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Abstract

The main crux of this research manuscript is to study the existence and uniqueness of generalized mild solutions for
nonlinear Schrödinger equations with singular initial conditions in the extended algebras of generalized functions. The
proofs are based on generalized semigroups theory and Grönwall’s inequality. As an application, our theoretical results
have been illustrated by providing a suitable example.
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1 Introduction

The wave function of a quantum mechanical system is determined by the Schrödinger equation, which is a partial
differential equation. This is a crucial result of quantum mechanics, and its discovery marked an important milestone
in the field’s development. The Schrödinger equation is the quantum analogue of Newton’s second law in conventional
physics in terms of idea. When given a set of known initial conditions, Newton’s second law offers a mathematical
prediction about the path that a given physical system will take over time. In quantum physics, the Schrödinger
equation describes the evolution of a wave function over time and is used to characterize an isolated physical system.
The equation can be derived from the fact that the time evolution operator has to be unitary, and therefore be
generated by the exponential of a self-adjoint operator, which is the quantum hamiltonian. In the beginning of 1980s,
Colombeau introduced the algebra of generalized functions G to handle multiplication distribution problem see [2]
and [1]. This algebra is a differential on an inclusive space Schwartz distribution of D′

. Moreover, in the algebra
G non-linear operations are more general than multiplication. Therefore, this algebra is more convenient for finding
and studying the solutions of nonlinear differential equations with singular data and coefficients. This algebra plays
a crucial role in giving the multiplication of the distributions [3] and [10]. As a nonlinear extension of distribution
theory to deal with non-linearities and singularities of data and coefficients in the theory of PDEs [10]. This algebra
include the space of distributions D′ as a subspace with an embedding realized through convolution with a suitable
mollifier. The elements of G are classes of smooth functions called moderate functions with respect to a set of negligible
functions. The reason for introducing this regularity is the possibility to solve nonlinear problems with singularities
and derivatives of arbitrary real order.
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In this paper, we investigate the existence and uniqueness of the solution to the Cauchy problem given by:
Dαx(t) +Ax(t) = F (t, x(t)), 0 < α < 1, t ∈ [0,Λ]

x(0) = x0,

(1.1)

in the setting of Colombeau algebras, where x0 ∈ R̃ is a generalized real algebra Banach space, −A be the infinitesimal
generator of an analytic generalized semigroup (T (t))t≥0 of uniformly bounded linear operators on a class of Colombeau
algebra. Furthermore, regarding works on the Colombeau semigroup , we refer to [8] and the references therein. Our
idea is inspired by the one presented in [14] where the author proved the existence of the Cuachy problem (1.1) under
two assumptions concerning the infinitesimal generator −A of an analytic semigroup, in this work we have shown
without making any conditions on the generator −A, the problem (1.1) has a unique solution in the extension Ge(R)n
of the Colombeau algebra, then we will apply the results of this work to the fractional problem related with the
Schrödinger equation. 

1
i ∂

α
t u(t, x)−△u(t, x) + v(x)u(t, x) = 0,

v(x) = δ(x), u(0, x) = δ(x),

(1.2)

where 0 < α < 1 and δ is the Dirac distribution. The organization of this paper is as follows. In section 2, we recall
some fundamental properties of the generalized functions theory. The new notion of generalized semigroup takes place
in section 3. Section 4 is consecrated to the proof of existence and uniqueness in Colombeau algebra to the problem
given in (1.1). In Section 5 we have introduced an example to illustrate our work.

2 Preliminaries

In this section, we recall some fundamental properties of generalized functions theory in colombeau sense. The
regularization methods of Colombeau-type is to model non-smooth objects by approximating nets of any smooth
functions, which has a moderate asymptotic bounds and to identify regularizing nets whose differences compared to
the moderateness scale are negligible. The equivalence classes of regularization moderates nets with respect a negligible
nets are called elements of colombeau generalized functions i.e., sequences of smooth functions satisfying the conditions
of asymptotically in the regularization parameter ε. Let n ∈ N∗, as in [3]. We define the set

E(Rn) =
(
C∞ (Rn)

)(0,1)
.

• EM (Ω): Moderate families defined by

∀K ⋐ Ω,∀α ∈ Nn
0 ,∃p ≥ 0 : sup

x∈K
∥∂αuε(x)∥ = Oε→0(ε

−p). (2.1)

• EM (Ω): Null families defned by

∀K ⋐ Ω,∀α ∈ Nn
0 ,∀q ≥ 0 : sup

x∈K
∥∂αuε(x)∥ = Oε→0(ε

q). (2.2)

With the following operations (uε) + (vε) = (uε + vε) and (uε)ε × (vε)ε = (uε × vε)ε. The Colombeau algebra is
defined as a factor set

G(Rn) = EM (Rn)/N (Rn).

