accretive with respect to A, if there exists a constant a > 0 such that

(H(Au, z) — H(Av, 2), Jg(n(u,v))) > allu —v||?, Vu,v,z € X.

(vi) H(-, B) is said to be -relazed n-accretive with respect to B, if there exists a constant 8 > 0 such that

(H(z,Bu) — H(z, Bv), Jg(n(u,v))) > —Bllu—v||%, Vu,v,z € X.

(vii) H(-,-) is said to be (v, d)-mized Lipschitz continuous, if there exist constants v > 0, > 0 such that

|H (. 2) = H(o, )| < yllu— o] + ]|z — t]], Va,v,2,¢ € X,

(viii) H(-,-) is said to be af-symmetric n-accretive with respect to A and B, if H(A, ") is a-strongly n-accretive with
respect to A and H (-, B) is S-relazed n-accretive with respect to B with a > 8, and a = § if and only if u = v,
for all u,v € X.

(ix) M is said to be n-accretive, if

<x -, Jq(n(u,v))> >0, VYu,ve X,z € M(u,2),y € M(v,z) for each fixed z € X.
(x) M is said to be strictly n-accretive, if M is n-accretive and equality holds if and only if u = v.
Throughout the rest of the paper unless otherwise stated, we assume X; to be a g;-uniformly smooth Banach space.

Definition 2.6. For each i =1,2,j € {1,2}\ 4, X, is a g;-uniformly smooth Banach space. Let ¢;, A;, B; : X; — X,
H;,ni : X; x X; — X; be single-valued mappings, M; : X; x X; — 2% be a multi-valued mapping. Then M;(-, z;)
is said to be H;(A;, B;)-p-n-accretive mapping with respect to A; and B;, if for each fixed z; € X;, @; o M;(-, 2;) is
n-accretive and (HZ-(AZ-, B;) + pipi o M, (-, zl))XZ = X, for all p; > 0.

Remark 2.7. If ¢;(u) = u, Yu € X, n(u,v) = u —v and M;(-,-) = M;(-), then H;(A;, B;)-p;-n-accretive operator
reduces to a class of H(-,-)-accretive operator considered by Zou and Huang [29].
Example 2.8. Let X = R, A2 = 0, Bz = sinz, H(Az, Bz) = Az + Bz and M(w,2) = w? + 22, for all z € X and for

o _
each fixed w € X. Let ¢ o M(w, z) = F[M(m,z)] =2z and n(z1,22) = e
2

, for all z1, 29 € X. Then

2 — 2
<%0OM(W721)—SOOM(wvzz),U(Z17Z2)>=<221—222, 12 2>

= (21— 2)?
>0,

which means that ¢ o M (w,-) is n-accretive in the second argument. Also, for any z € X, it follows from above that

(H(A,B) + Apo M(w,")(z) = H(Az,Bz) + Ap o M(w, 2)
=Az+ Bz+ Apo M(w,z2)
=0+sinz + 2Xz
=2Xz +sinz,

which means that (H(A, B)+ Apo M(w, )) is surjective. Thus M is H (-, -)-p-n-accretive operator with respect to the
mappings A and B.
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2

Example 2.9. Let X, A, B, H,n and M be same as in Example Let for each fixed w € X, 9 0o M(w, 2) = e’ 2
for all z € X. Then

(H(A,B) + ApoM(w,"))(z) = H(Az,Bz) + Ap o M (w, z)
=Az+ Bz+ A po M(w,z)

. 2, .2
=0+sinz + ¥ 7%,

which shows 0 ¢ (H(A,B) 4+ Ap o M(w,-))(X), that is (H(A, B) + Ap o M(w,-)) is not surjective, hence M is not
H(-,-)-¢p-n-accretive operator with respect to the mappings A and B.

Theorem 2.10. For each i = 1,2,j € {1,2}\ 4, let ¢;, A;, By, H;,n; be same as in Definition and let H; be an
a;Bi-symmetric n-accretive mapping with respect to A; and B; (a; > 3;), M; : X; x X; — 2% be a H;(A;, B;)-0i-1;-
accretive mapping with respect to A; and B;. Then for each fixed z; € X;,

(i) if (z —y, Jg(u—v)) > 0 holds for all (v,y) € Graph(yp; o M;(-,z;)) implies (u,z) € Graph(p; o M;(-,z;)), where
Graph(go,» ) MZ(,zl)) ={(u,z) € X; x X; : ¢ € ¢; 0 M;(u, z;)}.

(ii) the mapping (HZ-(AZ-, B;) + pipi o M;(-,2;)) " is single-valued for all p; > 0.

Definition 2.11. For each i = 1,2,5 € {1,2}\ 4, let @;, 4;, B;, H;,m; and M; be same as defined in Theorem

Then for each fixed z; € X;, the resolvent operator RAHj_((‘é;’A]iip)_’% : X; — X is defined by

/v((éx’Bi),’w (u;) = (H;(As, Bi) + pispi o My (-, 2:)) " H(wi), Vu; € X;.

