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Abstract

In this study, the Aboodh transform homotopy perturbation method has been used to solve fractional differential
equations. The Swift–Hohenberg equation accurately explains the creation and evolution of patterns in a wide range
of systems. The Swift-Hohenberg (S-H) model is linked to fluid dynamics, temperature, and thermal convection.
The problem’s convergence analysis is displayed. All of the Surface representation graphs are also represented using
MAPLE. ATHPM solution has been compared with the exact solution and LADM to check the accuracy of the
proposed method.
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1 Introduction

In recent years, there have been numerous advancements in the field of solving nonlinear differential equations.
Many nonlinear differential equations have no analytic solution. In this paper, we solve the Swift Hohenberg (S-H)
model using the Aboodh transform homotopy perturbation method (ATHPM). The S-H equation was first introduced
and derived from the equations for thermal convection by J. Swift and P. Hohenberg. [22]. The S–H equation was
first offered as a phenomenological comparison to thermodynamic systems by analyzing phase transitions in Rayleigh-
Bénard convection behavior. Still, it immediately became clear that it was a highly approximate model for nonlinear
pattern production. The importance of the S–H equation stems from its ability to produce results nearly identical to
those of the Navier–Stokes equations, which can be difficult to solve numerically. It’s worth mentioning that it’s been
used in a wide range of subjects, including biology, economics, optics, sociology, and fluid dynamics, to name a few.
In its most basic form, the S-H equation is [12, 15].

∂αω

∂ξα
= bω − (1 +

∂2

∂χ2
)ω −N(ω), ξ > 0 (1.1)
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where α is the order of the fractional derivative, ω is a scalar function, b is constant, and N(ω) is a nonlinear
element. In various disciplines of thermal physics, the S-H equation is crucial [4, 5, 8, 11, 16]. Many applications of the
S-H equation can be found in engineering and research, including physics, biology, laser study fluid, and hydrodynamics
[7, 18, 21]. In fluid layers restricted between horizontal well-conducting boundaries, the S-H equation plays a significant
role in pattern creation theory[13].

In this study, we combine two powerful techniques, the Aboodh transform and the homotopy perturbation method
(HPM), to generate approximate analytic solutions of nonlinear differential equations, with excellent agreement with
existing methods such as q-HATM [24], Iterative method [12], and ETDM [15]. Many researchers have utilised various
methodologies and strategies to examine the SH equation, including Homotopy analysis [13], perturbation method
[18], and residual power series method [19]. ATHPM has been shown to produce correct approximation solutions to
a variety of ordinary, partial, and fractional differential equations, whether linear or non-linear [9].

2 Aboodh transform

We consider functions in the set A given by

A = {f(ξ) : ∃M,k1, k2 > 0, |f(ξ)| < Me−vξ}. (2.1)

For a given function in the set A, the constant M must be constant, k1, k2 may be finite or infinite. The Aboodh
transform of function f(ξ) is defined by

A[f(ξ)](v) = k(v) =
1

v

∫ ∞

0

f(ξ)e−vξdξ, ξ ≥ 0, k1 ≤ v ≤ k2. (2.2)

The variable v in this transform is used to factor the variable ξ in the argument of the function f . The Aboodh
transform is defined for functions of exponential order.

f(ξ) A[f(ξ)]

1 1
v2

ξ 1
v3

ξn n!
vn+2

eaξ 1
v2−av

sin aξ a
v(v2+a2)

cos aξ 1
v2+a2

f (n)(ξ) v(n)k(v)−
∏n−1

k=0
f(k)(0)
v2−n+k

Table 1: Aboodh transform of some functions

3 Aboodh transform Homotopy perturbation method in fractional order S-H equation

The time fractional model of Swift Hohenberg (S-H) is

∂αω

∂ξα
= bω − (1 +

∂2

∂χ2
)ω −N(ω), (3.1)

where ω(0, χ) is any function of χ. Apply Aboodh transform on equation (3.1),

A[
∂αω

∂ξα
] = A[ωu− (1 +

∂2

∂χ2
)ω −N(ω)].