The ring of all generalized real numbers is given by the following set

R̃ = E (R) /I (R) ,

where
E(R) =

{
(xε)ε ∈ (R)(0,1)/∃m ∈ N, | xε| = Oε→0(ε

−m)
}
,

and
I(R) =

{
(xε)ε ∈ (R)(0,1)/∀m ∈ N, | xε| = Oε→0(ε

m)
}
.
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We note that R̃ is a ring obtained by factoring moderate families of real numbers with respect to negligible families.
The space E(R) is an algebra, and I(R) is an ideal of E(R). Note that R̃n ⊂ G(Rn). The extended Colombeau algebras
of generalized functions Ge(Ω) on an open subset Ω of Rn are defined in the sense of extending entire derivatives to
fractional ones, which were first introduced by M. Stojanovic see [13] for more details.
Let E(Ω) be the algebra of all nets (uε)ε>0 of real valued functions uε ∈ C∞(Ω), the algebra of extended moderate
functions is given by

Ee
M (Ω) =

{
(uε)ε>0 ∈ (E(Ω))(0,1) : ∀K ⊂⊂ R,∀α ∈ R+∪{0},∃N ∈ N such that sup

x∈K
| Dαuε(x)| = O(ε−N ), as ε→ 0

}
,

and the set of negligible functions is defined this time by

N e(Ω) =
{
(uε)ε>0 ∈ (E(Ω))(0,1) : ∀K ⊂⊂ R,∀α ∈ R+ ∪ {0},∀q ∈ N such that sup

x∈K
| Dαuε(x)| = O(εq), as ε→ 0

}
.

Here Dα, m − 1 < α < m, m ∈ N∗ is the Caputo fractional derivative, for the fractional derivatives and
fractional integral we can see [11], [12], [6] and the references therein. Ge(Ω) is given by the factor algebras Ge(Ω) =
Ee
M (Ω)/N e(Ω). In [4], a generalized solution to the system of equations (9) is constructed in the context of Colombeau

algebras for tempering generalized functions, Gτ(Rn) which was firstly introduced by J.F. Colombeau to develop the
theory of Fourier transform in the algebra of generalized functions. We start by defining

OM (Rn) =
{
f ∈ C∞(Rn) : ∀α ∈ Nn

0 , ∃N ∈ N : sup
x∈Rn

< x >−N | ∂αf(x) |<∞
}
,

where < x >−N= (1+ ∥ x ∥)N . The Colombeau algebra of tempered generalized functions is given by

Gτ(Rn) = Ee
τ (Rn)/N e

τ (Rn),

with

Ee
τ (Rn) =

{
(uε)ε>0 ∈ (OM (Rn))I : ∀α ∈ R+ ∪ {0},∃N ≥ 0 such that sup

x∈Rn

| Dαuε(x)| = O(ε−N ), as ε→ 0
}
,

and

N e
τ (Rn) =

{
(uε)ε>0 ∈ (OM (Rn))I : ∀α ∈ R+ ∪ {0},∃N ≥ 0, ∀q ≥ 0 such that sup

x∈Rn

| Dαuε(x)| = O(εq), as ε→ 0
}
,

where Dα, m− 1 < α < m with m ∈ N∗is the Caputo fractional derivative. Embedding of the Schwartz distributions
space S ′(Rn) into Ge

τ (Rn) is given by u −→ [(u ∗ ϕε)ε∈I ], with

ϕε(x) =
1

ε
ϕ(
x

ε
), ϕ ∈ C∞

0 (R), ϕ(x) ≥ 0,

∫
R
ϕ = 1,

∫
R
xαϕ = 0,∀α ∈ Nn, | α |> 0.

2.1 Caputo derivative

The Caputo fractional integral is defined as follows

Iα0 x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)ds, (2.3)

with m− 1 < α < m and m ∈ N∗. Fractional derivative in the Caputo sense of order α of a function x is defined by

Dα
0 x(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1x(m)(s)ds, (2.4)

where m − 1 < α < m and m ∈ N∗, provided that this integral convergent which is the case when f belongs to the
class of absolutely continuous functions see [5].
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2.2 Embedding of the Caputo fractional derivative into colombeau algebra

Inspired by the classical theory of Colombeau for integer derivatives. To prove the embedding of the distribution in
the extended Colombeau algebra, We have to show that all derivatives are moderate, including fractional derivatives,
i.e. we prove that D̃αωε(t) = Dα(ω ∗ φε) ∗ φε(t) is moderate. For α ∈]0, 1[ we have

D̃αωε = (Dαωε ∗ φε(t)) ≤
1

Γ(1− α)

(∫ t

0

w′
ε(s)ds

(t− s)α

)
∗ (φε(t))

≤ 1

Γ(1− α)
sup

t∈[0,T )

∣∣∣∣ ∫ t

0

w′
ε(s)ds

(t− s)α

∣∣∣∣ · | (φε(t))| L1

≤ C

Γ(1− α)
sup

t∈[0,T )

| w′
ε(t)|

T 1−α

1− α
≤ Cα,T ε

−N ,

Then there exists N > 0, such that
D̃αωε ≤ Cα,T ε

−N , (2.5)

hence ∣∣∣∣ (
D̃αωε

)′
∣∣∣∣ = | Dαωε(t) ∗ φ′

ε(t)| ≤ C

ε
sup

t∈[0,T )

| Dαωε(t)| ,

where the last expression is given by (3). Let 0 < α < 1, for higher fractional derivatives we use the semigroup
property of fractional differentiation: Dα (Dαuε) = Dα+αuε. We have,

Dα
(
D̃αωε

)
= Dα (Dαωε ∗ φε) = Dα+αωε ∗ φε.

Then, there exists N > 0 and t ∈ [0, T ), T > 0 such that

(
Dα+αωε

)
∗ φε(t) =

1

Γ(1− α)

∫ t

0

w′
ε(s)

(t− s)α+α
ds

≤ 1

Γ(1− α)
sup

t∈[0,T )

| w′
ε(t)| ·

∣∣∣∣ t1−(α+α)

1− (α+ α)
∗ φε(t)

∣∣∣∣
≤ 1

Γ(1− α)
sup

t∈[0,T )

| w′
ε(t)|

C

ε

T 2−(α+α)

2− (α+ α)
≤ CT,α,αε

−N .

