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Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. We propose a new method, called the the weighted space method, for
the study of the generalized Hyers-Ulam-Rassias stability. We use this method for
a nonlinear functional equation, for Volterra and Fredholm integral operators.

1. Introduction

The stability problem as started by S.M. Ulam [52] reads as follows: given a group
G1, a metric group G2 with metric d and a positive number ε, find a positive number
δ such that for every f : G1 → G2 satisfying

d(f(xy), f(x)f(y)) ≤ δ, ∀x, y ∈ G1

there exists a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ε, ∀x ∈ G1.

In 1941, Hyers [22] gave an affirmative answer to the question of Ulam for additive
Cauchy equation in Banach spaces.

Let E1, E2 be Banach spaces and let f : E1 → E2 be a mapping satisfying:

‖f(x + y)− f(x)− f(y)‖ ≤ δ.

for all x, y ∈ E1 and δ > 0. There exists a unique additive mapping T : E1 → E2

which satisfies

‖f(x)− T (x)‖ ≤ δ, ∀x ∈ E1.

Hyers proved that the limit

T (x) = lim
n→∞

2−nf(2nx)

exists for all x ∈ E1. A generalized solution to Ulam’s problem for approximately
linear mappings was proved by Th.M. Rassias [42] in 1978. Th.M. Rassias considered
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a mapping f : E1 → E2 such that t → f(tx) is continuous in t for each fixed x.
Assume that there exists θ ≥ 0 and 0 ≤ p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) for any x, y ∈ E1.

Then there exists an unique linear mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p for any x, y ∈ E1.

Thus, the Hyers’ Theorem follows as a special case of Th.M.Rassias’ Theorem for
p=0. Th.M.Rassias’ proof of his Theorem [42] applies as well for all real values
of p that are strictly less than zero. In 1991, Th.M.Rassias [43] introduced the
generalized Hyers sequence.

In 1994, P.Găvruţa [15] provided a generalization of Th.M.Rassias’ Theorem for
the unbounded Cauchy difference and introduced the concept of generalized Hyers-
Ulam-Rassias stability in the spirit of Th.M.Rassias approach.

Theorem 1.1. Let G and E be an abelian group and a Banach space, respectively,
and let ϕ : G2 → [0,∞) be a function satisfying

Φ(x, y) =
∞∑

k=0

2−k−1ϕ(2kx, 2ky) < ∞

for all x, y ∈ G. If a function f : G → E satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for any x, y ∈ G, then there exists a unique additive function A : G → E with

‖f(x)− A(x)‖ ≤ Φ(x, x)

for all x ∈ G. If moreover G is a real normed space and f(tx) is continuous in t for
each fixed x in G, then A is a linear function.

For a number of generalizations of Hyers’ Theorem for the stability of the ad-
ditive mappings as well as Hyers-Th.M.Rassias’ approach for the stability of the
linear mapping the reader is referred to [2],[4],[5],[8]-[12],[22],[24]-[28],[30]-[33],[35]
-[37],[39],[41],[43]-[51]. Open problems in the field were solved in[14], [16]-[21].

On the other hand, in 1991 J.A.Baker used the Banach fixed point theorem to
give Hyers-Ulam stability results for a nonlinear functional equation. Following
this idea, V.Radu [40] applied the fixed point alternative theorem for Hyers-Ulam-
Rassias stability, D. Miheţ [34] applied the Luxemburg-Jung fixed point theorem
in generalized metric spaces to study the Hyers-Ulam stability for two functional
equations in a single variable, L.Găvruţa [13] used the Matkowski’s fixed point
theorem to obtain a new general result concerning the Hyers-Ulam stability of a
functional equation in a single variable.

In this paper we give a new method, called the weighted space method, for the
study of the generalized Hyers-Ulam-Rassias stability. We use this method for a
nonlinear functional equation, for Volterra and Fredholm integral operators.

We apply the following theorem on weighted spaces:
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Theorem 1.2. (Banach) Let (X, d) be a complete metric space and T : X → X a
contraction, i.e. there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.

Then there exists a unique a ∈ X such that Ta = a. Moreover, a = limn→∞T nx,
and

d(a, x) ≤ 1

1− α
d(x, Tx), for any x ∈ X.

2. The stability of a nonlinear functional equation

In the following, we consider a nonempty set S, (X, d) a complete metric space,
η : S → S, ϕ : S → (0,∞), F : S ×X → X.

