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Abstract

In this paper, we ensure the existence of a unique fixed point in quasi b-metric spaces for some contraction mappings
requiring the concept of Ψ∗-admissibility. The Ulam-Hyers stability and well-posedness for these fixed point results
have been studied and investigated. The obtained results generalize and extend many known results in the literature.
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1 Introduction

The Ulam stability is a type of a functional equation stability that has been originated with a question posed by
Ulam [26] in 1940 regarding the stability of group homomorphisms. One year later, Hyers [16] provided a partial answer
to Ulam’s question for Banach spaces, which it subsequently referred to the Ulam-Hyers stability. Several published
results on the so-called Hyers–Ulam stability have relaxed the stability conditions. Many mathematicians extended the
Hyers results in variant directions. The first authors who studied Hyers-Ulam stability of partial differential equations
were Prastaro and Rassias [20]. After that, a few results in this direction were given by other authors, regarding
partial differential equations [13, 14]. In 2009, Rus [22] has opened a new direction of study of the Ulam stability using
Gronwall type inequalities and Picard operators technique. For furtrher details, see [12, 17, 18]. Another direction of
stability research is that in which results regarding fixed point theory are used. Namely, Bota-Boriceanu and Petrusel
[7] and Bota et al. [8], have researched and expanded stability of Ulam-Hyers [1, 3, 4, 5, 6, 9, 21, 25].

On the other hand, Czerwik [10] initiated the notion of a b-metric space by changing the triangle inequality with
a more generalized inequality involving a coefficient s ≥ 1. Later, a new space named as a quasi b-metric space was
proposed by Felhi et al. [11], which is as a combination of a b-metric space and a quasi metric space. In quasi b-metric
spaces, the symmetry property is omitted.
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Definition 1.1. [11] Let ℵ be a nonempty set. Given a real number s ≥ 1. A function ℏ : ℵ×ℵ −→ [0,∞) is referred
to a quasi b-metric function if it meets the following conditions for every k, l, j ∈ ℵ:

(i) ℏ(k, l) = 0 if and only if k = l;

(ii) ℏ(k, j) ≤ s[ℏ(k, l) + ℏ(l, j)].

A pair (ℵ, ℏ) is said to be a quasi b-metric space.

Due to lack of symmetry, we need to give the Cauchyness and the convergence of a sequence in a quasi b-metric
space (ℵ, ℏ).

Definition 1.2. [2, 11] Every sequence {ln} in ℵ converges to some ω ∈ ℵ if and only if

lim
n−→∞

ℏ(ln, ω) = lim
n−→∞

ℏ(ω, ln).

Definition 1.3. [2, 11] Every sequence {ln} in ℵ is called left-Cauchy (right-Cauchy) if and only if for each ϵ > 0, an
integer number K = K(ϵ) > 0 exists such that ℏ(ln, lm) < ϵ for all n ≥ m > K (ℏ(ln, lm) < ϵ for all m ≥ n > K).

Definition 1.4. [2, 11] Every sequence {ln} in ℵ is called Cauchy if and only if for each ϵ > 0, an integer number
K = K(ϵ) > 0 exists such that ℏ(ln, lm) < ϵ for all m,n > K.

Lemma 1.1. [2, 11] Let k : ℵ −→ ℵ be a continuous mapping at some u ∈ ℵ. Then, for any sequence {ln} ∈ ℵ
converging to u, we have kln −→ ku, i.e.,

lim
n−→∞

ℏ(kln,ku) = lim
n−→∞

ℏ(ku,kln) = 0.

Samet et al. [24] proposed the concept of α-admissibility in 2012. Using this concept, they showed that several
known published papers are not real generalizations.

Definition 1.5. Let ℵ be a non-empty set and α : ℵ×ℵ −→ [0,∞) be a function. For a given real number s ≥ 1, the
mapping k : ℵ −→ ℵ is named α-admissible, if it meets the condition:

k, l ∈ ℵ, α(k, l) ≥ 1 =⇒ α(k(k),k(l)) ≥ 1.

The above definition is generalized as follows:

Definition 1.6. Let ℵ be a nonempty set and Ψ∗ : ℵ × ℵ −→ [0,∞) be a function. For a given real number s ≥ 1,
the mapping k : ℵ −→ ℵ is called Ψ∗-admissible ( or Ψ∗ −b -admissible), if it meets the condition:

l, k ∈ ℵ, Ψ∗(l, k) ≥ 1

s2
=⇒ Ψ∗(k(l),k(k)) ≥ 1

s2
.