3 Generalized Semigroup

In this section, we will recall the results, concerning generalized semigroup, stated in the paper[9].

Definition 3.1. [9] SEM (R+ : Lc(X)) is the space of nets (Sε)ε of strongly continuous mappings Sε : R+ −→
Lc(X), ε ∈ (0, 1) with the property that for every T > 0 there exists a ∈ R such that,

sup
t∈[0,T )

| Sε(t)| = Oε→0(ε
a). (3.1)

SN (R+ : Lc(X)) is the space of nets (Nε)ε of strongly continuous mappings Nε : R+ −→ Lc(X), ε ∈ (0, 1) with
the properties:

For every b ∈ R and T > 0,

sup
t∈[0,T )

| Nε(t)| = Oε→0(ε
b). (3.2)

There exists t0 > 0 and a ∈ R such that,

sup
t<t0

| Nε(t)

t
| = Oε→0(ε

a). (3.3)
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There exists a net (Hε)ε in Lc(X) and ε0 ∈ (0, 1) such that,

lim
t−→0

Nε(t)

t
= Hεx, x ∈ X, ε < ε0. (3.4)

For every b > 0,
| Hε| = Oε→0(ε

b). (3.5)

Remark 3.2. Note that because of (3.1), it is sufficient that (3.2) holds for all x ∈ D where D is a dense subspace of
X.

Proposition 3.3. [9] SEM (R+ : Lc(X)) is algebra with respect to composition and SN (R+ : Lc(X)) is an ideal of
SEM (R+ : Lc(X)).

Now we define Colombeau type algebra as the factor algebra

SG(R+ : L(X)) = SEM (R+ : L(X))/SN (R+ : L(X)). (3.6)

Elements of SG(R+ : L(X)) will be denoted by S = [Sε], where (Sε)ε is a representatvie of the above class.

Definition 3.4. [9] S ∈ SG(R+ : L(X)) is a called a Colombeau C0-Semigroup if it has a representative (Sε)ε such
that, for some ε0 > 0, Sε is a C0-Semigroup, for every ε < ε0.

In the sequel we will use only representatives (Sε)ε of a Colombeau C0-semigroup S which are C0-semigroups, for
ε small enough.

Proposition 3.5. [9] Let (Sε)ε and (S̃ε)ε be representatives of a Colombeau C0-semigroup S, with the infinitesimal
generators Aε, ε < ε0, and Ãε, ε < ε̃0, respectively, where ε0 and ε̃0 correspond ( in the sense of definition (3.4)) to
(Sε)ε and (S̃ε)ε, respectively. Then, D(Aε) = D(Ãε) for every ε < ε̄ = min{ε0, ε̃0} and Aε − Ãε can be extended to
an element of L(X), denoted again by Aε − Ãε. Moreover, for every a ∈ R

| Aε − Ãε| = Oε→0(ε
a). (3.7)

Now we define the infinitesimal generator of a Colombeau C0-semigroup S. Denote by A the set of pairs
((Aε)ε, (D(Aε))ε) where Aε is a closed linear operator on X with the dense domain D(Aε) ⊂ X for every ε ∈ (0, 1).
We introduce an equivalence relation in A,

((Aε)ε, (D(Aε))ε) ∼ ((Ãε)ε, (D(Ãε))ε).

If there exists ε0 ∈ (0, 1) such that D(Aε) = D(Ãε) for every ε < ε0. And for every a ∈ R, there exist C > 0 and
εa ≤ ε0 such that for x ∈ D(Aε),

| (Aε − Ãε)x| ≤ Cεa| x| , x ∈ D(Aε), ε ≤ εa.

Since Aε has a dense domain in X, Rε := Aε − Ãε can be extended to be an operator in Lc(X) satisfying
| (Aε − Ãε)x| = Oε→0(ε

a) for every a ∈ R, such an operator Rε is called the zero operator. We denote by A the
corresponding element of the quotient space A/ ∼. Due to proposition (3.3), the following definition makes sense.

Definition 3.6. A ∈ A/ ∼ is the infinitesimal generator of a Colombeau C0-semigroup S if there exists a represen-
tative (Aε)ε of A such that Aε is the infinitesimal generator of Sε, for ε small enough.

Remark 3.7. [9] Let the assumptions of definition (3.1) holds. Moreover, assume a stronger assumption than (3.1).
Then there exist M > 0, a ∈ R and ε0 ∈ (0, 1) such that,

| Sε(t)| ≤Mεaeαεt, ε < ε0, t ≥ 0, (3.8)

where 0 < αε < α, for some α > 0.

Hence we obtain the corresponding sub algebra of SG(R+ : L(X)). For this we can formulate the Hille-Yosida
theorem in a usual way. For the whole algebra of Colombeau C0-semigroups, SG(R+ : L(X)) the formulation of the
Hille-Yosida-Type theorem is an open problem.
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4 Generalized mild solutions

Let us consider the Cauchy problem in the framework of Colombeau algebras{
Dαx(t) +Ax(t) = F (t, x(t)),

x(0) = x0 ∈ R̃.
(4.1)

where −A is an infinitesemal genrator of a generalized colombeau semigroup (T (t))t≥0 = [((Tε(t))t≥0)ε] , x ∈ (Ge(R))n,
F ∈ (Ge(R))n+1. The representative form of (4.1) given by{

Dαxε(t) +Aεxε(t) = Fε(t, xε(t)),

xε(0) = x0ε.
(4.2)

According to the defintions (2.3) and (2.4) we write the Cauchy problem in the integral equation{
xε(t) = x0ε +

1
Γ(α)

∫ t

0
(t− s)α−1[−Aεxε(s) + Fε(s, xε(s))]ds,

xε(0) = x0ε.
(4.3)

The proof of the theorem requires the two lemmas below

Lemma 4.1. If (4.3) holds, then there is a probability density function ϕα defined on (0,+∞) such that
xε(t) =

∫∞
0
ϕαTε(t

αξa)x0εdξ + α
∫ t

0

∫∞
0
ξ(t− s)α−1ϕα(ξ)Tε((t− s)αξ)Fε(s, xε(s))dξds,

xε(0) = x0ε.