By Aboodh transform for fractional order,

vα{k(v)− 1

v2
ω(χ, 0)} = A[ωu− (1 +

∂2

∂χ2
)ω −N(ω)]
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which can be written as

k(v) =
1

v2
ω(χ, 0) +

1

vα
A[ωu− (1 +

∂2

∂χ2
)ω −N(ω)].

Now, by taking inverse Aboodh transform

ω(χ, ξ) = ω(χ, 0) +A−1[
1

vα
A(ωu− (1 +

∂2

∂χ2
)ω −N(ω)].

Assuming the solution is of the form
ω = ω0 + pu1 + p2u2 + · · · .

To consider the nonlinear operator, we apply HPM
∞∑

n=0

pnωn(χ, ξ) = ω(χ, 0) + pA−1[
1

vα
A(R

∞∑
n=0

pnHn(χ, ξ)−N

∞∑
n=0

pnHn(χ, ξ))].

Comparing coefficients of powers of p both sides, we get

p0 : ω0(χ, ξ) = ω(χ, 0)

p1 : ω1(χ, ξ) = −A−1[
1

vα
A(Rω0(χ, ξ)−Nu0(χ, ξ))]

p2 : ω2(χ, ξ) = −A−1[
1

vα
A(Rω1(χ, ξ)−Nu1(χ, ξ))]

p3 : ω3(χ, ξ) = −A−1[
1

vα
A(Rω2(χ, ξ)−Nu2(χ, ξ))]

p4 : u4(χ, ξ) = −A−1[
1

vα
A(Rω3(χ, ξ)−Nu3(χ, ξ))]

.

.

.

Approximate solution can be obtained as,

ω(χ, ξ) = ω0 + ω1 + ω2 + ω3 + ...

4 Analysis of Convergence

Theorem 4.1. Suppose that X and Y be Banach space and N : X → Y is a contraction nonlinear mapping, that is
[10]

∀ω, ω̄; ∥N(ω)−N(ω̄)∥ ≤ γ∥ω − ω̄∥, 0 < γ < 1

which according to Banach’s fixed point theorem, having the fixed point ω, that is N(ω) = ω The sequence generated
by the homotopy perturbation method will be regarded as

ωn = N(ωn−1), ωn−1 =

n−1∑
i=0

ωi, n = 1, 2, 3, ...

and suppose that ω0 ∈ Br(ω) where Br(ω) = {ω∗ ∈ X/∥ω∗ − ω∥ < r} then we have the following statements
(1) ∥ωn − ω∥ ≤ γn|ω0 − ω∥ ,
(2)ωn ∈ Br(ω),
(3) lim ωn = ω.

Definition 4.2. For all i ∈ N ∪ {0}; γi can be obtain as [10]

γi =

{ ωi+1

ωi
if ∥ωi∥ ≠ 0

0 if |ωi∥ = 0

Corollary 4.3.
∑∞

i=0 ωi converges to exact solution ω, whem 0 ≤ γi < 1, i = 1, 2, 3, ... [10].
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5 Some illustrations

Example 5.1.
∂αω(χ, ξ)

∂ξα
+ (1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂3ω(χ, ξ)

∂χ3
= 0

with initial condition ω(χ, 0) = eχ

∂αω(χ, ξ)

∂ξα
= −(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂3ω(χ, ξ)

∂χ3
.

Apply Aboodh transform

A[
∂αω

∂ξα
] = −A[(1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂3ω(χ, ξ)

∂χ3
]

vα{k(χ, ξ)− 1

v2
ω(χ, 0)} = −A[(1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂3ω(χ, ξ)

∂χ3
]

k(χ, ξ) =
1

v2
ω(χ, 0)− 1

vα
A[(1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂3ω(χ, ξ)

∂χ3
].

Apply inverse Aboodh transform

ω(χ, ξ) = ω(χ, 0)−A−1[
1

vα
A((1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂3ω(χ, ξ)

∂χ3
)].