H;(A;,Bi).pi

Now, we give the following result which guarantees the Lipschitz continuity of the resolvent operator R, Comyops

H;(A;,Bi) i

Mi (o) opn and hence is omitted.

the proof of which can directly follows from the definition of R

Theorem 2.12. For each i =1,2,5 € {1,2} \ 4, let ¢;, A;, B;, H;,n;, M; be same as defined in Theorem [2.10} and let

Hi(AsBi)sps X, — X; is Lipschitz

7; be 7;-Lipschitz continuous. Then for each fixed z; € X;, the resolvent operator RMi (o)

continuous with constant L;, that is,
it

H;(Ai,Bi),»i H;i(Ai,Bi),pi i
’|RMi((.7Zi)7I))i‘p (z) — R]VL_((.’%)7,)1_“J (y)] < Lle —y|l, Va,y € X;, where L; = CETAR

Definition 2.13. For each i = 1,2,5 € {1,2} \ 4, let y;, A;, B;, H;,m;, M; be same as defined in Theorem m
Let {M}, M : X; x X; — 2Xi be a sequence of H;(A;, B;)-pi-ni-accretive mappings with respect to A; and B;,
respectively, for n = 0,1,2,... . Then the sequence {¢; o M} is graph convergent to ¢; o M;, denoted by ¢; o M Ll
p; o M;, if for every (u,v) € Graph(p; o M;), there exists a sequence {(un,v,)} C Graph(p; o M!*) such that u, — u
and v, — v as n — 0.

Lemma 2.14. [I8] Let {a,}, {b,} and {c,} be non-negative sequences satisfying

Ap41 S (]- - tn)an + bntn + Cn, vn Z 07

o]

o)
where {t,}52, € [0, 1], t, = +oo, lim b, =0and > ¢, < oco. Then lim a, =0.
n=0 n—00 n=0 n— oo

Lemma 2.15. [23] For n > 0, let A : X — X be a single-valued mapping and uy € X, up41 = T(A4,u,) be an
iteration procedure which yields a sequence of points {u, },>0 C X, where T is a continuous mapping. Suppose that
{ue X :Au=u} # 0 and {u,},>0 converges to a fixed point u* of A. Let {v,}n>0 C X, hy = ||vny1 — T(A,v,)]]. If
nh~>1rolo h, = 0 implies that nh~>1rolo v, = u*, then the iteration procedure defined by u,+1 = T(A, u,) is said to be A-stable

or stable with respect to A.
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Let foreach ¢ = 1,2, j € {1,2}\i, X; be a ¢;-uniformly smooth Banach space with norm ||-||;. Let ;, A;, Bi, P, Ny, gi, 05 :
Xi — Xi7 Q1 : Xj — Xz,Fz,ﬁl : Xl X Xl — Xl be single—valued Inappings, and let H, : Xl X Xl — X, be an
a;Bi-symmetric n;-accretive mapping with respect to A; and B; (o > i), M; : X; x X; — 2%i be a H;(A;, B;)-
pi-n;-accretive mapping with respect to A; and B;. We consider the following system of generalized variational-like
inclusion problem (SGVLIP): Find (u,v) € X1 x Xo where u € X1,v € X5 and for fixed z1 € X3, 25 € X3 such that

01 € Ni(u—pi(w) + Fi (Pi(u), Q1(v)) + Mi((g1 — p1)(w), 21), 2.1)

02 € No(v—p2(v)) + F2(Q2(u), Pa(v)) + M2((g2 — p2)(v), 22),

where 61 and 6, are zero vectors of X; and Xs, respectively.

We remark that for appropriate and suitable choices of the above defined mappings, SGVLIP ([2.1) includes a
number of variational inequalities, variational inclusions and variational-like inclusions as special cases, see for example
[11-[41,[6],[8]- [14],[16l 17, 291 B0] and the related references cited therein.

3 Existence of Solution

First, we give the following technical lemma:

Lemma 3.1. For i = 1,2,j S {1,2}\2, let AinuPz‘,Ni,Qi,pi X — Xi7 Qi : Xj — X’i7Fi)ni X x X = X,
be single-valued mappings, H; : X; x X; — X; be an «;;-symmetric n;-accretive mapping with respect to A4; and
B; (a; > Bi), and let ¢; : X; — X, be mappings such that ¢;(w; +w}) = @;(w;) + @;(w}), for all w;,w; € X; and
Ker(p;) = {0;}, where Ker(p;) = {w; € X; : ¢;(w;) = 0;} and M; : X; x X; — 2% be a H;(A;, B;)-pi-ni-accretive
mapping with respect to A; and B;. Then (u,v) € X; x X5 is a solution of SGVLIP , where u € X1,v € X5 if
and only if it satisfies:

(1 —p)(w) = Ry P [H (A1 = p1)(w), Bi(gr = p1)(w))
—p1e1 0 Ni(u — pr(u)) — prp1 o Fi (Pr(u), Q1(v))]
(3.1)
(92 = p2)(v) = Ryp(202092 [Hy (As(g2 — p2) (v), Ba(g2 — p2) (v))
—p2p2 © Na(v — p2(v)) — pag2 0 Fa(Qa(u), P2(v))],

where p1, po > 0 are constants and for fixed z;, RII;?((A;)BQ% (ug) = (Hi(Alv, B;) + pii o M;(-, zi))’l(ui), Yu; € X;.