(4.4)

Proof . Applying the Laplace transform to the first equation in (4.3),

Lxε(λ) =
1

λ
x0ε +

1

λα
AεL(xε)(λ) +

1

λα
L(Fε(., xε(.))(λ),

we have

xε(λ) = λα−1(λα−1I +Aε)
−1x0ε + (λα−1I +Aε)

−1

= λα−1(λαI +Aε)
−1x0ε + (λαI +Aε)

−1L(e−λsFε(s, xε(s)))(λ)

= λα−1

∫ ∞

0

e−λαsTε(s)x0εds+

∫ ∞

0

e−λαsTε(s)ω(λ)ds, (4.5)

where I is the identity operator, and ω(λ) is the Laplace transform of Fε(s, xε(s)). Consider the probability density
given in [7] by

ψα(ξ) =
1

π

∑
(−1)n−1ξ−αn−1 Γ

Γ(n+ 1)
sin(nπα), ξ ∈ (0,∞), (4.6)

whose Laplace transform is given by e−λξψα(ξ)dξ = e−λα

, with α ∈ (0, 1). Then

x0ε = λα−1

∫ ∞

0

e−λαsTε(s)x0εds

=

∫ ∞

0

α(λt)α−1e−(λt)αTε(t
α)x0εds

=

∫ ∞

0

−1

λ

d

dt

[
e−(λt)α

]
Tε(t

α)x0εds

=

∫ ∞

0

[∫ ∞

0

ξψα(ξ)e
−(λtξ)Tε(t

α)x0εdξ

]
dt

=

∫ ∞

0

e−λt

[∫ ∞

0

ψα(ξ)Tε

( tα
ξα

)
x0εdξ

]
dt (4.7)
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For the second term we have∫ ∞

0

e−λαsTε(s)ω(λ)ds =

∫ ∞

0

[∫ ∞

0

αtα−1e−(λt)αTε(t
α)e−λsFε(s, xε(s))ds

]
dt

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

αψα(ξ)e
−λtξTε(t

α)e−λst−α−1Fε(s, xε(s))dξ ds dt

=

∫ ∞

0

e−λt

[
α

∫ t

0

∫ ∞

0

ψα(ξ)Tε

( (t− s)α

ξα

)
Fε(s, xε(s))

(t− s)α

ξα
dξ ds

]
dt

According to the last equalities we obtain

Lxε(λ) =
∫ ∞

0

e−λt

∫ ∞

0

ϕα(ξ)Tε(t
αξ)x0εdξ + α

∫ t

0

∫ ∞

0

ξ(t− s)α−1ϕα(ξ)Tε((t− s)αξ)Fε(s, xε(s))dξ dsdt

And the integral solution of (4.2) becomes

xε(t) =

∫ ∞

0

ϕα(ξ)Tε(t
αξ)x0εdξ + α

∫ t

0

∫ ∞

0

ξ(t− s)α−1ϕα(ξ)Tε((t− s)αξ)Fε(s, xε(s))dξ ds (4.8)

Now we define a representative (Sα
ε )t∈R+

by

Sα
ε (t)xε = α

∫ ∞

0

ξϕα(ξ)Tε(t
αξ)xεdξ. (4.9)

Remark 4.2. It is easy to prove that, the family ((Sα
ε (t))t≥0)ε is a moderate family, then (Sα

ε (t))t≥0 are generalized
operators.

Finally, the integral solution of the Cauchy (4.1) becomes

xε(t) = Sα
ε (t)x0ε +

∫ t

0

(t− s)α−1Tα
ε (t− s)Fε(s, xε(s))ds, (4.10)

where (Sα
ε (t))t∈R+ by

Sα
ε (t)xε =

∫ ∞

0

ϕα(ξ)Tε(t
αξ)xεdξ. (4.11)

□

Remark 4.3. The operators (Sα(t))t≥0 = (S(t))t≥0 called generalized generalized family resolvent.

Lemma 4.4. For any fixed t ∈ [0, T ], T > 0, (Sα
ε (t))t≥0 , (Tα

ε (t))t≥0 are linear and bounded operators, by report to
the variable t, for every ε ∈ (0, 1).

Proof . We will give the proof for (Tα
ε ) because that of (Sα

ε ) is similar. For fixed t > 0, Tα
ε (t) is linear operator since

Tε(t) is a linear operator, let η ∈ [0, 1] we have∫ ∞

0

1

ξη
ψα(ξ)dξ =

Γ(1 + η/α)

Γ(1 + η)
,

then we have, ∫ ∞

0

ξηϕα(ξ)dξ =

∫ ∞

0

1

ξαη
ψα(ξ)dξ =

Γ(1 + η)

Γ(1 + αη)
.

