
Int. J. Nonlinear Anal. Appl. 14 (2023) 3, 353–367
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.24856.2841

Solving partial-differential algebraic equations with the
fifth-Order Meshless Petrov-Galerkin Method by CS-RBFS
interpolation

Azam Noorafkan Zanjania, Saeid Abbasbandyb,∗, Fahimeh Soltaniana

aDepartment of Mathematics, Payame Noor University (PNU), P.O.Box 19395-4697, Tehran, Iran

bDepartment of Applied Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin 34149-16818, Iran

(Communicated by Haydar Akca)

Abstract

In this paper, the application of the Fifth-order Meshless Local Petrov-Galerkin Method in solving the linear partial
differential-algebraic equations (PDAEs) was surveyed. The Gaussian quadrature points in the domain and on the
boundary were determined as centers of local sub-domains. By governing the local weak form in each sub-domain, the
compactly supported radial basis functions (CS-RBFs) approximation was used as the trial function and the Heaviside
step function was considered as the test function. The proposed method was successfully utilized for solving linear
PDAEs and the numerical results were obtained and compared with the exact solution to investigate the accuracy of
the proposed method. The sensitivity to different parameters was analyzed and a comparison with the other methods
was done.
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1 Introduction

In the past decades, meshless methods in solving the boundary value problems have received much attention due
to their flexibility and overcoming difficulties depend on meshing or re-meshing because there is no need to generate
any mesh and it only uses arbitrarily scattering points in the domain, so the meshless methods have the advantage
in solving problems numerically with the complex domain. However, in those meshless methods which have been
developed before 1998, the meshless technique had been used only for interpolating the trial function and it still
needed to use the background meshes for integration of the weak-form. Therefore, those methods are not considered
truly meshless. Since 1998, Atluri and his colleagues [4, 8, 7, 5, 9, 6] have developed two truly meshless method
for solving linear and nonlinear boundary problems: the meshless local Petrov-Galerkin (MLPG) method and the
meshless local boundary integral equation (LBIE) method. The main objective of MLPG methods is no domain or
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boundary meshes are required even for integration of the weak-form, and all relevant integrals can be easily evaluated
over domains and their boundaries. There are many applications of this method [2, 14].

The radial basis functions (RBFs) have been employed for solving partial differential equations using MLPG
methods in [3, 4, 17, 26]. Also, it became popular as an excellent interpolation property and has great promise in
MLPG and other meshless methods due to their effectiveness in interpolating multivariate scattered data. However,
the RBF interpolation may suffer from the contradiction between the accuracy and the stability, which can be described
as uncertainly principle [20]. The condition number of the RBF interpolation matrix becomes very large when the
interpolation points are irregularly or density arranged, and the ill-conditioned matrix will limit the application of the
RBF, especially for large-scale problems. In order to guarantee the robustness and the stability of interpolation with
RBFs, many numerical treatments have been proposed such as: compactly supported RBF method [15], precondition
method [16], domain decomposition method [12], RBF with variable shape parameter method [27] and node adoptively
method [13].

Many important mathematical, engineering, physical science, and population growth models can be expressed
in terms of time-dependent systems of differential-algebraic equations (DAEs). DAEs include ordinary differential
equations (ODEs) with finite-dimensional algebraic equations. Partial differential equations (PDEs) which lead to
DAEs are often called PDAEs. Many detailed index analyses of the DAEs and PDAEs with respect to the modal
index, algebraic index, and the index by means of the method of lines approach for PDAEs and some numerical
methods were investigated in [21, 11].

In this paper, we apply the MLPG5 from Atluri [4, 6] which uses local weighted residual form (LWF) and the
Heaviside step function as the test function over a local sub-domain and a local interpolation based on the compactly
supported radial basis functions, for solving the time-dependent linear PDAEs.