It is clear that every α-admissible mapping is Ψ∗-admissible, but the converse is not true. To illustrate the difference
between Ψ∗-admissibility and α-admissibility, we give the following examples.

Example 1.1. Let ℵ = ℜ and s = 2. Define k : ℵ → ℵ and Ψ∗ : ℵ × ℵ → [0,∞) as follows:

k(l) = −l, for all l ∈ ℵ

and

Ψ∗(l, k) =

2 if l ≥ k
1

2
otherwise.

Clearly, the mapping k is Ψ∗-admissible. While, for l ≥ k we have Ψ∗(l, k) ≥ 1 and Ψ∗(k(l),k(k)) = 1
2 < 1, so k is

not α- admissible.
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Example 1.2. Let ℵ = [0,∞) and s = 2. Define k : ℵ → ℵ and Ψ∗ : ℵ × ℵ → [0,∞) as follows:

k(l) =


l

2
if l ∈ [0, 2]

ln(l) otherwise.

and

Ψ∗(l, k) =


(l+k)2

2 + 1
2 if l, k ∈ [0, 2]

1

1 + min{l, k}
otherwise.

Clearly, the mapping k is Ψ∗-admissible. While, we have Ψ∗( 12 ,
1
2 ) ≥ 1 and Ψ∗(k(l),k(k)) = 5

8 < 1, so k is not
α− admissible .

In the next definition, we generalize the concept of transitivity, which is useful in the sequel.

Definition 1.7. For a nonempty set ℵ and a given real number s ≥ 1, we say that Ψ∗ : ℵ×ℵ −→ [0,∞) is generalized
transitive (or a b−transitive ) function, if it meets the condition:
l, k, j ∈ ℵ, Ψ∗(l, k) ≥ 1

s2 and Ψ∗(k, j) ≥ 1
s2 =⇒ Ψ∗(l, j) ≥ 1

s2 .

In this paper, we establish some fixed point results on quasi b-metric spaces for some contraction mappings via the
concept of Ψ∗- admissibility. We also study their Ulam-Hyers stability and well-posedness.

2 Main results

For s ≥ 1, let ω be the class of all functions β : [0,∞) −→ [0, 1
s2 ) so that for any sequence {tm} of nonnegative real

numbers, we have

lim
m−→∞

β(tm) =
1

s2
=⇒ lim

m−→∞
tm = 0.

Definition 2.1. Let (ℵ, ℏ) be a quasi b-metric space and k : ℵ −→ ℵ be a self-mapping. We say that k is an
Ψ∗ − β − contraction if there are two functions Ψ∗ : ℵ × ℵ −→ [0.∞) and β ∈ Ω such that

[Ψ∗(l, k)− 1

s2
+ ρ∗]

dℏ(k(l),k(k)) ≤ ρdβ(ℏ(l,k))ℏ(l,k) (2.1)

for all l, k ∈ ℵ, where d ≥ 1 and 1 ≤ ρ ≤ ρ∗.

Theorem 2.1. Let (ℵ, ℏ) be a complete quasi b-metric space and k : ℵ −→ ℵ be an Ψ∗−β- contraction mapping such
that

(i) k is Ψ∗-admissible;

(ii) Ψ∗ is generalized transitive;

(iii) there is l0 ∈ ℵ such that Ψ∗(l0,k(l0)) ≥ 1
s2 and Ψ∗(k(l0), l0) ≥ 1

s2 ;

(iv) k is continuous.

Then, there exists a fixed point x∗ ∈ ℵ of k, that is, x∗ = k(x∗).

Proof . For such l0 ∈ ℵ given in condition (iii), define a sequence {ln} by

ln = k(ln−1) ∀n ∈ N. (2.2)

We assume that ln ̸= ln−1 for all n ∈ N (Otherwise, if lk = lk−1 for some k ∈ N, then lk is a fixed point of k).
Again, from condition (i), we have

Ψ∗(l0, l1) = Ψ∗(l0,k(l0)) ≥
1

s2
.
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Also,

Ψ∗(l1, l2) = Ψ∗(k(l0),k(l1)) ≥
1

s2
.

By induction, we get Ψ∗(ln−1, ln) ≥ 1
s2 and Ψ∗(ln, ln−1) ≥ 1

s2 for all n ∈ N. We have

ρℏ(ln,ln+1) = ρℏ(k(ln−1),k(ln))

≤ ρ
ℏ(k(ln−1),k(ln))
∗

≤ [Ψ∗(ln−1, ln)−
1

s2
+ ρ∗]

ℏ(k(ln−1),k(ln)).