Since Tε(t) has a moderate bounds, then there exists a positive real number a such that

sup
t∈[0,Λ]

∥ Tε(t) ∥= O(ε−a) as ε→ 0, (4.12)
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then there exists c > 0 such that for all t ∈ [0, T ], xε ∈ Ee
M (R), we have ∥ Tε(t)xε ∥≤ cε−a. Then

∣∣ Tα
ε (t)xε

∣∣ =
∣∣∣ α ∫ ∞

0

ξϕα(ξ)Tε(t
αξ)xεdξ

∣∣∣
≤ sup

t∈[0,Λ]

∣∣ Tε(tαξ)xε∣∣ × α
1

Γ(1 + α)
,

since (Tε(t))ε is a representative of the generalized semigroup (T (t))t by using (4.12) we get,∣∣ Tα
ε (t)xε

∣∣ ≤
(
C ε−a × α

1

Γ(1 + α)

)∣∣ xε∣∣
= Cα

∣∣ xε∣∣ , where Cα = C ε−a × α
1

Γ(1 + α)
,

which proves that Tα
ε (t) is a linear and bounded operator by report to t. □

Theorem 4.5. Assume that F ∈ (Ge
τ (R))n+1, and | ∇xF |≤ C | ln(ε) |, ε ∈ I = (0, 1). Then the Cauchy problem

(4.1) has a unique solution in the extended Colombeau algebra (Ge(R))n.

Proof . For any ε ∈ (0, 1), α ∈ (0, 1) we have to show that the integral solution (xε) given in (4.10) of lemma (4.1) is
an element of Ee

M (R). First we have the estimation

∣∣ xε(t)∣∣ =
∣∣ Sα

ε (t)x0ε +

∫ t

0

(t− s)α−1Tα
ε (t− s)Fε(s, xε(s))ds

∣∣ ,
≤

∣∣ Sα
ε (t)x0ε

∣∣ +

∫ t

0

∣∣ (t− s)α−1Tα
ε (t− s)Fε(s, xε(s))

∣∣ ds,
≤

∣∣ Sα
ε (t)x0ε

∣∣ +

∫ t

0

(t− s)α−1
∣∣ Tα

ε (t− s)Fε(s, xε(s))
∣∣ ds.

The approximation of the first order to Fε yields

Fε(t, x(t)) = Fε(t, 0)+ | ∇xFε | xε(t) +Nε(t), (4.13)

where Nε(t) is the negligible part of this approximation. By lemma (4.4), and the fact that (xε) ∈ Ee
M (R) there are

positives constants c c1, c2 N1 and N2 such that

∣∣ xε(t)∣∣ ≤ c c2ε
−N2 +

∫ t

0

(t− s)α−1α c1 ε
−N1

Γ(1 + α)

∣∣ Fε(s, xε(s))
∣∣ ds

≤ c c2ε
−N2 +

∫ t

0

(t− s)α−1α c1 ε
−N1

Γ(1 + α)

∣∣ Fε(s, 0)+ | ∇xFε | xε(s) +Nε(s)
∣∣ ds.

Using the Gronwall lemma, we obtain∣∣ xε(t)∣∣ ≤ (c c2ε
−N2 + cT ε

−N1) exp(−Λ ln ε).

Hence there are positive constants c̃, Ñ such that | xε(t) |≤ c̃ ε−Ñ which proves the moderateness of the solution.
To obtain estimates for higher order derivatives, just differentiate the equation and apply the same inductive arguments,
assuming that the lower order terms are known to be mild from the preceding phases. Let us prove the uniqueness of
the solution in (Ge(R))n, suppose that there are two solutions x1,ε, x2,ε to the regularized of the problem (4.2) and
let vε their difference we have

vε(t) =

∫ t

0

(t− s)α−1Tα
ε (t− s)[Fε(s, x1,ε)− Fε(s, x2,ε)]ds.

Now using the approximation (4.13) of Fε yields

| vε(t) | ≤
∫ t

0

Λα

α
| Tα

ε (t− s)[| ∇xFε | (x1,ε(s)− x2,ε(s)) +Nε(s)] | ds,



Fractional Schrödinger equations in extended Colombeau algebras 39

by using the boundedness of the linear operator Tα
ε (t) with t ≥ 0, Gronwall lemma, the fact that x1,ε(s) − x2,ε(s)

is of order O(εN ) and the same for raisin for the negligible part Nε. Then it follows that every N ≥ 0 we have
| vε(t) |= O(εN ) as ε→ 0. which proves the uniqueness of the solution in the algebra (Ge(R))n. □

5 Application to Schrödinger equation

Consider the nonlinear Schrödinger equation with singular potential and initial data involving Caputo fractional
derivative {

1
i ∂

α
t u(t, x)−△u(t, x) + v(x)u(t, x) = 0,

v(x) = δ(x) , u(0, x) = δ(x).
(5.1)

Here A = −∆. We shall use the regularization for Dirac measure.

vε(x) = δε(x) = (ϕE(x)) = | ln ε| cnϕ(x| ln ε| c), c > 0,

x ∈ Rn and
∫
ϕ = 1 with ϕ(x) ≥ 0, .

For the initial data we use
u0,ε(x) = | ln ε| anϕ(x| ln ε| a) , a > 0

x ∈ Rn, ϕ ∈
∫
ϕ = 1, ϕ(x) ≥ 0, x ∈ Rn.

5.1 Existence and uniqueness in the Colombeau algebra

Theorem 5.1. The regularized equation of (5.1) is given by{
1
i ∂

α
t uε(t, x)−△uε(t, x) + vε(x)uε(t, x) = 0,

vε(x) = δε(x) , u0,ε(x) = δε(x),
(5.2)

where vε and u0,ε are regularized of v and u0, respectively. Then, the problem (5.2) has a unique solution in G(R+×Rn).

