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Abstract

Let A be an algebra. A derivation on 2 is a linear mapping 6 : 2 — 2 such that 6(ab) = §(a)b+ad(b) for every a,b € .
As a dual to this notion, we consider a linear mapping A : 20 — 2 with the property A(a)A(b) = A(A(a)b+ aA(Db))
for every a,b € 2 and we call it an integration. In this paper, we give some examples, counterexamples and facts
concerning integrations on algebras. Furthermore, we state and prove a characterization for integrations on finite
dimensional matrix algebras.
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1 Introduction

Recall that the Leibniz rule for derivatives states that (fg)' = f'g + fg’ for each two differentiable functions. This is
the main idea for the Leibniz property of a derivation on an algebra. By its definition, a linear mapping d on an algebra
2 is called a derivation if §(ab) = 6(a)b + ad(b) for every a,b € 2. The dual process to the Leibniz rule is integration
by parts or partial integration process which is stated as [udv = uwv — [wvdu or, equivalently, uv = [udv + [wvdu.
Substituting u and v into [¢ and [ s respectively, we arrive at [t [s = [(([t)s 4+ t([s)). This motivates us to
consider those linear mappings A : 2 — A with the property A(a)A(b) = A(A(a)b + aA(b)) for every a,b € A. We
use the terminology integration for such linear mappings and we are interested to investigate the relation between
derivations and integrations on algebras.

The integration operator is a special case of Rota-Baxter operators introduced by G. Baxter in 1960 [I].

It is not so surprising to us that there should be a calculus theory to link these notions to each other. Once we
define an integration, we can consider many other notions concerning it as a dual to the notions of inner derivation,
approximately inner derivations, local derivations, Jordan derivations and so on (see, for example [2, [, [6] [7, |]).

In Section 2, we give some examples, counterexamples and facts concerning integrations on algebras. In Section 3,
we state and prove a characterization for integrations on finite dimensional matrix algebras.

Throughout the paper, 2 is an unital algebra with unit + and for a positive integer n, the algebra of all complex
n x n matrices is denoted by M, (C) . Recall that the matrix algebra M, (C) has a system of matriz units {E;; }1<i j<n
with the following properties:
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ii. EijjEyxe = 055
ii. Y1, By is the n x n identity matrix I,,,

where 9§, is the Kronecker delta. By corollary 1.28 [I5], a factor of type I,, is nothing but the M,,(C) and then has
such a system of matrix units.

2 Preliminaries

We begin this section with the definition of an integration.

Definition 2.1. A linear mapping A : 2 — 2 is called an integration if A(a)A(b) = A(A(a)b+ aA(D)) for every
a,be

Recall that an element € of an algebra 2 is called idempotent if €2 = ¢ and an element v is called a square nilpotent if
2 =0.

Example 2.2. Let A be an associative algebra and let zo be a square nilpotent of A, i.e. 2 = 0. A linear mapping
A : A — A defined by A(a) = axg is an integration on A.

In the following proposition we see that the above example is a typical example of an integration. The proof is
straightforward and so we omit it.

Proposition 2.3. Let 2 be an algebra and A : 2 — 2 be a linear mapping. If A satisfies one of the following
conditions, then A is an integration on 2.

i. there is a square nilpotent v such that A(a) = vav for all a € 2;
ii. there is a square nilpotent v and an idempotent € with ev = v such that A(a) = vae for all a € 2,
iii. there is a square nilpotent v and an idempotent € with ve = v such that A(a) = cav for all a € 2A;

iv. there is a square nilpotent v and an idempotent e with ev = v and ve = 0 such that A(a) = eav — vae for all
a €2,

v. there is a square nilpotent v and an idempotent € with ev = 0 and ve = v such that A(a) = cav — vae for all
ac 2.

The above proposition provides a collection of non-trivial examples of integrations and gives a good idea for the
following definition. Prior to define the following notion, we recall that an inner derivation d,, implemented by an
element ag of an algebra 2 is the derivation defined by 64,(a) = aga — aag for each a € A. It is known that each
derivation on M,,(C) is inner and the celebrated Kadison-Sakai theorem [0} [I1], [I4] states that every derivation on a von
Neumann algebra is inner. One of our goal in this paper is to find an appropriate definition for an inner integration.