H1(A1,B1),¢1

Proof . From the definition of RMl(_ )

, we have

[H1(A1(g1 — p1)(u), Bi(g1 — p1)(w)) — prp1 o Ni(u — pi(u)) — prr o Fi (Pr(u), Q1(v))]
€ Hy(A1(g91 — p1)(u), Bi(g —p1)(u)) + prp1 0 My ((g1 — p1)(u), 21))
= 01 € @10 Ni(u—pi(u) + 10 Fi(Pi(u),Q1(v)) + 10 Mi((g1 — p1)(u), 21)).

Thus 91 S Nl(u —pl(u)) + F1 (Pl(u),Ql(v)) + M1 ((91 —pl)(u),zl)).

Similarly, we have 65 € Na(v — pa(v)) + Fo (Qg(u), Pg(v)) + Mg((gg —pg)(v),ZQ). O
Now, we give the following result which guarantees the existence of solution for SGVLIP (2.1)).

Theorem 3.2. For i = 1,2,j € {1,2} \ ’i, let AiaBiapini;giypi : Xz — Xi, Qz : Xj — XZ,FZ,7h : X1 X Xz — Xz
be single-valued mappings, ¢; : X; — X; be a mapping satisfying ¢;(w; + w}) = p;(w;) + ¢i(w}), for all w;,w; € X;
and Ker(gp;) = {0;}, where Ker(p;) = {w; € X; : p;(w;) = 0;}, and let H; : X; x X; — X; be an a;f;-symmetric ;-
accretive mapping with respect to A; and B; and (;, §;)-mixed Lipschitz continuous, respectively, P; be Lp,-Lipschitz
continuous, @); be Lg,-Lipschitz continuous, ¢; o N; be Ly,-Lipschitz continuous, (g; — p;) be o;-strongly n;-accretive
and p;-Lipschitz continuous, and A4;(g; — p;) be La,-Lipschitz continuous, B;(g; — p;) be a Lp,-Lipschitz continuous
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mapping, respectively. Let M; : X; x X; — 2% be a H;(A;, B;)-pi-ni-accretive mapping with respect to A; and B;,
p; be r;-strongly-n;-accretive and s;-Lipschitz continuous, ¢ o F} be (j-strongly accretive in the first argument and
(Lp,,lp, )-mixed Lipschitz continuous, ps o Fy be (a-strongly accretive in the second argument and (Ig,, L g, )-mixed
Lipschitz continuous, respectively. In addition, suppose that the following conditions are satisfied:

ki =m; + Ljp;lp, <1, (3.2)
where
mi = a; + Li(b; + ¢; + pidi),  a; = [1—qo; + qips (1 + T8 cq“ufl]l/ql
bi = [1— qi(e — B)ud + qi(vi +6;) (L + 7871 + cq (viLa,) ¥ + (6;Lp,)% )]1/(”,
= [1— pigiCi + pigiLp, (147 71) + plicg, L% L] 1™,
qi—1

di= Ly, [1 S Qisi(l + Tz'(h_l) + Cgisii]l/(h7 L, = ﬁ

Y

Then SGVLIP (2.1)) has a solution.

Proof . For each (u,v) € X; X Xy, define a mapping G : X; x Xo — X; X X5 by

G(u,v) = (S1(u,v), So(u,v)), Y(u,v) € X; x Xo, (3.3)
where S; : X x X5 — X5 and S5 : X7 X X5 — X5 are defined by
S1(u,v) = u— (g1 — pr)(u) + RppArBen [H1<A1<g1 1)), Bi(g — p1)(u))
— p11 o Ni(u— p1(u)) — prp1 o Fi(Pr(u (v) p1>0 (3.4)
Sa(u,v) = v — (g2 — pa) (v) + Ry (12022 [H2(A2(92 ~ p2)(v), Balgz — p2)(v))
— 220 Na(v = pa(v)) = pap2 © Fa(@(w), Po(v)] p2 >0, (3.5)

For any (u1,v1),(ug,v2) € X3 X Xo, it follows from (3.4)), (3.5) and Lipschitz continuity of Rﬁll((é;;?;)l’@l and

Ratooimyes - that
1 (ur,0n) = Sz, 02)]|, < (w1 = w2) = (91 = p)(w) = (91 = p)(w2) )
o |[RECET [Hy (Ar (91 = p) (1), Bi(g1 = pr) ()
— prp1 © Ni(ur = pi(u1)) — prpr o Fi(Pi(ur), Qi (v1))]
— Ry MU0 [Hy (A1 (91 — p1) (ua), Ba(gr — pi) (u2))
— 11 o Ni(uz = pi(u2) = prr o Fi(Pa(ua), Qa ()] |
< [t = wz) = (o1 = o)) = (o1 = 1)) ),
+ L[ Ha (A (g2 = pr) (). Balgs —p1)(un))
— H1(A1(g1 — p1)(u2), Bi(gr — p1)(u2)) — (u1 — Uz)Hl
L[ (w1 = 2) = prlpr © 3 (P (), Qu (1)) = 1 © Fi(Pr(u2), Qu (wn)]
+ Lipa o1 © Fu(Pa(). Qu(01)) = o1 © F(Pa(ua). Quv2)|
+ Lipa|[or 0 Na(us = pi(u1)) = 01 0 Ny (uz = pa (u2) | - (3.6)