2 Partial differential algebraic equations

Consider the following linear PDAE in the domain Ω bounded by the boundary Γ [18]:

AΨt(x, t) +BΨxx(x, t) + CΨx(x, t) +DΨ(x, t) = P (x, t), (2.1)

where
t ∈ [t0, tf ] , x ∈ [x1, x2] , A,B,C,D ∈ Rn×n,

and
Ψ, P : [x1, x2]× [t0, tf ] → Rn.

If A = 0 or B = 0 & C = 0, then we have ODEs or DAEs. In general, the above differential equation is required to
satisfy the following boundary and initial conditions

EΨ(x, t) + F
∂Ψ(x, t)

∂n
= q(x, t), (2.2)

where t ∈ [t0, tf ], x ∈ Γ and
Ψ(x, t0) = Ψ0(x), (2.3)

where E and F are known constant matrices and q : [x1, x2]× [t0, tf ] → Rn and Ψ0 are known functions and ∂Ψ(x,t)
∂n

is the outward normal derivative.

When F = 0 and E ̸= 0 it is called Dirichlet type of boundary condition, when F ̸= 0 and E = 0 it is called
Neumann type and when F ̸= 0 and E ̸= 0 it is called mixed or Robin type. Marszalek [18] has proposed the definition
of the modal index for PDAEs (2.1) with C = 0, x1 = 0 and x2 = l. The boundary and initial conditions are

Ψ(0, t) = 0, Ψ(l, t) = 0 and Ψ(x, 0) = q,

where P and q are smooth enough and are consistent with the boundary and initial conditions.

3 Compactly Supported Radial Basis Functions

3.1 CS-RBFs interpolation

Interpolation by radial functions has been used as a powerful tool in multivariate approximation theory, especially
since CS-RBFs have been derived. The CS-RBFs were demonstrated that for a given dimension and smoothness C2p,
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a positive definite radial basis function in the form of a univariate polynomial of minimal degree always exists, and is
unique within a constant factor [8]. According to the different type of radial basis functions of compact support which
were proposed by Wendland (ζ1 − ζ4) [22] and Wu (ζ5, ζ6) [25], we apply CS-RBFs that provided by Wu as follow:

ζ1i (x) = (1− δi
si
)2, 0 ≤ δi ≤ si,

ζ2i (x) = (1− δi
si
)4(1 + 4

δi
si
), 0 ≤ δi ≤ si,

ζ3i (x) = (1− δi
si
)6(3 + 18

δi
si

+ 35
δ2i
s2i

), 0 ≤ δi ≤ si,

ζ4i (x) = (1− δi
si
)8(1 + 8

δi
si

+ 25
δ2i
s2i

++32
δ3i
s3i

), 0 ≤ δi ≤ si,

ζ5i (x) = (1− δi
si
)5(8 + 40

δi
si

+ 48
δ2i
s2i

+ 25
δ3i
s3i

+ 5
δ4i
s4i

), 0 ≤ δi ≤ si,

ζ6i (x) = (1− δi
si
)6(6 + 36

δi
si

+ 82
δ2i
s2i

+ 72
δ3i
s3i

+ 30
δ4i
s4i

+ 5
δ5i
s5i

), 0 ≤ δi ≤ si, (3.1)

otherwise

ζki (x) = 0 for k = 1, . . . , 6,

where

� δi is the distance from x to xi,

� si is the size of support for RBF at node xi,

� xi is the i-th node.

If Φi is the approximation function in the sub-domain Ω
(i)
s , then the radial basis approximation can be written as

Φi(x) = ζ(x)a, x ∈ Ω(i)
s ,

over a number of scattered nodes xi for i = 1, . . . , Q.
After interpolating for CS-RBF, we will have a system of linear equations

ζ0a = Φ, (3.2)

where

Φ =


ϕ1
ϕ2
· · ·
ϕQ

 , ζ0 =


ζ1(x1) ζ2(x1) · · · ζQ(x1)
ζ1(x2) ζ2(x2) · · · ζQ(x2)

...
...

...
...