Since k is an Ψ∗ − β-contraction, we have

ρℏ(ln,ln+1) ≤ ρβ(ℏ(ln−1,ln))(ℏ(ln−1,ln).

This means that for each n ∈ N,

ℏ(ln, ln+1) ≤ β((ℏ(ln−1, ln))(ℏ(ln−1, ln) <
1

s2
(ℏ(ln−1, ln). (2.3)

We conclude that the real sequence {(ℏ(ln−1, ln)} is strictly decreasing, and so there is ℏ ≥ 0 such that (ℏ(ln−1, ln) −→
q as n −→ ∞. Assume that ℏ > 0. Taking limit as n −→ ∞ in (2.3), we obtain that 1 ≤ lim

n−→∞
β(ℏ(ln−1, ln)) <

1

s2
.

It is a contradiction, then ℏ = 0, that is, lim
n−→∞

ℏ(ln−1, ln) = 0. The same procedure allows us to conclude

lim
n−→∞

ℏ(ln, ln−1) = 0.

Now, we will prove that {ln} is a Cauchy sequence in (ℵ, ℏ). First, we show that {ln} is a right-Cauchy sequence.
We argue by contradiction. Then there exist ϵ > 0 and a subsequence of integers mj and smallest nj with nj > mj ≥ j
such that

ℏ(lmj
, lnj

) ≥ ϵ (2.4)

for all j ∈ N. Then we get
ℏ(lmj

, lnj
) ≥ ϵ, ℏ(lmj

, lnj−1
) < ϵ. (2.5)

Thus, we get from triangle inequality,

ϵ ≤ ℏ(lmj
, lnj

) ≤ s[ℏ(lmj
, lnj−1

) + ℏ(lnj−1
, lnj

)]

≤ sϵ+ sℏ(lnj−1
, lnj

).

On taking the limit as j −→ ∞, we have

ϵ ≤ lim
j−→∞

ℏ(lmj , lnj ) ≤ sϵ <∞.

Since nj > mj ≥ j and Ψ∗ is generalized transitive, we get Ψ∗(lmj , lnj ) ≥ 1
s2 . Consider,

ρℏ(lmj
,lnj

) ≤ ρsℏ(lmj
,lmj+1

)+s2ℏ(lmj+1
,lnj+1

)+s2ℏ(lnj+1
,lnj

)

≤ ρsℏ(lmj
,lmj+1

)+s2ℏ(k(lmj
),k(lnj

))+s2ℏ(lnj+1
,lnj

)

≤ ρsℏ(lmj
,lmj+1

)+s2ℏ(lnj+1
,lnj

)ρ
s2ℏ(k(lmj

),k(lnj
))

∗

≤ ρsℏ(lmj
,lmj+1

)+s2ℏ(lnj+1
,lnj

)ρβ(ℏ(lmj
,lnj

))s2ℏ(lmj
,lnj

).

Hence,
ℏ(lmj

, lnj
) ≤ sℏ(lmj

, lmj+1
) + s2ℏ(lnj+1

, lnj
) + β(ℏ(lmj

, lnj
))s2ℏ(lmj

, lnj
).

That is,
ℏ(lmj , lnj )− sℏ(lmj , lmj+1)− s2ℏ(lnj+1 , lnj )

s2ℏ(lmj , lnj )
≤ β(ℏ(lmj , lnj )) <

1

s2
.
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By taking the limit as j −→ ∞, we get

lim
j−→∞

β(ℏ(lmj , lnj )) =
1

s2
.

Since β ∈ Ω, we have lim
j−→∞

ℏ(lmj
, lnj

) = 0, which is a contradiction. Thus, {ln} is a right-Cauchy sequence in the

quasi b-metric space (ℵ, ℏ). Similarly, it is a left-Cauchy sequence in the quasi b-metric space (ℵ, ℏ). That is, {ln} is a
Cauchy sequence in the quasi b-metric space (ℵ, ℏ). Since (ℵ, ℏ) is complete, there exists x∗ such that x∗ = lim

n−→∞
ln

and since k is continuous,
x∗ = lim

n−→∞
ln = lim

n−→∞
k(ln+1) = k( lim

n−→∞
ln+1) = k(x∗).