Definition 2.4. Let 2 be an algebra and A : 2 — 2( be a linear mapping. Then

i. A is called a square nilpotent integration if there is a square nilpotent v such that A(a) = vav, for all a € 2;

ii. A is called a nil-idempotent integration if there is a square nilpotent v and an idempotent £ with ev = v such
that A(a) = vae, for all a € ;

iii. A is called an idem-nilpotent integration if there is a square nilpotent v and an idempotent € with ve = v such
that A(a) = eav, for all a €

iv. A is called a left nil integration if there is a square nilpotent v and an idempotent ¢ with ev = v and ve = 0
such that A(a) = eav — vag, for all a € 2;
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v. A is called a right nil integration if there is a square nilpotent v and an idempotent ¢ with ev = 0 and ve = v
such that A(a) = eav — vag, for all a € 2.

Proposition 2.5. Let 2 be an algebra and A : 2l — 2 be a linear mapping. Then

i. if A is a square nilpotent integration, then A(A(a)b) = A(aA(b)) =0 for all a,b € ;
ii. if A is a nil-idempotent integration, then A(A(a)b) = A%(aA(b)) = 0 for all a,b € 2A;
iii. if A is an idem-nilpotent integration, then A2(A(a)b) = A(aA(b)) = 0 for all a,b € 2;
iv. if A is a left nil integration, then A?(A(a)b) = A%(aA(b)) =0 for all a,b € ;

v. if A is a right nil integration, then A%(A(a)b) = A%(aA(b)) = 0 for all a,b € 2;

Proof . Straightforward. O

Definition 2.6. Let 2 be an algebra and A : 2 — 2 be a linear mapping. Then A is called an integration of
nilpotency r if there is a positive integer r such that A" (A(a)b) = A" (aA(b)) = 0 for each a,b € 2.

Definition 2.7. Let 2 be an algebra and A : 2 — 2 be a linear mapping. Then A is called an inner integration if
there is a positive integer m, there are positive linear functionals ¢ : A — C (1 < k < m) and there are t1,...,t, €A
with the following properties

Afa) = Z or(a)ty, ac?
=1
trte = aQpetp + Brete 1<Kk L<m,

for some gy, Bre € C, that at least one of the complex numbers ayy or By is zero. In this case we say that A is an
inner integration implemented by {@rt1<h<m U {tk }1<kgm with respect to {are} 1<k e<cm O {Bre 1<k e<m-

Note that if txt, = 0 for all 1 < k,£ < m, then A is an inner integration of nilpotency 1. In this case, we have
A(a)A(b) = 0 for each a,b € .

Example 2.8. A linear mapping A : M, (C) — M, (C) defined by

A(A) = E1pA = an E1y + a22FE13 = a1 A(E21) + a2 A(Fa2) = ¢1(a)ty + pa(a)ts
is an inner integration implemented by {¢1, 2, A(E21), A(E22)}, for every A = (a;;) € M, (C).

Proposition 2.9. Let 2 be an algebra and A : 20 — 2 be an inner integration implemented by {¢x }1<k<mU{tr 1<k<m
with respect to {ake}1<k,e<m With age = 0k and Bre =0 . Then j = >, ¢4 is the identity of the algebra A(%).

Proof . We have

A t) = O en@tn)D t) =YD wrla)irte
(=1 k=1 =1 k=1/¢=1
= i i o1 (a)drety
k=1¢=1
= Y erla)tr = Ala)
k=1

a

In the present section, we give some elementary facts concerning integrations and inner integrations. Note that
square nilpotent, nil-idempotent, idem-nilpotent, left and right nil integrations are all of nilpotency at most two.
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Proposition 2.10. Let 2 be an algebra, A be an integration on 2 and let n > 2 be a positive integer. Then
I Aa;) = A (E?:lné;llA(aj) G ~H;-L:i+1A(aj)) (*)
for every aq,...,a, € 2.

Proof . We use induction on n. For n = 2 the result is true by the definition of an integration. Let us assume that
(*) is true for n. For n 4+ 1 we have

P A(e) = T A(ai) - Alanta)
= A (E?:1H§';11A(aj) T H;‘L:i-i-lA(aj)) - Aant1)
= AAEIL I A(g) - ai - T Aay)) - anga
+3P I Aay) - aq - T Aay) - Alansa))
= AL A(ai) - anta
+3P T2 Aay) - as - AL Aay)

= AQCITZIA(g) - a2 Alay)).

O

Corollary 2.11. Let 2 be a unital algebra with unit ¢. Let A be an integration on 20 and let n be a positive integer.

n

If z = A(t) then A(z"~ 1) = -

n

Proof . Putting a; = ... = a, = ¢ in Proposition we have
2" = AQ)" = AS 2 ™) = nA(z" ).