ζ1(xQ) ζ2(xQ) · · · ζQ(xQ)

 ,

and ζT (x) = [ζ1(x), ζ2(x), · · · , ζN (x)] is the set of RBFs centered around xi, a is the coefficient vector and Φi for
i = 1, · · · , Q, are the nodal values.
Since the RBFs are positive definite, the matrix ζ0 is non-singular. So, by multiplying the ζ−1

0 to equation (3.2), we
obtain

a = ζ−1
0 Φ. (3.3)

Thus, the approximation Φ(x) can be written as

Φ(x) = ζ ζ−1
0 Φ =

Q∑
i=1

χi(x)Φ, (3.4)

where χ(x) = ζ(x)ζ−1
0 is the nodal shape function which depends uniquely on the distribution of scattered nodes in

sub-domains and possess the Kronecker Delta property. The nodal shape functions can be written as

χi(x) =

Q∑
j=1

ζj(x)(ζ
−1
0 )ji.
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In addition, the partial derivative of the shape function is

∂χ(x)

∂xk
=
∂ζ(x)

∂xk
ζ−1
0 =

[
∂ζ1(x)

∂xk

∂ζ2(x)

∂xk
· · · ∂ζQ(x)

∂xk

]
ζ−1
0 , k = 1, . . . , n,

where

∂χj(x)

∂xk
=

Q∑
i=1

∂ζi(x)

∂xk
(ζ−1

0 )ij , j = 1, . . . , Q, (3.5)

and
∂ζi(x)

∂xk
=
∂ζi(x)

∂δi

∂δi
∂xk

with
∂δi
∂xk

=
xk − xik
δi

.

3.2 Stability analysis

Definition 3.1. Let the operator I and its inverse D be defined as follow:

I{ξ(δ)} =

∫ ∞

δ

yξ(y)dy,

D{ξ(δ)} = −1

δ
ξ
′
(y).

We introduce ξn,p = Ipξ[n2 ]+p+1 where, ξp = (1− δ)p+ and

ξn,p(δ) =

{
ζj(δ), 0 ≤ δ ≤ 1,

0, 1 ≤ δ,

which ζj(δ) for j = 1, . . . , 6 in the (3.1) are univariate polynomials of degree
[
n
2

]
+ p+ 1 and smoothness 2p.

Definition 3.2. For an integrable and positive definite function g : Rn → R with non-negative and non-vanishing
Fourier transform

g̃(ν) = (
1

2π
)

n
2

∫
Rn

g(x)e−ixT ν dx,

we define the univariate operator Fn{ξ(δ)} as follow:

Fn{ξ(δ)} ≡ g̃(ν) = (
1

2π
)

n
2

∫
Rn

g(x)e−ixT ν dx = (
1

δ
)

n
2 −1

∫ ∞

0

ξ(y)y
n
2 Jn

2 −1(δy) dy,

where ξ(δ) = g(x), δ = ||x− xi||2 and

Jα(ν) =

∞∑
i=0

(−1)i(ν2 )
α+2i

i!Γ(α+ i+ 1)
,

is the Bessel function of the first type. Also, we have

Fn{I{ξ(δ)}} = Fn+2{ξ(δ)}, and Fn{D{ξ(δ)}} = Fn+2{ξ(δ)}.

Definition 3.3. For a set of centers S = {x1,x2, ...,xm} ⊆ Ω ⊆ Rn, the density measure is defined in the form of

h0 = sup
x∈Ω

min
1≤i≤m

||x− xi||2.

Lemma 3.4. For r ∈ N, there exists a δr that

1

πδ
≤ J2

r+ 1
2
(δ) + J2

r+ 3
2
(δ),

for all δ ≥ δr.
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Theorem 3.5. Suppose the Hilbert space Rg include all Ψ : Rn → R, with Fourier transform Ψ̃, which

Ψ(x) = (
1

2π
)

n
2

∫
Rn

Ψ̃(ν)eix
T ν dν,

and
Ψ̃/
√
g̃ ∈ L2(Rn),

with the norm

||Ψ||g = (
1

2π
)

n
4

(∫
Rn

|Ψ̃(ν)|2

g̃(ν)
dν

) 1
2

.