Hence, x∗ is a fixed point of k. □

Theorem 2.2. Let (ℵ, ℏ) be a complete quasi b-metric space and k : ℵ −→ ℵ be an Ψ∗ −β-contraction mapping such
that

(i) k is Ψ∗-admissible;

(ii) Ψ∗ is generalized transitive;

(iii) there exists l0 ∈ ℵ such that Ψ∗(l0,k(l0)) ≥ 1
s2 and Ψ∗(k(l0), l0) ≥ 1

s2 ;

(iv) if {ln} is a sequence in ℵ such that Ψ∗(x∗, ln) ≥ 1
s2 and Ψ∗(ln, x

∗) ≥ 1
s2 for all n ∈ N and ln −→ x ∈ ℵ as

n −→ ∞.

Then, there exists a unique fixed point x∗ ∈ ℵ of k.

Proof . From the proof of Theorem 2.1, the sequence {ln} is Cauchy and converges to some x∗ in (ℵ, ℏ). We have
Ψ∗(ln, x

∗) ≥ 1
s2 and Ψ∗(x∗, ln) ≥ 1

s2 , ∀n ∈ N. Next,

ρℏ(x
∗,k(x∗)) ≤ ρsℏ(x

∗,ln+1)+sℏ(ln+1,k(x∗))

= ρsℏ(x
∗,ln+1)+sℏ(k(ln),k(x∗)) = ρsℏ(x

∗,ln+1)ρsℏ(k(ln),k(x
∗))

≤ ρsℏ(x
∗,ln+1)ρ

sℏ(k(ln),k(x∗))
∗

≤ ρsℏ(x
∗,ln+1)[Ψ∗(ln, x

∗)− 1

s2
+ ρ∗]

sℏ(k(ln),k(x∗))

≤ ρsℏ(x
∗,ln+1)ρβ(ℏ(ln,x

∗))sℏ(ln,x∗)

≤ ρsℏ(x
∗,ln+1)+β(ℏ(ln,x∗))sℏ(ln,x∗)

for all n ∈ N. Then we get
ℏ(x∗,k(x∗)) ≤ sℏ(x∗, ln+1) + β(ℏ(ln, x∗))sℏ(ln, x∗)

for all n ∈ N. Letting n −→ ∞, we obtain that ℏ(x∗,k(x∗)) = 0, and so x∗ = k(x∗). To prove the uniqueness of the
fixed point of k, assume that y∗ ∈ ℵ is another fixed point of k. We have

ρℏ(x
∗,y∗) ≤ ρ

ℏ(x∗,y∗)
∗ ≤ ρ

sℏ(x∗,ln+1)+sℏ(ln+1,y
∗)

∗

≤ ρ
sℏ(k(x∗),k(ln))
∗ ∗ ρsℏ(k(ln),k(y

∗))
∗

≤ (Ψ∗(x∗, ln)−
1

s2
+ ρ∗)

sℏ(k(x∗),k(ln)) ∗ (Ψ∗(ln, y
∗)− 1

s2
+ ρ∗)

sℏ(k(ln),k(y∗))

≤ ρsβ(ℏ(x
∗,ln))ℏ(x∗,ln) ∗ ρsβ(ℏ(ln,y

∗))ℏ(ln,y∗).

Thus,

ℏ(x∗, y∗) ≤ sβ(ℏ(x∗, ln))ℏ(x∗, ln) + sβ(ℏ(ln, y∗))ℏ(ln, y∗) ≤
1

s
ℏ(x∗, ln) +

1

s
ℏ(ln, y∗).
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If we repeat this argument n-times on both ℏ(x∗, ln) and ℏ(ln, y∗), we get

ℏ(x∗, y∗) ≤ (
1

s
)nℏ(x∗, l0) + (

1

s
)nℏ(l0, y∗).

By taking limit as n −→ ∞, we get ℏ(x∗, y∗) ≤ 0. Hence, ℏ(x∗, y∗) = 0, then x∗ = y∗. □

To prove uniqueness of the fixed point that given in Theorem 2.1, we need to add the next hypothesis:

(C1) Ψ∗(l, k) ≥ 1
s2 or Ψ∗(k, l) ≥ 1

s2 , for all fixed points l, k ∈ ℵ of k.

Theorem 2.3. Let (ℵ, ℏ) be a complete quasi b-metric space and k : ℵ −→ ℵ be an Ψ∗−β- contraction mapping such
that

(i) k is Ψ∗-admissible;

(ii) Ψ∗ is generalized transitive;

(iii) there exists l0 ∈ ℵ such that Ψ∗(l0,k(l0)) ≥ 1
s2 and Ψ∗(k(l0), l0) ≥ 1

s2 ;

(iv) (C1) holds.