Proof . By (4.10) the integral solution of the equation (5.2) becomes

uε(t, x) =

∫
Rn

Sα
ε (t, x− y)u0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)uε(τ, y)dydτ

where Sα
ε (t, x)xε =

∫∞
0
ϕε(ξ)Sn (t

αξ)xεdξ, with Sn(t, x) is the heat kernel given in [8]. Then

∥ uε(t, .)∥ L∞(Rn) ≤ ∥ Sα
ε (t, x− .)∥ L1∥ u0,ε∥ L∞(Rn) +

∫ t

0

∥ Sα
ε (t− τ, x− .)∥ L1∥ vε(.)∥ L∞(Rn)∥ uε(τ, .)∥ L∞(Rn)dτ.

Using lemma (4.4), there is C such that | Sα
ε | ≤ C, we get

∥ uε(t, .)∥ L∞(Rn) ≤ C∥ u0,ε∥ L∞(Rn) + C∥ vε(.)∥ L∞(Rn)

∫ t

0

∥ uε(τ, .)∥ L∞(Rn)dτ.

From Gronwall inequality, it follows

∥ uε(t, .)∥ L∞(Rn) ≤ C| ln ε| an exp(CT | ln ε| bn).

Then there exist N > 0 such that
∥ uε(t, .)∥ L∞(Rn) ≤ Cε−N .

For the first derivative to xj , j ∈ {1, ..., n} we obtain

∂xjuε(t, x) =

∫
Rn

Sα
ε (t, x− y)∂yju0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)

(
∂yjvε(y)uε(τ, y) + vε(y)∂yjuε(τ, y)

)
dydτ,
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so,

∥∂xj
uE(t, .)∥L∞(Rn) ≤ ∥ Sα

ε (t, x− .)∥ L1∥ ∂yj
u0,ε∥ L∞(Rn) +

∫ t

0

∥ Sα
ε (t− τ, x− .)∥ L1(∥ ∂yi

vε∥ L∞(Rn)∥ uε∥ L∞

+ ∥ vε∥ L∞(Rn)∥ ∂yi
uε(τ, .)∥ L∞(Rn))dτ,

which implies

∥ ∂xjuε(t, .)∥ L∞(Rn) ≤ C| ln ε| a(n+1) + C

∫ t

0

| ln ε| b(n+1)∥ uε∥ L∞ + | ln ε| bn∥ ∂yjuE(τ, .)∥ L∞(Rn)dτ

≤ C(| ln ε| a(n+1) + T | ln ε| b(n+1)∥ uE∥ L∞) + C| ln ε| bn

∫ t

0

∥ ∂yj
uE(τ, .)∥ L∞(Rn)dτ.

Using Gronwall inequality

∥ ∂xj
uε(t, .)∥ L∞(Rn) ≤ C(| ln ε| a(n+1) + T | ln ε| b(n+1)∥ uE∥ L∞) exp(CT | ln ε| bn),

the previous step ensure there exist N > 0 such that

∥ ∂xjuε(t, .)∥ L∞(Rn) ≤ Cε−N .

For the second derivative for yi, i ∈ {1, ..., n} we obtain

∂xi
∂xj

uE(t, x) =

∫
Rn

Sα
ε (t, x− y)(∂yi

∂yj
u0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)(∂yi

∂yj
vε(y)uε(τ, y)

+ ∂yj
vε(y)∂yi

uε(τ, y) + ∂yi
vε(y)∂yj

uε(τ, y) + vε(y)∂yi
∂yj

uε(τ, y))dydτ,

thus,

∥ ∂xi
∂xj

uε(t, .)∥ L∞(Rn) ≤∥ Sα
ε (t, x− .)∥ L1∥ ∂yi

∂yj
u0,ε(.)∥ L∞(Rn)

+

∫ t

0

∥ Sα
ε (t− τ, x− .)∥ L1(∥ ∂yj∂yjvε(.)∥ L∞(Rn)∥ uε∥ L∞

+ ∥ ∂yj
vε(.)∥ L∞(Rn)∥ ∂yj

uε∥ L∞ + ∥ ∂yi
vε(.)∥ L∞(Rn)∥ ∂yj

uε∥ L∞

+ ∥ vε(.)∥ L∞∥ ∂yi
∂yj

uε(τ, .)∥ L∞(Rn))dτ.

We obtain

∥ ∂xi
∂xj

uε(t, .)∥ L∞(Rn) ≤C(| ln ε| a(n+2) + | ln ε| b(n+1)∥ uε∥ L∞ + | ln ε| b(n+1)∥ ∂yi
uε∥ L∞

+ | ln ε| b(n+1)∥ ∂yj
uε∥ L∞) + C| ln ε|bn

∫ t

0

∥∂yj
∂yj

uε(τ, .)∥ L∞(Rn)dτ.

Gronwall inequality gives

∥ ∂xj
∂xj

uε(t, .)∥ L∞(Rn) ≤C(| ln ε| a(n+2) + | ln ε| b(n+1)∥ uE∥ L∞ + | ln ε| b(n+1)∥ ∂yi
uε∥ L∞

+ | ln ε| b(n+1)∥ ∂yj
uε∥ L∞) exp(CT | ln ε| bn).

Then, there exist N > 0 such that

∥ ∂xj∂xjuε(t, .)∥ L∞(Rn) ≤ Cε−N .