For every h ≤ h0 and Ψ ∈ Rg, whose corresponding CS-RBFs approximation is Φ, the estimate error

||Ψ− Φ||∞ ≤ C||Ψ||ghk,

holds.

Proof . Let l = [n2 ] + p+ 1. Then we have

Fn{ξn,p(δ)} = Fn{Ip{ξl(δ)}} = Fn+2p{ξl(δ)} = (
1

δ
)−n−2p−1

∫ δ

0

(δ − t)lt
n
2 +pJn

2 +p−1(t) dt.

If n = 2k + 1 and r = p+ k, then l = r + 1. Therefore,

Fn{ξn,p(δ)} = F2k+1ξn,p(δ) = (
1

δ
)3r+2

∫ δ

0

(δ − t)r+1tr+
1
2 Jr− 1

2
(t) dt. (3.6)

After integration by parts, we obtain

Fn{ξn,p(δ)} = (
1

δ
)3r+2

(
−(r + 1)(δ − t)rtr+

1
2 Jr+ 1

2
(t)|δ0 + (r + 1)

∫ δ

0

(δ − t)rtr+
1
2 Jr+ 1

2
(t) dt

)

= (
1

δ
)3r+2(r + 1)

∫ δ

0

(δ − t)rtr+
1
2 Jr+ 1

2
(t) dt.

According to Lemma 3.1 in [23], we get

Fn{ξn,p(δ)} = (
1

δ
)3r+2(r + 1)

Γ(r + 1)Γ(2r + 2)Γ(r + 3
2 )

Γ(3r + 3)
23r+

3
2 δr+1 ×

∞∑
j=0

( r+1
2 )j(

r
2 )j

( 3r+3
2 )j

(2r + 2)j
j!

2j + 2r + 1

j + 2r + 1
J2
r+j+ 1

2
(
δ

2
)

≥ Cδ−2r−1 ×
(
J2
r+ 1

2
(
δ

2
) + J2

r+ 3
2
(
δ

2
)

)
≥ Cδ−2r−1 ×

(
1

πδ

)
,

which implies
Fn{ξn,p(δ)} ≥ C1δ

−n−2p−1. (3.7)

The proof of lower bound for Fn{ξn,p} is complete. In order to find the upper bound, we introduce the function
qr as

qr =

{
1− cos(δ), r = 0,

q0 ∗ qr−1(δ), r ≥ 0.
(3.8)

By calculating the Laplace transform, we get

L{qr} = L{q0 ∗ qr−1(δ)} = L{
∫ δ

0

q0(t)qr−1(δ − t) dt} =
1

sr+1(1 + s2)r+1
.
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On the other hand,

L{
∫ δ

0

(δ − t)r+1tr+
1
2 Jr− 1

2
(t) dt} =

r!(r + 1)!2r+
1
2

√
πsr+1(1 + s2)r+1

= Ar
1

sr+1(1 + s2)r+1

= ArL{qr(δ)}
= L{Arqr(δ)}.

Thus, we conclude that ∫ δ

0

(δ − t)r+1tr+
1
2 Jr− 1

2
(t) dt = Arqr(δ). (3.9)

By substituting (3.9) in (3.6), we have

Fn{ξn,p}(δ) = (
1

δ
)3r+2

∫ δ

0

(δ − t)ltr+
1
2 Jr− 1

2
(t) dt

= (
1

δ
)3r+2Arqr(δ)

≤ C2δ
−n−2p−1.

Now, set n = 2k. And r = p+ k. Also, we consider

Fn{ξn,p}(δ) = (
1

δ
)3r+1

∫ δ

0

(δ − t)r+1trJr−1(t) dt,

and

qr(δ) =

{∫ δ

0
J0(t), dt r = 0,

q0 ∗ qr−1(δ), r ≥ 0.