By HPM
ω0 = ω(χ, 0) = eχ

p1 : ω1 = −A−1[
1

vα
A((1− b)ω0 + 2

∂2ω0

∂χ2
+

∂3ω0

∂χ3
)] =

(b− 4)eχξα

α!

p2 : ω2 = −A−1[
1

vα
A((1− b)ω1 + 2

∂2ω1

∂χ2
+

∂3ω1

∂χ3
)] =

(b− 4)2eχξ2α

(2α)!

p3 : ω3 = −A−1[
1

vα
A((1− b)ω2 + 2

∂2ω2

∂χ2
+

∂3ω2

∂χ3
)] =

(b− 4)3eχξ3α

(3α)!
.

.

.

ωn =
(b− 4)neχξnα

(nα)!
.

Approximate solution can be obtained as,

ω(χ, ξ) = ω0 + ω1 + ω2 + ω3 + ...+ ωn + · · · .

ω(χ, ξ) = eχ +
(b− 4)eχξα

α!
+

(b− 4)2eχξ2α

(2α)!
+

(b− 4)3eχξ3α

(3α)!
+ ...

(b− 4)neχξnα

(nα)!
+ ... (5.1)

which is approximate solution of Example 5.1 obtained by ATHPM. Applying convergence analysis (for b=5,α = 1),
we have

γ0 =
∥ω1∥
∥ω0∥

= 0.050 < 1

γ1 =
∥ω2∥
∥ω1∥

= 0.0250 < 1

γ2 =
∥ω3∥
∥ω2∥

= 0.01667 < 1.

Hence, we can say that
∑∞

i=0 ωi is convergent. Therefore the approximate solution ω(χ, ξ) is convergent.

The case α = 1 is convert fractional order S-H equation into classical S-H equation and it has the solution

ω(χ, ξ) = eχ+(b−4)ξ

which is similar solution to the Elzaki Transform Decomposition Method (ETDM) [15] and Iterative Method [12].
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χ
ξ = 0.02 ξ = 0.04 ξ = 0.06 ξ = 0.08 ξ = 0.1

ATHPM EXACT ATHPM EXACT ATHPM EXACT ATHPM EXACT ATHPM EXACT
0 0.9231163465 0.9231163464 0.8521437890 0.8521437890 0.7866278608 0.7866278611 0.7261490345 0.7261490371 0.6703200305 0.6703200460
0.1 1.020201340 1.020201340 0.9417645335 0.9417645336 0.8693582349 0.8693582354 0.8025187950 0.8025187980 0.7408182034 0.7408182207
0.2 1.127496852 1.127496852 1.040810773 1.040810774 0.9607894387 0.9607894392 0.8869204333 0.8869204367 0.8187307338 0.8187307531
0.3 1.246076730 1.246076731 1.150273798 1.150273799 1.061836546 1.061836547 0.9801986703 0.9801986733 0.9048373972 0.9048374180
0.4 1.377127765 1.377127764 1.271249150 1.271249150 1.173510870 1.173510871 1.083287065 1.083287068 0.9999999770 1
0.5 1.521961556 1.521961556 1.404947590 1.404947591 1.296930087 1.296930087 1.197217359 1.197217363 1.105170892 1.105170918
0.6 1.682027650 1.682027650 1.552707218 1.552707219 1.433329413 1.433329415 1.323129808 1.323129812 1.221402730 1.221402758
0.7 1.858928042 1.858928042 1.716006862 1.716006862 1.584073984 1.584073985 1.462284584 1.462284589 1.349858776 1.349858808
0.8 2.054433210 2.054433211 1.896480879 1.896480879 1.750672500 1.750672500 1.616074395 1.616074402 1.491824663 1.491824698
0.9 2.270499838 2.270499838 2.095935515 2.095935514 1.934792334 1.934792334 1.786038424 1.786038431 1.648721232 1.648721271
1 2.509290388 2.509290390 2.316366976 2.316366977 2.138276217 2.138276220 1.973877726 1.973877732 1.822118756 1.822118800

Table 2: Comparision of ATHPM Solution with Exact Solution at b = 0

Figure 1: ATHPM solution at b = 0 & α = 1 Figure 2: Exact solution ω(χ, ξ) = eχ+(b−4)ξ at b = 0

Figures 1 and 2 are generated by maple software. Here figure-1 represents the 3-D surface of an approximate
solution obtained by the ATHPM method at b = 0 and α = 1 of example-5.1. figure-2 represents an exact solution at
b = 0 and α = 1 of example-5.1. Table 2 represents comparision between the ATHPM solution and the exact solution.
From table-3, it can be measured that the ATHPM solution is very accurate because very small absolute error can be
negligible and it can be measured from figures 1 and 2 also.