O

Though, there are many examples of derivations on algebras whose ranges are not algebras, we can easily see that
the range of an integration is obviously an algebra. However, even if the algebra 2 has unit ¢+ we can show that
v ¢ A(RL). In contrary, suppose that ¢ = A(a) for some a € 2 then

1 =12 = A(a)?> = A(Aa)a + aA(a)) = 2A(a) = 2,

which is a contradiction. Nevertheless, the example A : M,(C) — M, (C) defined by A(A) = E12AFE; for each
A € M,(C) shows that the range of an integration can be unital. Note that the mentioned integration is a nil-
idempotent integration and the unit of its range is E1;.

It is known for two derivations d; and ds on an algebra 2l and a scalar ¢, the linear mapping cd; + do is again a
derivation. A natural question which arises is whether this fact true for integrations or not. The following proposition
gives a necessary and sufficient condition for an affirmative answer is some cases.

Proposition 2.12. Let A; and Ay be two integration on an algebra 21 and ¢ be a scalar. Then cA; + As is an
integration on 2 if and only if

Al(a)Ag(b) + Ag(a)Al(b) = Al(AQ(a)b + aAQ(b)) + AQ(Al(a)b + aAl(b),
In particular, a scalar multiple of an integration is again an integration.

Proof . Straightforward.
O

As the final part of this section we give a transient consideration on a generalization of the Leibniz rule and the
notion of a higher derivation.

Considering the Leibniz rule we can inductively prove that 6" (ab) = $7_ (") 6*(a)6"~(b), for a derivation & and a

positive integer n. This is the starting point of studying the behaviour of the sequence {d, }52, where d,, = % The
sequence is an example of a higher derivation and there are some characterizations for higher derivations on algebras
(see [3, 5, O] 10 12] 13]). Using this idea, we have the following theorem.
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Theorem 2.13. Let 2 be an algebra, A be an integration on 2 and let n be a positive integer. Then
n n ) )
A"(a)A™(b) = A" A'(a) A"
(@)A"(0) (}i_oj (7)a@am).

for every a,b € 2.

Proof . We can inductively prove the result. For n = 1 the result is obvious by the definition of an integration. Let
the result be true for n. For n + 1 we have

A a) A" (b) = A"(A(a)A™(A(®D))

A" (Zn: (7) Ai(A(a))A"_i(A(b))>

=0

N (i (?)A(N(a)m(mi(b))> .

=0

Now using the partial integration process for the integration A, we can write

AnJrl (a)An+1 (b)

= A"A (znj (’Z) AT (@) An =D () 4 f: (’Z) N‘(a)m“-i(b))
1=0

I

>
3

>

i=0
)Ak(a)A"“‘k(b) + > (Z) Ak(a)A”“‘k(b))
AP (n : (” Z 1) Ak(a)m+1—k(b)> .

Prior to the definition of a higher integration, let us give a simple corollary from the above theorem. We use this
in the next section. Note that for an integration A the linear mapping A? is not necessarily an integration.

3 =
% |
—
S
E
3
3

-1

O

Corollary 2.14. Let 2 be an algebra and A : 20 — 2l be an integration of nilpotency r. Then D : 2 — 2 defined by
D = A" is an integration of nilpotency 1.

Proof . We have
D(a)D(b) = A"(a)A"(b)

N (Z (’;) N(aw—i(b)>

i=0
-0
— AT(A(a)b+ ad" (B)
D(D(a)b+ aD(b)).
O

Definition 2.15. Let 2 be an algebra. A sequence {D,}22, is called a higher integration if Dg is the identity
mapping on A and
Dy (a)Dn(b) = Dy (3 Di(a) Dn—k(b))

for every a,b € 2.

Theorem 2.16. Let A be an integration on an algebra 2[. Define D,, : A — 2 by D,, = % and let Dy be the identity
mapping on 2. Then {D,,}52, is higher integration.

Proof . Divide both sides of the equation mentioned in Theorem by n!2. O
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3 Integrations on simle finite dimensional C*-algebras

In this section we assume that 7 is a simle finite dimensional C*-algebra. By proof of the theorem 11.2 [I5], each

element a € & can be written as a = Y7, a;;(a)e;;, such that a;;(a) € M,(C) and {e;;}1<ij<n is a finite system

of matrix units with the following properties:

i 62} = €ji;
. ejjere = Ojpeir;
ii. D% e is the identity ¢ of &7,
where ;5 is the Kronecker delta. In fact the map T : & — M, (C) defined by T'(a) = (ai;(a)):j, is a *—isomorphism.
For two elements a,b € &/ we have

n

a’b = (Z al] 61] Z brs ere = Z (Z air(a)brs(b))eis-

i,7=1 r,s=1 i,s=1 r=1

The trace of a, denoted by tr(a), is defined by tr(a) = >, a;;(a). The following fact about the trace functional is
useful.