Analogously, we can obtain Fn{ξn,p}(δ) = ( 1δ )
3r+2Arqr(δ) for n = 2k. Consequently, for every space dimension

n and arbitrary p ∈ N0, there are constants δ0, C1 and C2 depending only on dimension n and p such that for the
Fourier transform of ξn,p:

Fn{ξn,p}(δ) ≥ C1δ
−n−2p−1, (3.10)

and for every δ ≥ δ0, we have
Fn{ξn,p}(δ) ≤ C2δ

−n−2p−1. (3.11)

Inequities (3.10) and (3.11) show that the Fourier transform g̃ has the asymptotic behaviour

g̃(ν) = O(||ν||−n−α
2 ) as ||ν||2 → ∞. (3.12)

Thus, from [24] and (3.12), we get
||Ψ− Φ||∞ ≤ C0||Ψ||gh

α
2 ,

for every h ≤ h0 and Ψ ∈ Rg. □

4 Implementing MLPG to PDAEs

4.1 MLPG

Contrary to the Galerkin finite element and element free Galerkin which we consider the global weak-form over
the entire domain Ω for numerically solving the problem, in MLPG method formulation, we work on the weak-form of
the problem over a certain number of sub-domain Ωs and implement the compactly supported radial basis functions
approximation for trial function.

Given that the shape and the size of sub-domains have no effect on the answer, in MLPG methods typically
the sub-domains are considered a circle in 2D and a sphere in 3D with the center at the N × M = Q nodes xi,
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i = 1, · · · , Q, and fix radius r0 in entire domain and boundary. The most significant difference between this method
and the finite element method or any other meshless method is that the local weak-forms are generated on overlapping
local sub-domains instead of using the global weak-form [1].

Integration of the weak-form is performed in local sub-domains with simple geometrical shapes. Therefore, no
elements or background cells are necessary either for interpolation purposes or for integration purposes. The local
sub-domain Ωs can have an arbitrary shape, but it is typically considered as a circle centered at each node xi with a
fixed radius r0 as we have chosen in this paper.

The meshless local Petrov-Galerkin approach is based on asymmetric weak-form (4.3) which was discussed in detail
in [8, 7]. Choosing the trial function and the test function from different spaces is one of the notable features of the
MLPG methods. In particular, the test function should not vanish on the boundary where the essential boundary
conditions are defined. In the present paper, we selected the Heaviside step function as the test function and CS-RBFs
as the trial function in each sub-domain base on the method which was introduced as MLPG5 method in Atluri and
Shen’s results [6].

4.2 Local weak-formulation

Lemma 4.1. Suppose that Ω is an open bounded subset of Rn with piecewise smooth boundary Γ = ∂Ω or the
boundary only is Lipschitz continuous and the scalar-valued function u and vector-valued function V lie in the Sobolev
space. Then, ∫

Ω

u ∇ · V dΩ =

∫
Γ

u V · n̂ dΓ−
∫
Ω

∇u · V dΩ.

Proof . For the scalar-valued function u and vector-valued function V , the product divergence rule is

∇(uV ) = u∇V +∇u · V.

If Ω is an open bounded subset of Rn with boundary Γ, then after integrating over Ω with respect to the standard
volume form of Ω and applying divergence theorem, we obtain∫

Γ

u V · n̂ dΓ =

∫
Ω

∇(uV ) dΩ =

∫
Ω

u∇ · V dΩ +

∫
Ω

∇u · V dΩ, (4.1)

then by rearranging the equation (4.1), the proof is complete. n̂ is the outward unit normal vector to the boundary.
□

Theorem 4.2. The local weak-form formula for problem (2.1) with boundary conditions (2.2) and initial conditions
(2.3) in each sub-domain Ωs is as follow:∫

Γsu

q dΓ +

∫
Ls

q dΓ +D

∫
Ωs

φdΩ− η

∫
Γsu

φdΓ = η

∫
Γsu

φ0 +

∫
Γsq

q̄ dΓ−
∫
Ωs

P dΩ. (4.2)