Since (g; — p;) is oy-strongly n;-accretive, u;-Lipschitz continuous and using Lemma we have

| (w1 = uz) = ((g1 — p1)(u1) — (g1 —pl)(u2))H(il
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< lwa — U2||1 - a1 {9 ur) = (g1 — p1)(uz), Iy, (m (w1, u2)) ),
—q1((g1 — p1)(u1) — ( )(U2) o (w1 = u2) = Jg, (m(ur,u2))),
+cq,|[(g1 = p1)(ur) = (g1 — p1)(u2) Hq1
< Juy —us||{ —Q1<(91 p1)(u1) = (g1 — p1)(ua), g, (i (ur, u2))),
+ a1 /(g1 — p1)(u1) — pr)(ua)||y x [llur = w2l &7 + [ (ur, ua) || N
+cq,|[(g1 = pi)(ur) — ( p1)(u2)||]
<(I-qor+qm -+ 1) + g [Jur — |7
This implies
(w1 = u2) = (g1 = 1) (1) = (g1 = pr)(w2)) ||, < @[l = o], (37)

1
where a; = (1 —qor + a1+ 7" 1) + quﬂgl) /(h

Since H;(A;, B;) is an «;f3;-symmetric 7;-accretive mapping with respect to A; and B; and (v;, d;)-mixed Lipschitz
continuous, A;(g; — p;) is La,-Lipschitz continuous, B;(g; — p;) is Lp,-Lipschitz continuous, respectively, by using
Lemma we have

| H1(A1(g1 — p1)(u1), Bi(g1 — p1)(u1)) — Hi(A1(g1 — p1)(u2), Bi(g1 — p1)(u2)) — (ug — u2)H(il
< s — ]
— q1(Hy (A1(g1 — p1)(w1), Bi(gr — p1)(w1)) — Hi(A1(g1 — p1)(uz), Bi(gr — p1)(u2)), Jg, (m(u1,u2))),
— q1(H1(A1(g1 — p1)(u1), Bi(g1 — p1)(u1)) — H1(A1(g1 — p1)(u2), Bi(g1 — p1)(u2)),
Tgn (ur —uz) = Jg, (m(ur,u2)) ),
+ cq, ||H1 (A1(g91 — p1)(w1), Bi(g1 — p1)(u1)) — Hi(A1(g1 — p1)(u2), Bi(g1 —101)(@62))}’31
< o = us}
- Q1<H1 (Al(gl —p1)(w), Bi(g1 —pl)(ul)) —H, (Al(gl —p1)(u2), Bi(g1 — p1)(u2 )) Jax (771(U17U2))>1
— 1| H (Au(2 = p2)(w2). Bulgr = pa)(wn)) = H(As (g1 = p)(ua), Ba(gn = pa)(u2)

x [Jlur = a7 4 Yl Cun, ) 971

+ cq [[H1(A1(g1 — p1)(u1), Bi(g1 — p1)(u1)) — Hi(A1(g1 — p1)(u2), Bi(g *pl)(u2))ml
< Jlun = el
— q1(Hi(A1(g1 — p1)(wr), Bi(gr — p1)(w1)) — Hi(A1(g1 — p1)(u2), Bi(gr — p1)(w1)), Jg, (m(u1,u2))),
- Q1<H1 (Al(gl — p1)(u2), Bi(g1 —p1)(u1)) - (A1(91 —p1)(u2), Bi(g1 —pl)(“2))a Ja (771(U17U2))>1
— q1||H1(A1(g1 — p1)(u1), Bi(g1 — p1)(w1)) — Hi(Ar(g1 — p1)(uz), Bi(gr — p1)(u2)) ||,
% [Jlur = wal|7 "+l ()7
+Cq1HH1 (A1(g1 — p1)(w1), Bi(g1 *Pl)(’ul)) — Hy(A1(g1 — p1)(u2), Bi(g1 *pl)(UZ))H?
< ||U1 - u2Hq - Q1 ap — 51 H g1 — ) - (91 —Pl)(u2)|ﬁl
+ a1+ 0)[ur = wall, x [[lun - 7~L2||‘f1_1 7 = w27
+ g [V |AL(g1 — p1)(wr) — Ar(g1 — po)(u2) ||} + 68 || Bilgr — p1)(u1) — Bi(gr — p1)(ua)||]]
< {1 —ai(ar = Bo)uf" +ar(n +8) [L+7 T} lur — e[ + e [(nLa)™ + (61L5,)" ] [Jur — uo[7'
<{1-q(or = B)uf + qr(n +6) [1+ 77 + cqu [(nLa)®™ + (01Lp,)" | Hlur — uz ||
This implies
| H1(A1(g1 = p1)(ur), Bi(gr — pr)(u1)) — Hi(Ai(gr — p1)(uz), Bi(gr — p1)(u2)) — (w1 —us)]|,
< by fjuy — us|,, (3.8)