Let us prove the uniqueness. Suppose that there exist two solutions u1,ε(t, .), u2,ε(t, .) to the problem (4.2), we get

1

i
∂αt (u1,ε(t, x)− u2,ε(t, x))−△(u1,ε(t, x)− u2,ε(t, x)) + vε(x)(u1,ε(t, x)− u2,ε(t, x)) = Nε(t, x),

u1,ε(0, x)− u2,ε(0, x) = N0,ε(x),
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where Nε(t, x) ∈ N (R+ × Rn), N0,ε(x) ∈ N (Rn). Then

u1,ε(t, x)− u2,ε(t, x) =

∫
Rn

Sα
ε (t, x− y)N0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)(u1,ε(τ, y)− u2,ε(τ, y))dydτ

+

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)Nε(τ, y)dydτ

which leads to

∥ u1,ε(t, .)− u2,ε(t, .)∥ L∞(Rn) ≤∥ Sα
ε (t, x− .)∥ L1∥ N0,ε(.)∥ L∞(Rn) + ∥ Sα

ε (t, x− .)∥ L1

×
∫ t

0

∥ vε(.)∥ L∞(Rn)∥ u1ε(τ, .)− u2ε(τ, .)∥ L∞(Rn)dτ

+ ∥ Sα
ε (t, x− .)∥ L1∥ Nε(τ, .)∥ L∞ .

Therefore,

∥ u1,ε(t, .)− u2,ε(t, .)∥ L∞(Rn) ≤ C(∥ N0,ε(.)∥ L∞(Rn) + ∥ Nε(τ, .)∥ L∞)

+ C∥ vε(.)∥ L∞(Rn)

∫ t

0

∥ u1,ε(τ, .)− u2,ε(τ, .)∥ L∞(Rn)dτ.

Gronwall inequality gives

∥ u1,ε(t, .)− u2,ε(t, .)∥ L∞(Rn) ≤ C(∥ N0,ε(.)∥ L∞(Rn) + ∥ Nε(τ, .)∥ L∞) exp(CT∥ vε(.)∥ L∞(Rn)).

Which proves that
∥ u1,ε(t, .)− u2,ε(t, .)∥ L∞(Rn) ≤ Cεq, ∀q ∈ N.

Hence the problem (4.2) has a unique solution in G(R+ × Rn) . □

5.2 Existence and uniqueness in the extension of Colombeau algebra

We prove the existence and uniqueness result for nonlinear Schrödinger equation with singular potential, initial data
and an equation controlled by the fractional derivative of delta distribution in a framework of the extended algebra
of generalized functions. It means that we prove moderation and negligibility for entire derivatives and fractional
derivatives to the spatial variable x.

Theorem 5.2. The problem (5.1) have the following regularization:{
1
i ∂

α
t uε(t, x)−△uε(t, x) + vε(x)uε(t, x) = 0,

vε(x) = δε(x) , u0,ε(x) = δε(x),

where vε and u0,ε are regularized of v and u0, respectively. Then, this problem (5.1) has a unique solution in
Ge(R+ × Rn) .

Proof . We shall prove only the fractional part since the entire part is already proved in the theorem (5.1). Consider
fractional derivative Dβ with 0 < β < 1. Without loss of generality, the same holds for m−1 < β < m, m ∈ N∗. Take
the fractional derivative to the spatial variable to equation (5.1), we have

Dβ(uε(t, x)) =

∫
Rn

Sα
ε (t, x− y)Dβu0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)Dβvε(y)uε(τ, y)dydτ

+

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)D

βuε(τ, y)dydτ.

Then

∥ Dβ(uε(t, .))∥ L∞(Rn) ≤∥ Sα
ε (t, x− .)∥ L1∥ Dβu0,ε(.)∥ L∞(Rn)

+ ∥ Sα
ε (t− τ, x− .)∥ L1

∫ t

0

∥ DβvE(.)∥ L∞(Rn)∥ uE(τ, .)∥ L∞(Rn)dτ

+ ∥ Sα
ε (t− τ, x− .)∥ L1

∫ t

0

∥ vε(y)∥ L∞(Rn)∥ DβuE(τ, .)∥ L∞(Rn)dτ,
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thus

∥ Dβ(uε(t, .)) ∥ L∞(Rn) ≤C(∥ Dβu0,ε(.)∥ L∞(Rn) + T∥ Dβvε(.)∥ L∞(Rn)∥ uε(τ, .)∥ L∞)

+ C∥ vε(.)∥ L∞(Rn)

∫ t

0

∥ Dβuε(τ, .)∥ L∞(Rn)dτ.

Apply the Gronwall inequality

∥Dβ(uε(t, .)∥ L∞(Rn) ≤ C∥Dβu0,ε(.)∥ L∞(Rn) + CΛ∥ Dβvε(.)∥ L∞(Rn)∥ uε∥ L∞) exp(CT∥ vε(.)∥ L∞(Rn).

By Theorem (5.1) we get

∥ Dβ(uε(t, .)∥ L∞(Rn) ≤ C(Cα,Λ| ln ε| a(n+2) + TCα,Λ| ln ε|b(n+1)∥uε∥L∞) exp(CΛ∥ vε(.)∥ L∞(Rn)).

Then there exist N > 0 such that
∥Dβ(uε(t, .)∥ L∞(Rn) ≤ Cε−N .

It follows a moderation for the fractional derivatives in the space Ge(R+×Rn). For uniqueness take Dβ , 0 < α < 1,
to equation ((5.2)).