Proof . Let φ be the trial function and approximate solution to present considered PDAEs (2.1). In each sub-domain

Ω
(i)
s with i = 1, . . . ,M , we write the local weak-forms as∫

Ωs

[Aφt(x, t) +Bφxx(x, t) + Cφx(x, t) +Dφ(x, t)− P (x, t)]µdΩ− η

∫
Γsu

[φ(x, t)− φ(x, t0)]µdΓ = 0,

where

� µ is the test function,

� Ls is a part of local boundary over which no boundary condition is specified,

� Γsq is a part of local boundary over which natural boundary condition is specified,

� Γu is the global boundary over which essential boundary condition is specified,

� Γsu is the part of the local boundary over which essential boundary condition is specified,
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� η >> 1 is a penalty parameter which is used to impose the essential boundary conditions.

The boundary Ωs generally consists of a part Ls located inside the global domain, where no boundary conditions are
specified. Γsu and Γsq located on the global domain boundary Γ, where Dirichlet and Neumann boundary conditions
are given, respectively. For Ωs located entirely within Ω, there is no intersection between Ωs and Γ, hence the integrals
over Γsu and Γsq vanish. Also the boundary integrals over Γsu and Γsq vanish for those sub-domains which entirely
are located in the global domain and there are not any intersection between them and the global domain.

By using the Lemma 4.1 for the local weak-form formula, we obtain the following equation:

A

∫
Γs

φµ · nj dΓ−A

∫
Ωs

φµt dΩ+B

∫
Γs

φxµ · ni dΓ−B

∫
Ωs

φxµx dΩ+ C

∫
Γs

φµ · ni dΓ

−C
∫
Ωs

φµx dΩ+D

∫
Ωs

φµdΩ−
∫
Ωs

PµdΩ− η

∫
Γsu

φµdΓ + η

∫
Γsu

φ0µdΓ = 0.

Thus, ∫
Γs

(Aφδij +Bφx + Cφ)µ.ni dΓ−A

∫
Ωs

φµt dΩ−B

∫
Ωs

φxµx dΩ− C

∫
Ωs

φµx dΩ

+D

∫
Ωs

φµdΩ−
∫
Ωs

PµdΩ− η

∫
Γsu

φµdΓ + η

∫
Γsu

φ0µdΓ = 0. (4.3)

The LSWF is simplified as the following equation:∫
Γs

(Aφδij +Bφx + Cφ).ni dΓ +D

∫
Ωs

φdΩ−
∫
Ωs

P dΩ− η

∫
Γsu

φdΓ + η

∫
Γsu

φ0 dΓ = 0,

where

µ =

{
1, x ∈ Ωs,

0, x /∈ Ωs.

According to the sub-domains boundary, we have∫
Γsq

(Aφδij +Bφx + Cφ) · ni dΓ +

∫
Γsu

(Aφδij +Bφx + Cφ) · ni dΓ +

∫
Ls

(Aφδij +Bφx + Cφ) · ni dΓ

+D

∫
Ωs

φdΩ−
∫
Ωs

P dΩ− η

∫
Γsu

φdΓ + η

∫
Γsu

φ0 dΓ = 0.

After imposing the Neumann boundary conditions (Aφδij +Bφx + Cφ) · ni ≡ q = q̄ on Γsq, we have∫
Γsq

q̄ dΓ +

∫
Γsu

q dΓ +

∫
Ls

q dΓ +D

∫
Ωs

φdΩ−
∫
Ωs

P dΩ− η

∫
Γsu

φdΓ + η

∫
Γsu

φ0 dΓ = 0,

which indicates that (4.2) is valid. □

4.3 Domain discretization

In the MLPG5 method, after substituting the CS-RBF approximations (3.4) and (3.5) to approximate the trial
function in each sub-domain Ωs into the local symmetric weak-form equation (4.2) leads to following linear system:

Q∑
i=1

∫
Γsu

(
Aχi(x)ϕiδij +B

∂χi(x)

∂x
ϕi + Cχi(x)ϕi

)
ni dΓ +

Q∑
i=1

∫
Ls

(
Aχi(x)ϕiδij +B

∂χi(x)

∂n
ϕi + Cχi(x)ϕi

)
ni dΓ +

D

Q∑
i=1

∫
Ωs

χi(x)ϕi dΩ− η

Q∑
i=1

∫
Γsu

χi(x)ϕi dΩ = η

∫
Γsu

φ0 +

∫
Γsq

q̄ dΓ−
∫
Ωs

P dΩ.

(4.4)

In the simplified form is
KΦ = f , (4.5)

where K is the global stiffness matrix and f is the global load vector.
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4.4 Governing equations

Considering two types of nodes in domain and boundary in the current method,

(i) The first type is the internal nodes whose local sub-domains have no intersection with the global boundary (Note:
for the nodes are located close to the global boundary but not exactly on the global boundary, the radius is
considered small enough not to cross the boundary),

(ii) The second type is the boundary nodes whose exactly are located on global boundary,

in linear system (4.5) the governing of the equation of the first type becomes simpler and the entries of the global
stiffness matrix K and the global load vector f are defined by

Kij =

∫
Ls

(
Aχi(xj)δij +B

∂χi(xj)

∂n
+ Cχi(xj)

)
ni dΓ +D

∫
Ωs

χi(xj) dΩ,

fi = −
∫
Ωs

P dΩ,

(4.6)

and in the case of the second type of nodes are defined by

Kij =

∫
Γsu

(
Aχi(xj)δij +B

∂χi(xj)

∂x
+ Cχi(xj)

)
ni dΓ +

∫
Ls

(
Aχi(xj)δij +B

∂χi(xj)

∂n
+ Cχi(xj)

)
ni dΓ

+D

∫
Ωs

χi(xj) dΩ− η

∫
Γsu

χi(xj) dΩ,

fi = η

∫
Γsu

φ0 dΓ +

∫
Γsq

q̄ dΓ−
∫
Ωs

P dΩ.

(4.7)

Figure 1: Distribution of Gaussian points in domain N = 8× 5 and circular sub-domains

Figure 2: Distribution of integration points 10× 10 in ith sub-domain Ωs with the center at the node xi
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5 Numerical examples

Here numerical results are presented to verify the proposed method for linear PDAEs. In Examples 5.1 and 5.2
there is a comparison between the Implicit Crank–Nicolson with HCM which by Multiquadric as an RBF (ICN–
HCM), the Implicit Crank-Nicolson with Multiquadric as an RBF (ICN–Kansa) in [11], the Implicit Crank-Nicolson
with Quasi-Interpolation (ICN–QIE), the Implicit Crank–Nicolson with Finite Difference method (ICN–FDM) in [10]
and our method.

Based on the existing different parameters in our method and their effects on the results, the same as the size
of support, the number of nodes in the main domain, the radius of selected sub-domains, the number of integrating
points in a sub-domain as mentioned before, in this method several parameters affects the accuracy and convergence
of the problem which appear in different process of solving the problem, like writing the weak-form of the problem,
partitioning the domain into sub-domains with centers determined by Gauss method, and selection of local interpolating
CS-RBF instead of a trial function, also by numerically evaluating the integrals with Gauss method. For instance,
determining the number of nodes in the main domain and the boundary, the size of support in the interpolating
function CS–RBF trial function, selected formula, the number of integrating points in each sub-domain. By providing
tables and diagrams, the more important parameters were investigated. The number of integrating points in each
sub-domain, based on examining several examples were considered to be 100 points. For more information about the
integrating methods, see [19] where they were discussed thoroughly.