Example 5.2.
∂αω(χ, ξ)

∂ξα
+ (1− b)ω(χ, ξ) + 2

∂2ω(χ, ξ)

∂χ2
+

∂4ω(χ, ξ)

∂χ4
+ ω3(χ, ξ) = 0

χ
ξ=0.02 ξ=0.06 ξ=0.1

ATHPM Exact Solution Absolute error ATHPM Exact Solution Absolute error ATHPM Exact Solution Absolute error
0 0.9231163465 0.9231163464 1×10−10 0.7866278608 0.7866278611 8.8×10−9 0.6703200305 0.6703200460 3.096×10−7

0.1 1.020201340 1.020201340 1×10−11 0.8693582349 0.8693582354 9.6×10−9 0.7408182034 0.7408182207 3.42×10−7

0.2 1.127496852 1.127496852 1×10−11 0.9607894387 0.9607894392 1.06×10−8 0.8187307338 0.8187307531 3.778×10−7

0.3 1.246076730 1.246076731 1×10−9 1.061836546 1.061836547 1.1×10−8 0.9048373972 0.9048374180 4.18×10−7

0.4 1.377127765 1.377127764 1×10−9 1.173510870 1.173510871 1.3×10−8 0.9999999770 1.0000000000 4.62×10−7

0.5 1.521961556 1.521961556 1×10−11 1.296930087 1.296930087 1.5×10−8 1.105170892 1.105170918 5.1×10−7

0.6 1.682027650 1.682027650 1×10−11 1.433329413 1.433329415 1.5×10−8 1.221402730 1.221402758 5.64×10−7

0.7 1.858928042 1.858928042 1×10−11 1.584073984 1.584073985 1.7×10−8 1.349858776 1.349858808 6.23×10−7

0.8 2.054433210 2.054433211 1×10−9 1.750672500 1.750672500 2×10−8 1.491824663 1.491824698 6.88×10−7

0.9 2.270499838 2.270499838 1×10−11 1.934792334 1.934792334 2.2×10−8 1.648721232 1.648721271 7.61×10−7

1 2.509290388 2.509290390 2×10−9 2.138276217 2.138276220 2.4×10−8 1.822118756 1.822118800 8.41×10−7

Table 3: Absolute error of Example 5.1 at b = 0
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with initial condition ω(χ, 0) = 1
10 sin(

πχ
k ).

∂αω(χ, ξ)

∂ξα
= −(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂4ω(χ, ξ)

∂χ4
− ω3(χ, ξ).

Apply Aboodh transform

A[
∂αω

∂ξα
] = A[−(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂4ω(χ, ξ)

∂χ4
− ω3(χ, ξ)]

vα{k(χ, ξ)− 1

v2
ω(χ, 0)} = A[−(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂4ω(χ, ξ)

∂χ4
− ω3(χ, ξ)]

k(χ, ξ) =
1

v2
ω(χ, 0) +

1

vα
A[−(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂4ω(χ, ξ)

∂χ4
− ω3(χ, ξ)].

Apply inverse Aboodh transform

ω(χ, ξ) = ω(χ, 0) +A−1[
1

vα
A(−(1− b)ω(χ, ξ)− 2

∂2ω(χ, ξ)

∂χ2
− ∂4ω(χ, ξ)

∂χ4
)− ω3(χ, ξ)].

By HPM

ω0 = ω(χ, 0) =
1

10
sin(

πχ

k
)

p1 : ω1 = A−1[
1

vα
A(−(1− b)ω0 − 2

∂2ω0

∂χ2
− ∂4ω0

∂χ4
− ω3

0)] = sin(
πχ

k
)[

2π2

10k2
− (1− b)

10
− π4

10k4
−

sin2(πχk )

1000
]
ξα

α!

p2 : ω2 = A−1[
1

vα
A(−(1− b)ω1 − 2

∂2ω1

∂χ2
− ∂4ω1

∂χ4
− 3ω2

0ω1)].