=

where
b ={1—-q(a1—B)ud +q(n +6)[1+ 7 1] + Cqy [(mLa,)™ + (61Lp,)"] }Uql-
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Now, since ¢q o F} is (j-strongly n;-accretive mapping in the first argument and is L -Lipschitz continuous in the
first argument and [p, -Lipschitz continuous in the second argument, respectively by using Lemma@, we have

H(U1 - Uz) —pP1 [901 OFl(P1(U1),Q1(Ul)) ®1 OFl(Pl U2 Ql Ul )] ||
< Jur = ua|] = prar{er o Fi(Pr(u1), Q1(v1)) — @1 0 Fi(Pi(u2), Q1(v1)), Jg, (m(u1, us))),
— p1a{er 0 Fi(Py(u1), Q1(v1)) — @1 0 Fi(Pr(uz2), Qu(v1)), Jg, (ur — u2) — Jg, (m(u1,u2))),
+ pl'cq, |lo1 0 Fi(Pi(u1), Q1(v1)) — o1 0 Fi(Pi(u2), Q1(v1))]|]"

< jur —u2||{" = prarGaf|us — uz|]" + praa |1 © Fi(Py(u), Q1(v1)) — @1 0 Fi(Pi(u2), Q1(v1))]],

‘ih—l

o [l = w7+ s ) [+ 8, 235 1P ) — P

H‘h
< ur = ua|] = pranCallus — u2||T + pran L || Pr(ur) — Pr(uz)||,

q1

Pl(ul) — Pl(UQ) L

q1—1

i = wa[§ ] e L

x [ fJux = wal
< [1= G+ parLe Lp, (1 707Y) + pfheq LB L | — a7
This implies
s — us) — p1 [ 1 © 1 (Py (1), Qu(01)) — 01 0 F1 (Py (1), Qu(wn))] ||, < exfun — wa]], (3.9)
where Var
{1 —p1iC+ prn L Lp, (14771 + PihcqlL(ﬁL%l]
and
|1 © F1(Pr(uz), Q1(v1)) — @1 0 Fi(Pi(u2), Q1(v2)) ||, < lr [|Q1(v1) — Q1(v2)],
<lp Lg, o1 — va,- (3.10)
As py is ri-strongly n;-accretive and s;-Lipschitz continuous, by using Lemma we have
=z = (pr (1) = pa(u2)) ||
< ur — w2} = g1 {pr(ur) = pi(us), Jg, (m(ur,uz)))
—qu{p1(u1) = pi(u2), Jo, (w1 — u) — Jg, (m(ur,uz2))) + cq,

< Juy — 2| = qu(pr(ur) — pu(uz), Ty, (1 (w1, us)))

b1 (U1) — D1 (uz) ;h

arlpa () = paz)| x [Jlun = wal|7 7 o G, ) |97 4 e 1 () = p (u2) |7
<[ —aqr+asi L+ ) + s lu —ual|} (3.11)
Again, since o; o N; is Ly,-Lipschitz continuous, by using and Lemma we have
|1 0 Ni(ur = pi(u1)) — 1 0 Ni(ug — pr(u2))|
< L, [Jur = w2 = (pr(ur) = pr(u2)) |,

< Ln, [1—q1r1—|—q131(1+7q1 1) + cq, 8T Hu1 —u2||1
< di|lwa —qul, (3.12)

]1/q1

1
where dy = Ly, [1 —qir1 +q151 (1 + 7 1) + Cq15(1h] o,

From —-7 we have

(|51 (w1, v1) = Si(uz,v2)||; < a1 + L1 (b1 + 1 + prdh) | |ur — ual|, + Lipile Lo, |Jor — v,
Sm1||’LL1—’LL2H1+L1pllF1LQ1H'U1 _U2H2. (313)

Similarly, we have

(|52 (u1, v1) — Sa(uz, v2)||, < [a2 + La (b2 + 2 + pada) | ||v1 — va||, + Lapalr, Lo, ||ur — ua||,
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< mal|vy — val|, + Lapalm Lo, ||ur — usl],. (3.14)

From (3.13) and (3.14)), we have

Hsl(ulavl) - 51(U2,’02)H1 + HSQ(UhUl) - 52(U2,’02)H2
< (m1 + LgpgleLQ2)Hu1 — Ug”l + (’ITLQ + LlpllFlLQl) H’Ul — U2H2
< s = wall, + Kallr — va],
< max{F bz} (s - val, + Jn - val,)
< k{[Jur =], + [lor = e}, (3.15)
where k = max{ky, ko} and
ki =m; + Ljpjlp, Lo, <1, m; = a; + L;i(b; + ¢; + pid;),
ai = [1 = qioi + qipi (1 + Tiqifl) + cq ] Y
b = [1— qi(o — B + qi(vi + 6:) (L+7871) + g, (L a,)" + (6:;L,)")] Ha

)