Lemma 3.1. Let a,b € /. Then tr(ab) = tr(ba) and tr(ae;;) = aji(a).

Proof . Straightforward. O

As an example, if § is a finite dimensional Hilbert space, then B($)) has such a matrix unit. We can therefore
deduce that results of this section are true for M, (C). In this section, our ultimate goal is to prove that each integration
on such algebras is inner.

Lemma 3.2. Let A : & — & be a linear mapping and dim(A(%/)) = m for a positive integer m. Then there are
fioooos fmott, ooty € & such that A(a) =Y ;0 tr(afi)ts.

Proof . Let {t1,...,tm} be a basis for A(«). Thus there are linear functionals ¢, : & — C (1 < k < m) such that
A(a) = 370 wrl(a)ty. Now let fr = 370 ) wr(eji)ei;. This implies that (fi)i; = @i (eji). We can write

Afa) = Z‘Pk tk—Z‘Pk Z aij(a)eij)te
k=1 1,7=1
= DD au(@)enles)t Z > aula)(fst
k=11,5=1 =11,j=1
= ZZ(afk)iitk = Z r(afi)te
k=1i=1 =1

O

Definition 3.3. Let A : &/ — & be a linear mapping. We say that A is representable by {fi}1<k<m U {tk f1<kgm
if Afa) =37kl tr(afi)te.

Proposition 3.4. Let A : &/ — &/ be an integration. Then A can be represented by {fi F1<r<m U {tk }1<k<m with
the following properties

(ik,jr) : 1 < k < m} of the set N2 = {(4,7) : 1 < i,j < n} such that t, = A(e, ;) for
=0 for (4,5) ¢ N;

i. there is a subset N
1<k<mandA(e

ij)
. fi = eju4, for 1 <k <my

iii. trty = agety + Brete for 1 < k, £ < m, that at least one of the complex numbers ayy or Sy, is zero.
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Proof . Let dim(A(%)) = m. We know that U = {A(e;;) : (i,j) € N2} generates A(</). Thus it contains a basis
{A(es,5,) : 1 < k< m}. Put tp = Aes, . )-

Applying the notations used in Lemma we have A(a) = > ;- tr(afx)ty. Considering t, = A(e;,j,) =
> opey tr(es,j, fx)tr and the fact that {¢1,. ...t} is an independence set, we can deduce that (fx);,:, = tr(€i,;, fr) = Oke-
Thus fk = €jpip-

Now we have
tpty = A(eikjk)A(eieje)

A(A(eikjk)eiejz + eikjkA(eizje))
A(treiyj, + €ijite)

m m
= Y tr(trei i fo)te + O (e g tefr)tr
r=1

r=1

m m
= ) tr(treigoegi )t + Y tr(ei g tees i )t
r=1

r=1

m m

= > i tr(thei, )t + Y tr(ej,i ei o)ty
r=1 r=1
m m

= > Gjgtrlteei )t + > 0 tr(eg g te)ts
r=1 r=1
m m

= Y 80 (tk)ivinte + > 8iyi 05, (), 5, b
r=1 r=1

= (tk)igite + (te)jpjnt-

We can therefore deduce that
th = gt tete = ety + Brete  (¥)

for some oy, ae, Bre € C. We have agtity = titg = Oékgt% + Bretipts = apoapety + Bretite.
Now there are two cases:
If ag, = 0, then B¢ = 0 or txty, = 0. Regarding to (x), in any case we have B, = 0.

And if ay # 0 and B¢ # 0, then
(arBre — Bre)te = cweBrets,

and since {tg, t;} is an independence set we have oy = 0. Anyhow, at least one of the complex numbers Sis or agye is
zero, and thus we have the result. O

Theorem 3.5. Let &7 be a simple finite dimensional C*-algebra, and let A : & — & be a linear mapping. Then A
is an integration if and only if it is an inner integration implemented by the trace functionals ¢y : &/ — C defined by
vr(a) = tr(aej,q,) and the set {t; = A(e;, ;) : 1 < k < m} with respect to ae = A(€i,5,)jujn OF Bre = A(€irjy )ivies
that at least one of the complex numbers aygy or Sy, is zero. i.e.,

Ala) = Ztr(aejkik)A(eikjk)a a€d
k=1
A(eikjk)A(eizjz) = A(eizjz)jkjkA(eikjk) + A(eikjk)izieA(eizjz) IL<k l<m.

Proof . Straightforward. O
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