Then, there exists a unique fixed point x∗ ∈ ℵ of k.

Proof . Following the proof of Theorem 2.1, there exists a fixed point of k. We claim that the fixed point is unique.
Without lose of generality, let x∗, y∗ be fixed points of k so that Ψ∗(y∗, x∗) ≥ 1

s2 . We have

ρℏ(x
∗,y∗) ≤ ρ

ℏ(x∗,y∗)
∗ ≤ [Ψ∗(x∗, y∗)− 1

s2
+ ρ∗]

ℏ(x∗,y∗) ≤ [Ψ∗(x∗, y∗)− 1

s2
+ ρ∗]

ℏ(k(x∗),k(y∗))

≤ [Ψ∗(x∗, y∗)− 1

s2
+ ρ∗]

β(ℏ((x∗,y∗))ℏ(x∗,y∗).

It follows that
ℏ(x∗, y∗) ≤ β(ℏ((x∗, y∗))ℏ(x∗, y∗).

On contrary, assume that ̸= 0, then we have

1 ≤ β(ℏ((x∗, y∗)),

which is a contradiction. □

3 Application: Ulam-Hyers Stability

Definition 3.1. Let (ℵ, ℏ) be a complete quasi bmetric space and k : ℵ −→ ℵ be a mapping. The fixed point problem

l = k(l) (3.1)

is called Ulam-Hyers stable if and only if for each k ∈ ℵ satisfying the inequality

ℏ(k, k(k)) ≤ ϵ (3.2)

and inequality
ℏ(k(k), k) ≤ ϵ, (3.3)

where ϵ > 0, there are a solution x∗ ∈ ℵ of equation (3.1) and a constant K > 0 independent of k and x∗ such that

ℏ(k, x∗) ≤ Kϵ, (3.4)

and
ℏ(x∗, k) ≤ Kϵ. (3.5)
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Definition 3.2. Let (ℵ, ℏ) be a complete quasi b-metric space and k : ℵ −→ ℵ be a mapping. The fixed point problem
3.1 is called generalized Ulam-Hyers stable if and only if there exists an increasing function Ξ : [0,∞) −→ [0,∞)
continuous at 0 with Ξ(0) = 0 such that for all ϵ > 0 and k ∈ ℵ, the inequalities (3.2) and (3.3) hold, there exists a
solution x∗ ∈ ℵ of the equation (3.1) such that

ℏ(k, x∗) ≤ Ξ(ϵ). (3.6)

and
ℏ(x∗, k) ≤ Ξ(ϵ). (3.7)

Theorem 3.1. Let (ℵ, ℏ) be a complete quasi b-metric space with s > 1. Suppose that all the hypotheses of Theorem
2.2 (Theorem 2.3) hold. If Ψ∗(l, k) ≥ 1

s2 and Ψ∗(k, l) ≥ 1
s2 for all l, k ∈ ℵ which are satisfying the inequalities (3.2)

and (3.3), then the fixed point of k is Ulam-Hyers stable.

Proof . From the proof of Theorem 2.2 (Theorem 2.3), we obtain that k has a unique fixed point (say x∗). Let ϵ > 0
and k ∈ ℵ such that the inequalities (3.2) and (3.3) hold, that is,

ℏ(k, k(k) ≤ ϵ

and
ℏ(k(k), k) ≤ ϵ.

In fact, the fixed point x∗ satisfies the inequality (3.2) and the inequality (3.3). From hypotheses, we have
Ψ∗(x∗, k) ≥ 1

s2 and Ψ∗(k, x∗) ≥ 1
s2 . Now, we have

ρℏ(x
∗,k) = ρℏ(k(x

∗),k)

≤ ρsℏ(k(x
∗),k(k))+sℏ(k(k),k)

≤ ρ
sℏ(k(x∗),k(k))
∗ ∗ ρsℏ(k(k),k)

≤ [Ψ∗(x∗, k)− 1

s2
+ ρ∗]

sℏ(k(x∗),k(k)) ∗ ρsϵ

≤ ρsβ(ℏ(x
∗,k))ℏ(x∗,k)+sϵ.

It follows that

ℏ(x∗, k) ≤ sβ(ℏ(x∗, k))ℏ(x∗, k) + sϵ

≤ 1

s
ℏ(x∗, k) + sϵ.