¢ = [1= pigiCs + pigiLp L, (1 +787") + picq L3 L ™,
1/ Tt
di = Ly, [1 = qiri + qisi(L+ 7071 ) +cqus?] 7", Li= ——.
[ ( ) q ] (ai _Bl)
Now, define the norm || - ||, on X; x X5 by
H(u,v)H* = |lully + ||v]l2, V (u,v) € X1 x Xo. (3.16)

We observe that (X; x Xy, | - [|,) is a Banach space. Hence, it follows from (3.3), (3.15) and (3.16) that

HG(ul,vl) — G(ug,vg)H* < H(Sl(ul,vl),Sg(ul,vl)) — (Sl(UQ,Ug),SQ(UQ,’Ug))H*
< ||S1(ur,v1) = S1(ug,va), Sa(ur, vi) — Sz(uz,vz)H*
< ISt (ur, v1) — S1(uz, va) ‘1 + |92 (u1, v1) — SQ(UQ,U2)H2
< F{[ (= waf]y + o = s} (3.17)

Since k = max{k1,k2} < 1 by (3.2)), it follows from (3.17) that G is a contraction mapping. Hence, by Banach
contraction principle, it admits a unique fixed point (u,v) € X7 X X5 that is

G(u,v) = (u,v).
Which implies that
(91 —p0)(w) = Ry B2 [ (A (g0 — i) (w), Bilgr — p1)(w))
—p1e1 0 Ni(u — p1(u) — pre1 o Fi(Pr(u), Q1(v))]

(92 = p2)(v) = Ry 5202 [y (Ay (g2 — p2) (v), Ba(ga — p2)(v))

—p22 0 Na(v — p2(v)) — papa © Fa(Q2(u), Pa(v))],

It follows from Lemma [3.1] that (u,v) is a solution of SGVLIP (2.1)). This completes the proof. [

4 Mann-Type Perturbed Iterative Algorithm, Convergence and Stability Analysis

Lemma [3.1]is very important from the numerical point of view as it allows us to suggest the following Mann-type
perturbed iterative algorithm for finding the approximate solution of SGVLIP ({2.1]).
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Iterative Algorithm 4.1. For eachi =1,2,j € {1,2}\4, given (ug, vo) € X1 x X5, where ug € X1,v9 € X2, compute
the sequences {u,}, {v,}, by the iterative schemes:

1 = (1= an)un + anfun = (g0 = pr) () + RGP [ (As (91 = pa) (), Ba(gr = 1) (un)
— p1p1 © Ni(un — p1(un)) — prpr o F1(Pr(un), Ql(vn))]} + apen,
Vi1 = (1 — an)vn + an{vn (92 — p2)(vn) + R]\ijfff,;ﬁf;’f [Ha(As(g2 — p2)(vn), Ba(g2 — p2)(vn))

— p2p2 © Na(vy, — pa(vn)) — pawp2 © Fa(Qa(un), Pz(vn))]} + aney,,

where n = 0,1,2,---, p; > 0 are constants, M is a H;(A;, B;)-pi-n;-accretive mapping and {e,, e}, } >0 is sequence
in X; x X, introduced to take into account possible inexact computation which satisfies lim |le,|| = lim ||| =0
n—oo n—oo

and {a,} is a sequence of real numbers such that a,, € [0,1] and > a, = +o0.

Theorem 4.2. Let all the conditions of Theorem hold. For i € {1,2},5 € {1,2}\ 4, let M : X; x X; — 2%i be a
H;(A;, B;)-p;-n;-accretive mapping with respect to A; and B;, respectively such that ¢, 0 M (-, zI) Rl wioM;(, z;) as
n — oo for each z; € X, respectively. Further, suppose { (@, Un)}n>0 is a sequence in X; x X5 and define €, = wy, +w),
for n > 0 by

€ = ||(ﬂn+1,77n+1) - (wmw;)H*,
where
Wp = ‘ Up41 — {(1 — Qp) Uy + O‘"{a" — (91 — 1) (Un) + Rﬁl{f?j’]g)lll H1(A1(g1 = p1)(En), Ba(g1 = p1) (@)
—p11 © Ni(tn = p1(in)) — prepr 0 Fi(Pr(n), Q1 (0n))] } + anen} v
w, = ‘ i1 — {(1 — )Ty + om{f’n = (92 = p2) (@) + RYL(E [Ha(Aa(g2 = p2) (0n), Balg2 = p2) ()

(4.1)

—patp2 © Na(Uy, — p2(0n)) — p2ip2 0 Fo(Q2(ty ), P2(0n))] } + aneil} ,
If there exist positive constants p1, p2 such that (3.2)) holds then:

(a) the iterative sequence {(un,vn)}n>0 generated by Iterative Algorithm converges to the solution {(u,v)} of
SGVLIP (2.1)).

(b) For any sequences {@y, Un }n>0, lim (4n,0,) = (u,v) if and only if lim e, = 0, where €, = w, + w),, for all
- n—oo n—oo
n > 0.