Theorem 2.1. We suppose that there exists α ∈ [0, 1) so that

ϕ(η(x))d(F (x, u(η(x))), F (x, v(η(x)))) ≤ αϕ(x)d(u(η(x)), v(η(x))), x ∈ S (2.1)

If y : S → X is so that:

d(y(x), F (x, y(η(x)))) ≤ ϕ(x), x ∈ S (2.2)

Then there exists a unique y0 : S → X such that

y0(x) = F (x, y0(η(x))) (2.3)

and

d(y(x), y0(x)) ≤ 1

1− α
ϕ(x), x ∈ S. (2.4)

Proof. We denote

Y =

{
u : S → X : sup

x∈S

d(u(x), y(x))

ϕ(x)
< ∞

}
Then Y is a complete metric space with the metric

ρ(u, v) = sup
x∈S

d(u(x), v(x))

ϕ(x)

We take

(Tu)(x) = F (x, u(η(x))), x ∈ S

The condition (2.2) proves that u ∈ Y =⇒ Tu ∈ Y. We have

ρ(Tu, Tv) = sup
x

d(F (x), u(η(x)), F (x, v(η(x))))

ϕ(x)

≤ sup
x

αd(u(η(x)), v(η(x)))

ϕ(η(x))

≤ αρ(u, v)

�

A particular case of this theorem was obtained in [7] using the fixed point alter-
native theorem.
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3. The stability of the Volterra integral operator

We consider I = [a, b], c ∈ I. We denote by C(I) the space of all complex-valued
continuous functions on I. Consider the functions L : I → [0,∞) to be integrable,
g ∈ C(I), f : I × C → C and ϕ : I → (0,∞) continuous.

Theorem 3.1. We suppose that:

there exists a unique α ∈ [0, 1) so that

|
∫ x

c

L(t)ϕ(t)dt| ≤ αϕ(x), x ∈ I; (3.1)

|f(t, u(t))− f(t, v(t))| ≤ L(t)|u(t)− v(t)|, t ∈ I, ∀u, v ∈ C(I) (3.2)

If y ∈ C(I) is so that

|y(x)− g(x)−
∫ x

c

f(t, y(t))dt| ≤ ϕ(x), x ∈ I

then there exists a unique y0 ∈ C(I) :

y0(x) = g(x) +

∫ x

c

f(t, y0(t))dt

and

|y(x)− y0(x)| ≤ ϕ(x)

1− α
, x ∈ I.

Proof. We apply Theorem 1.2 with X = C(I), the metric:

d(u, v) = sup
x∈I

|u(x)− v(x)|
ϕ(x)

,

and the operator:

(Tu)(x) = g(x) +

∫ x

c

f(t, u(t))dt

We have:

d(Tu, Tv) = sup
x∈I

|
∫ x

c
[f(t, u(t))− f(t, v(t))]dt|

ϕ(x)

≤ sup
x∈I

|
∫ x

c
L(t)|u(t)− v(t)|dt|

ϕ(x)

≤ sup
t∈I

|u(t)− v(t)|
ϕ(t)

sup
x∈I

|
∫ x

c
L(t)ϕ(t)dt|
ϕ(x)

≤ αd(u, v).

�

A particular case of this Theorem was obtained in [29] using the fixed point
alternative theorem. See also [6].
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4. The stability of the Fredholm operator

We consider I = [a, b], g ∈ C(I), ϕ : I → (0,∞) continuous, L : I × I → [0,∞)
integrable K : I × I × C → C continuous.

Theorem 4.1. We suppose that there exists β > 0:∫
I

L(x, t)ϕ(t)dt ≤ βϕ(x), x ∈ I; (4.1)

|K(x, t, u(t))−K(x, t, v(t))| ≤ L(x, t)|u(t)− v(t)|, u, v ∈ C(I). (4.2)

Let y ∈ C(I) be so that:

|y(x)− g(x)− λ

∫
I

K(x, t, y(t))dt| ≤ ϕ(x), x ∈ I.

If |λ| < 1
β

then there exists a unique y0 ∈ C(I) :

y0(x) = g(x) + λ

∫
I

K(x, t, y0(t))dt

and

|y(x)− y0(x)| ≤ ϕ(x)

1− |λ|β
, x ∈ I.

Proof. We apply Theorem 1.2 with X = C(I), the metric:

d(u, v) = sup
x∈I

|u(x)− v(x)|
ϕ(x)

and the operator:

(Tu)(x) = g(x) + λ

∫
I

K(x, t, u(t))dt.

We have:

d(Tu, Tv) = |λ| sup
x∈I

|
∫

I
[K(x, t, u(t))−K(x, t, v(t))]dt|

ϕ(x)

≤ |λ| sup
x∈I

∫
I
L(x, t)|u(t)− v(t)|dt

ϕ(x)

≤ |λ| sup
t∈I

|u(t)− v(t)|
ϕ(t)

sup
x∈I

∫
I
L(x, t)ϕ(t)dt

ϕ(x)

≤ |λ|βd(u, v)

�
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