This implies that

ℏ(x∗, k) ≤ s2ϵ

s− 1
,

where s > 1. Consequently, the fixed point problem k is Ulam-Hyers stable. □

Theorem 3.2. Let (ℵ, ℏ) be a complete quasi b-metric space. Suppose that all the hypotheses of Theorem 2.2
(Theorem 2.3) hold. Assume that β(0) = 0 and there is a strictly increasing function Ψ : [0,∞) −→ [0,∞) which is

defined by Ψ(t) = t−stβ(t)
s and onto. If Ψ∗(l, k) ≥ 1

s2 and Ψ∗(k, l) ≥ 1
s2 for all l, k ∈ ℵ, satisfying the inequalities (3.2)

and (3.3), then the fixed point of k is generalized Ulam-Hyers stable.

Proof . From the same process as in the proof of Theorem 3.1 with s ≥ 1, we obtain that

ℏ(x∗, k) ≤ sβ(ℏ(x∗, k))ℏ(x∗, k) + sϵ

and then
ℏ(x∗, k)− sβ(ℏ(x∗, k))ℏ(x∗, k)

s
≤ ϵ.

That is, Ψℏ(x∗, k) ≤ ϵ. Thus,
ℏ(x∗, k) ≤ Ψ−1(ϵ).

We can conclude that Ψ−1 is increasing, continuous at 0 and Ψ−1({0}) = 0. Consequently, the fixed point problem
of k is generalized Ulam-Hyers stable. □
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4 Well-posedness

The concept of well-posedness of a fixed point problem has a great interest for many mathematicians, see [15, 19, 23].
We begin by defining the concept of well-posedness in the context of quasi b-metric spaces as follows:

Definition 4.1. [2] Let (ℵ, ℏ) be a quasi b-metric space and k : ℵ −→ ℵ be a given mapping. Then, the fixed point
problem (3.1) is said to be well-posed if:

(1) k has a unique fixed point u ∈ ℵ;

(2) for any sequence {ln} ⊆ X, if lim
n−→∞

ℏ(kln, ln) = lim
n−→∞

ℏ(ln,kln) = 0

then, we have lim
n−→∞

ℏ(kln, u) = lim
n−→∞

ℏ(u,kln) = 0.

Theorem 4.1. Let (ℵ, ℏ) be a complete quasi b-metric space. Suppose that all the hypotheses of Theorem 2.2
(Theorem 2.3) hold with the next supposition:

� If {ln} ⊆ X is a sequence with lim
n−→∞

ℏ(kln, ln) = lim
n−→∞

ℏ(ln,kln) = 0, then Ψ∗(ln, u) ≥ 1
s2 and Ψ∗(u, ln) ≥ 1

s2

for all n, where u is a fixed point of k.

Then the fixed point equation (3.1) is well-posed.

Proof . By Theorem 2.2 (Theorem 2.3), we have a unique u ∈ ℵ such that u = ku. Let {ln} ⊆ X be a sequence with
lim

n−→∞
ℏ(kln, ln) = lim

n−→∞
ℏ(ln,kln) = 0, then we have Ψ∗(ln, u) ≥ 1

s2 and Ψ∗(u, ln) ≥ 1
s2 for all n. Now, by using the

fact that Ψ∗(ln, u) ≥ 1
s2 , we can write

ρℏ(ln,u) ≤ ρsℏ(ln,k(ln))+sℏ(k(ln),u)

≤ ρsℏ(ln,k(ln))+sℏ(k(ln),ku)

≤ ρsℏ(ln,k(ln)) ∗ ρsℏ(k(ln),ku)∗

≤ ρsℏ(ln,k(ln)) ∗ [Ψ∗(ln, u)−
1

s2
+ ρ∗]

sℏ(k(ln),k(u))

≤ ρsℏ(ln,k(ln)) ∗ ρsβ(ℏ(ln,u))ℏ(ln,u).

That is,

ℏ(ln, u) ≤ sℏ(ln,k(ln)) + sβ(ℏ(ln, u))ℏ(ln, u)

≤ sℏ(ln,k(ln)) +
1

s
ℏ(ln, u).

Consequently,

ℏ(ln, u) ≤
s2

s− 1
ℏ(ln,k(ln)),

for each integer n. Letting n −→ ∞, we get
lim

n−→∞
ℏ(ln, u) = 0. (4.1)

Again, by the same procedure and using the fact that Ψ∗(u, ln) ≥ 1
s2 , we can obtain

lim
n−→∞

ℏ(u, ln) = 0. (4.2)

By (4.1) and (4.2), the fixed point problem (3.1) is well-posed. □
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