Proof . By Theorem there exists a solution (u,v) of SGVLIP (2.I). From Lemma 3.1} we have

w = (= an)utanfu— (g = pr)w) + Ry (U [Hi(Ad (g1 = p1)(w), Bi(g1 = pi ()
—prg1 0 Ni(u = pi(w) = prigr o Fi(Pi(w), Qu(v)]

v = (1= anvtan{v— (g1 = p)) + R [Ha(Aa(g2 — p2)(0), Balga — p2(v))

) = Pz 0 Fa(Qa(u), P>(v)] }

Now, from Algorithm (4.2) and using the same arguments used in estimating (3.6])-(3.14]), we have

(
—p2p2 © Na(v — p2(v)
[wnsr =y < (1= an)||un =l + an | (un —u) = ((91 = p1)(wn) = (91 = p1)(w)) |,
+an|[RY2 [Hy (Av (91 = pr)(un), Bi(gr = p1)(wn)) — pregn © Ni(up — pi(un))
— pP1p1 0 Fl(Pl(Un)an(Un))]
- Rﬁll((f;li;)l"“ [H1(A1(91 —p1)(u), Bi(g1 — p1)(uw)) — prip1 o Ni(u — pi(u))

— prp1 o Fi(Pr(u), Q1 (v H +O‘n||6n||1
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< (1= an)||un —ul|, + anl[(un —u) = (91 = p1)(un) = (91 — p1)(w)) ],

Rﬁ}(f;ﬁf?,’fl [H1(A1(g1 = p1)(un), Bi(g1 — p1)(un)) — prip1 © Ni(un — pi(un))
= prp1 0 Fi(Py(un), Qu(va))]

- Rﬁlrfflz’%lz’fl [Hl(Al(gl p1)(w), Bi(g91 — p1)(u)) — prp1 o Ni(u — pi(u))

+ ay

— prp1 o Fi(Pi(u H
Rﬁ%ﬁﬁ““[fh(m(gl p1)(u), Bi(g1 = p1)(w) = prpr o Ni(u — pi (u))

= o110 Fu(Pr(w), Qu(0))] = Ry (U170 [ (Ar (91 = p1)(w), Bi(gr = pa)(w))

+Oén

— p1p1 0 Ni(u — pr(u)) — prp1 o Fi(Pi(u), Q1(v))] H1 + anHenHl
< (1 — ozn)Hun — ’qu + ap, [al + Ll(bl +c1 + pldl)] Hun — qu
+ anLapats, L Jon = ol + anfo + a e,

< [(1 = an) + anma]|lun — ull, + anLipile, Lg, |on — 0|, + onfn + anllen]]; (4.3)
where
= BB 11, (s (g1 — ) ) Brar — p1)) — prips o Na(u = a(u)) — prcor o Fi(Py (). Qu(0)]
— Ryp (U [Hy(Ar (91 = p) (W), Balg = p)() = prpr @ Na(u = pi() = pripr  Fi(Pa(w), Qu(v))] |
— 0, as n — oo.
Similarly, we obtain
[ons1 = 0]l < (1= an)||on = o], + an[as + La(bs + ca + pada)] [[m — v,
+ anLapal i, Ly |[tn — ul|, + cnhn + anlel ],
< [(1 = an) + anma]|Jvn = vll, + anLapalr, Loy |[un = ull, + anhn + an|je} | (4.4)

where
= |[ B [Ha(As (92 — p2)(v), Balg2 = p2)(v)) = pacea o Na(v = pa(v) = paspa © Fa(Qa(uw), Pa(v))]

- RJ\HfZ((AijQp)Z #2 [Ha(Az(g2 — p2)(v), Ba(ga — p2)(v)) — pap2 © Na(v — p2(v)) — pa2 0 Fa(Qa(u), Pa(v))] H2

— 0, as n — oo.

It follows from (4.3]) and . ) that

[ u||1 +{[on41 — UHz
< [1 —ap(l—=my — LgpglszQ2)] H“n — qu +[1—ap(l—my— LlpllplLQI)}an — vH2
+an(fa + ha +llenll + lleg12)
< [1=an(@ = k)] (Jlun — ull, + [Jvn = vl|,) + an(fa + 2o + llenlls + lenll2), (4.5)

where k = max{ky, k2},

k,L:ml-i-L]p]lF]LQ] <1, my :az—i—L(b—I—cl—i—pldz),
a; = [1— qioi + qipi (1 + 777 ) + cqpff }Uq ,
b = [1—qi(ai — Bi)pf + ai(vi + 5')(1 + 787 g, (La)® + (8:Lp,) )] ™

= []_ — pZQ1Cz + plquPlel (]. + T ) + pz Cq Lq Lq }l/q
d; = L, [1 —q;iT; + qiSi(l + 7’-%_1) +c qu] e L;,= T;]l_l
i 7 qi e (ai _ ﬂz)
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and f,,h, — 0 as n — oc.