Therefore,

ω2 =sin(
πχ

k
)[
(3)(11)(2473)

800000
− 2π2

5k2
+

291π4

500k4
− 2π6

5k6
+

π8

10k8
− 101b

500
+

2π2b

5k8
− π4b

2k8
− b2

− 1

200000w4
(−2400π2k2 + 8400π4 + k4(403− 400b)) cos(

2πχ

k
) + 3k8 cos(

4πχ

k
)]

ξ2α

(2α)!
.

.

.

Applying convergence analysis (for b=1,α = 1,k=10), we have

γ0 =
∥ω1∥
∥ω0∥

= 0.01226 < 1

γ1 =
∥ω2∥
∥ω1∥

= 0.007 < 1.

Hence, we can say that
∑∞

i=0 ωi is convergent. Therefore the approximate solution ω(χ, ξ) is convergent. Approx-
imate solution can be obtained as,

ω(χ, ξ) = ω0 + ω1 + ω2 + ω3 + · · ·+ ωn + · · · .

Therefore

ω(χ, ξ) = sin(
πχ

k
)[

1

10
+ (

2π2

10k2
− (1− b)

10
− π4

10k4
−

sin2(πχk )

1000
)
ξα

α!

+ (
(3)(11)(2473)

800000
− 2π2

5k2
+

291π4

500k4
− 2π6

5k6
+

π8

10k8
− 101b

500
+

2π2b

5k8
− π4b

2k8
− b2

− 1

200000k4
(−2400π2k2 + 8400π4 + k4(403− 400b)) cos(

2πχ

k
) + 3k8 cos(

4πχ

k
))

ξ2α

(2α)!
]

which is similar solution to the Homotopy analysis transform method [24].

Here Figure 3 represents the 3-D surface of a solution obtained by the ATHPM method, and Figure 4 represents an
exact solution of Example 5.2. Table 4 represents comparison between the ATHPM solution and the LADM solution.
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Figure 3: surface represents ATHPM solution ω(χ, ξ) for b = 1, k = 10 and α = 1

Figure 4: surface represents exact solution ω(χ, ξ) for b = 1, k = 10 and α = 1
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ξ
α = 0.85 α = 0.95 α = 1

ATHPM LADM ATHPM LADM ATHPM LADM

χ=1

0 0.309017 0.309017 0.309017 0.309017 0.309017 0.309017
0.125 0.308681 0.308679 0.030878 0.030875 0.0308792 0.0308781
0.25 0.309419 0.309409 0.0308532 0.0308502 0.0308514 0.0308546
0.375 0.309153 0.309158 0.0308254 0.0308261 0.0308356 0.0308311
0.5 0.307788 0.307792 0.0308017 0.0308024 0.0308082 0.0308077

0.625 0.309456 0.309469 0.0307361 0.0307790 0.0307876 0.0307843
0.75 0.309237 0.309252 0.0307525 0.0307561 0.0307813 0.0307810
0.875 0.307067 0.307040 0.0307303 0.0307333 0.0307365 0.0307377

Table 4: Comparison of ATHPM ω(χ, ξ) at k = 10, b = 0.9 with LADM for different values of α

6 Conclusion

The Aboodh transformation homotopy perturbation method (ATHPM) was successfully used to discover a solution
to the fractional model of the Swift Hohenberg problem. The Aboodh transform exceeds all other techniques studied in
the literature. It is limited to overcoming nonlinear problems; hence for the nonlinear terms in the shown situations, the
homotopy perturbation method (HPM) is used. To conclude, the solution to the S-H equation allows us to investigate
a variety of nonlinear situations. The strength of ATHPM is its simplicity and capacity to provide a high-precision
solution to nonlinear systems. Every problem includes a convergence analysis, which concludes that all series solutions
are convergent, and convergent solutions are similar to other analytical methods such as ETDM, Iterative method and
q-HATM. ATHPM solution has been compared with LADM and exact solution and concluded that ATHPM solution
has high accuracy and future researchers can be used to solve further nonlinear problems which occur in real world
problems.
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