Dβ(u1,ε(t, x)− u2,ε(t, x)) =

∫
Rn

Sα
ε (t, x− y)DβN0,ε(y)dy +

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)Dβvε(y)(u1ε(τ, y)− u2ε(τ, y))dydτ

+

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)D

β(u1ε(τ, y)− u2ε(τ, y))dydτ

+

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)DβNε(τ, y)dydτ,

we get

∥ Dβ(u1,ε(t, .)− u2,ε(t, .))∥ L∞(Rn) ≤∥ Sα
ε (t, x− .)∥ L1∥ DβN0,ε(.)∥ L∞(Rn) + ∥ Sα

ε (t− τ, x− .)∥ L1

×
∫ t

0

∥ vε(.)∥ L∞(Rn)∥ Dβ(u1ε(τ, .)− u2ε(τ, .))∥ L∞(Rn)dτ

+ ∥ Sα
ε (t− τ, x− .)∥ L1 ×

∫ t

0

∥ vε(.)∥ L∞(Rn)∥ Dβ(u1ε(τ, .)− u2ε(τ, .)∥ L∞(Rn)dτ

+ ∥ Sα
ε (t− τ, x− .)∥ L1

∫ t

0

∥ DβNε(τ, .)∥ L∞(Rn)dτ,

then

| Dβ(u1,ε(t, .)− u2,ε(t, .))| L∞(Rn) ≤C(| (N0,ε| L∞(Rn) + Λ∥ Dβvε(.)∥ L∞(Rn)∥ u1,ε(τ, .)− u2,ε(τ, .)∥ L∞dτ

+ ∥ DβNε(τ, .)∥ L∞) + C∥ vε(.)∥ L∞(Rn) ×
∫ t

0

∥ Dβ(u1,ε(τ, .)− u2,ε(τ, .))∥ L∞(Rn)dτ.

Gronwall inequality implies

∥ Dβ(u1,ε(t, .)− u2,ε(t, .))∥ L∞(Rn) ≤C(∥ N0,ε∥ L∞(Rn) + Λ∥ Dβvε(.)∥ L∞(Rn)∥ u1,ε − u2,ε∥ L∞dτ

+ ∥ DβNε∥ L∞) exp(CT∥ vε∥ L∞(Rn)).

Finally, using theorem (5.1)

∥ Dβ(u1,ε(t, .)− u2,ε(t, .))∥ L∞(Rn) ≤ Cεq, ∀q ∈ N.

□
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5.3 Association

Let w1 be a solution to the problem

1

i
∂αt w1(t, x)−△w1(t, x) = 0,

w1(0, x) = δ(x),

and w2 be a solution of the problem

1

i
∂αt w2(t, x)−△w2(t, x) + v(x)w2,ε(t, x) = 0,

v(x) = δ(x) , w2(0, x) = 0.

Proposition 5.3. The generalized solution u of problem (5.1) is associated with w1 + w2.

Proof . Let w1,ε be the classical solution of

1

i
∂tw1,ε(t, x)−△w1,ε(t, x) = 0,

w1,ε(0, x) = δε(x),

w2,ε be the classical solution of

1

i
∂αt w2,ε(t, x)−△w2(t, x) + vε(x)(w2,ε(t, x) +m(t, x)) = 0,

vε(x) = δ(x) , w2,ε(0, x) = 0.

Then

1

i
∂αt (uε(t, x)− w1,ε(t, x)− w2,ε(t, x))−△(uε(t, x)− w1,ε(t, x)− w2,ε(t, x)) + vε(x)(uε(t, x)− w2,ε(t, x)−m(t, x)) = 0,

uε(0, x)− w1,ε(0, x)− w2,ε(0, x) = 0,

Hence,

uε(t, x)− w1,ε(t, x)− w2,ε(t, x) =

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)(uε(τ, y)− w2,ε(τ, y)−m(τ, y))dydτ

=

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)(uε(τ, y)− w1,ε(τ, y)− w2,ε(τ, y))dydτ

+

∫ t

0

∫
Rn

Sα
ε (t− τ, x− y)vε(y)(w1,ε(τ, y)−m(τ, y))dydτ,

which implies,

∥ uε(t, .)− w1,ε(t, .)− w2,ε(t, .)∥ L∞(Rn) ≤
∫ t

0

∥ Sα
ε (t− τ, x− .)∥ L1∥ vε(.)∥ L∞(Rn)∥ (w1,ε(τ, .)−m(τ, .)∥ L∞(Rn)dτ

+
∫ t

0
∥ Sα

ε (t− τ, x− .)∥ L1∥ vε(.)∥ L∞(Rn)∥ uε(τ, .)− w1,ε(τ, .)− w2,ε(τ, .)∥ L∞(Rn)dτ.

Then,

∥ uε(t, .)− w1,ε(t, .)− w2,ε(t, .)∥ L∞(Rn) ≤ C∥ vε(.)∥ L∞(Rn) ×
∫ t

0

∥ (w1,ε(τ, .)−m(τ, .)∥ L∞(Rn)dτ

+ C∥ vε(.)∥ L∞(Rn)

∫ t

0
∥ uε(τ, .)− w1,ε(τ, .)− w2,ε(τ, .)∥ L∞(Rn)dτ.

With Gronwall inequality

∥ uε(t, .)− w1,ε(t, .)− w2,ε(t, .)∥ L∞(Rn) ≤[C∥ vε(.)∥ L∞(Rn) ×
∫ t

0

∥ (w1,ε(τ, .)−m(τ, .)∥ L∞(Rn)dτ ]

× exp(CT)∥ v(.)∥ L∞(Rn).

By passage to the limit, we have u ≈ w1 + w2, which completes the proof of the proposition. □
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