Now, define the norm || - ||, on X; x X5 by

1€ o[, = fJul,
We observe that (X; x Xa, || - ||«) is a Banach space. Hence, it follows from that

v (U,’U) c Xy x Xo.

||(Un+1avn+1) - (u,v)H* < [1 - an(l - k)] ||(unavn) - (u,v)H*
fo 4 ho + llenlli + llenll2)

) , k<1

+an(1 —k)(

If an = ||(tn, vn) — (u, )| . dp = {fn+ o +lenlls + el ]2} and ¢, = o, (1 — k), then we have

ant1 < (1 —ep)an + buey.
Using Lemma we have a, — 0 as n — oo (since f,, and h,, both tend to 0 as n — 00). This implies
Up = U, Vp —>V &S M — 0.

Thus, the approximate solution (u,,v,) generated by Iterative Algorithm converges strongly to the solution (u,v)
of SGVLIP ({2.1]).

To demonstrate (b), proceeding as we obtained, (4.1)), (4.2) and (4.5), we deduce that

[E— - ( T [(1 P an{ﬂn — (g1 — p1)(in)
+ R%f}gﬁfi’fl [H1(A1(g91 — p1)(Un), B1(g1 — p1)(@n)) — prp1 © N1(tin, p1(tin))
—prpr 0 Fy(Pi(in), Quoa))] | +anen] |+ [(1 = aw)in + an{in = (91 = p)(@n)
+ R0 (A1 (91— p1) (@), Bi(91 = p1) (@) = prr © N (i, pa ()
— pre1 0 Fy(Pi(itn), Q1 (00))] | + anen| |,
<t [0 = )i + i — (92— 1) @)

R CE0 [Hy(Ar (g = po)(@n), Bulgr = 1) () = prpa o Ni(i, pa (@n)
—pre1 0 Fy (P (), Qu(on))] } + anen }] = (1 = an)u = an {u— (g1 = p1) (w)
+ Ry [H1<A1<91 p1) (), Bi(gr — p1)(w) — prior © Ni(u, pi ()
e AR@QO)],

Swn+(1_an)

U, — qu + o | (tn — u) — ((91 = p1)(tn) = (91 —p1)(U)) H1
REAAE0 @ [H (A (g1 — o) (), Ba(gr —p1)(i)) — prigs © Ny (i, pr (i)
P11 © Fu(Pi(n), Q1 ()] }

=~ Ryp AT [ H (Ax (g1 = p) (W), Bi(91 = p)(w) = prep o Ni(u, i (u)

~prpro Fi(Puw), Q)] || + anlleal],

S wp + [(1 - an) + anml] Han - U||1 + anLlpllFlLQ1 ||an - U||2 + an.fn + an||6n||17 (46)

+ an,

where
o= R T (A gr = po)(w), Balgr — p1) () = prr © N, pr(w) = pron o Fi(Pr(u), @ (v)]

— Ry (T [Hy(Ar (91 = p)(w), Bagn = p)(w) = prepr © Na(u, pa(w)) = prr 0 Fa(Pr(w), Qs (0)] |
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— 0, as n — oo.

Similarly,

/

H17n+1 — ’UH2 < w, +[(1—ap)+ anmg]Hﬁn — vH2 + anLopalp, Lo, Hﬂn — qu + by + anllenl2, (4.7)

= HR%L?QZ’B)%Z [Ha(A2(g2 — p2)(v), Ba(g2 — p2)(v)) — pa2 0 Na(v, p2(v)) — paspz © Fo(Qa(u), Pa(v))]
*RHﬁffﬁvﬂHﬂAﬂmApﬁWLBﬂmgpﬁ@DfpwwoNﬂmpxw)*pwaoFxQﬂwJ%@Dwz
— 0, as n — oo.
It follows from (4.6|) and . ) that

||ﬂn+1 —uly o —olly < 6+ [1 = an (= R {flan =, + [on —ofl,}
Fo+ b+ llenlls + llenll2)
(1—-k) '

+an(l—k) ( (4.8)

This implies that

(Fo + o + llealls + [l 12)
1—k)

| (Gns1s Ung1) = (u,0) ||, < €+ [1 = an (1= E)]{]|(Bn, Bn) — (u,0)]|, } + an(l — k)

dn

Suppose that lim ¢, = 0. Further, if a,, = H U,y Up) — (u,v)H*, b, = W,

n—oo

dp = {fn + I + |lenlls + [le}[l2} and

¢n = an(l — k), then we have
Ap41 S (1 - Cn)an + bncn'

Using Lemma [2.14] we have a,, — 0 as n — co. This implies ,, — u, ¥, — v as n — oc.
Conversely suppose that lim (@, ?,) = (u,v). Then
n—oo

en = | (@1, Bns1) = (o), + | @ar ) = (o),
<1, 804) = @), + [~ 0= B)] ([Ja — ull, + 7 o],

ot b+ llenlls + llenll2)

+an(1—k)( a—n

— 0, as n — oo.

Therefore, we have lim ¢, = 0. This completes the proof. [
n—oo

Remark 4.3. Theorems and extend, improve and unify many results in the literature, see for example [I]-
[31,[10]-[14]),[16],[17],[20],[21]. The class of H(,-)-¢-n-accretive operator is much wider and more general than those of
(A, n)-accretive operator, (H,n)-monotone operator as already discussed by many researchers in the literature.
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