Since using a meshfree interpolation, we numerically analyze the stability by evaluating the condition number (CN)
of the interpolation matrix, which is defined by

CN(A) =
svmax

svmin
, (5.1)

where svmax and svmin are the largest and smallest singular values of A, respectively. The result were shown in
Tables 5 and 10. It is noticeable that by decreasing the separation distance dx = 1

2 min
i̸=j

||xi − xj ||2, the svmin

approaches zero exponentially. And the growth of svmax is the order of the number of the nodes. It means increasing
the number of nodes to improve the accuracy could cause ill-condition matrix. So there is a contrast between accuracy
and stability. As a measure of the accuracy and convergence, the absolute error, the relative error and the RMS error
were evaluated. The errors are defined as

RMSE =

√√√√ 1

MN

N∑
i=1

M∑
j=1

||Ψ(xi, tj)− Φ(xi, tj)||22, (5.2)

|ek| = |ψk − ϕk|, k = 1, 2,

and

|Ek| = |ψk − ϕk
ψk

|, k = 1, 2, (5.3)

where Φ(x, t) =

(
ϕ1
ϕ2

)
and is the numerical solution and Ψ(x, t) =

(
ψ1

ψ2

)
is the analytical solution.

Example 5.1. Consider a linear PDAE(
1 0
0 0

)
Ψt +

(
−1 0
0 −1

)
Ψxx +

(
1 1
1 −4

)
Ψ = P (x, t),

where t ∈ [0, 1], x ∈ [−1, 1] and E and C are zero matrices. Also, Ψ0, P =

(
P1

P2

)
and q =

(
q1
q2

)
are chosen such that

the exact solution is

Ψ(x, t) =

(
(x2 − 1)cos(πt)
x(1− x)e−t

)
,

and Φ(x, t) =

(
ϕ1
ϕ2

)
is the numerical solution. In Tables 1 and 2, a comparison between different methods and our

method with relative error (5.3) is given. In this example, different cases in terms of the number of nodes were surveyed
in the Table 4. One of the most effective parameters in convergency and accuracy of the proposed method is the size
of support which is surveyed for different values of si in Table 3.



Solving partial-differential algebraic equations with the fifth-Order Meshless Petrov-Galerkin Method by ... 363

Table 1: Comparison of the relative error between results in [10] and our method at t = 0.3 (Example 5.1)

ICN-QIE ICN-Kansa O ur method (ζ6)

x |E1| |E2| |E1| |E2| |E1| |E2|

−0.95 9.10 × 10−4 6.59 × 10−6 6.94 × 10−2 1.38 × 10−3 6.74 × 10−6 5.73 × 10−7

−0.6 1.02 × 10−3 8.19 × 10−5 1.02 × 10−1 1.57 × 10−3 5.63 × 10−7 1.25 × 10−6

−0.25 1.06 × 10−3 3.93 × 10−4 1.05 × 10−1 1.8 × 10−3 4.49 × 10−7 6.17 × 10−6

0.1 1.07 × 10−3 1.46 × 10−3 1.04 × 10−1 2.43 × 10−2 7.18 × 10−7 1.22 × 10−5

0.45 8.04 × 10−3 4.10 × 10−4 1.01 × 10−1 9.48 × 10−3 4.71 × 10−7 4.30 × 10−6

0.8 9.64 × 10−4 2.59 × 10−4 8.71 × 10−2 1.52 × 10−3 1.03 × 10−6 1.08 × 10−5

Table 2: Comparison of the relative error between results in [10] and our method at t = 0.8 (Example 5.1)

ICN-QIE ICN-Kansa O ur method (ζ6)

x |E1| |E2| |E1| |E2| |E1| |E2|

−0.95 1.53 × 10−3 2.21 × 10−5 1.37 × 10−1 5.06 × 10−3 1.39 × 10−7 3.98 × 10−7

−0.6 1.73 × 10−3 3.19 × 10−4 6.42 × 10−2 7.97 × 10−3 2.59 × 10−7 8.29 × 10−7

−0.25 1.83 × 10−3 1.53 × 10−3 6.09 × 10−2 3.35 × 10−3 3.41 × 10−7 1.20 × 10−6

0.1 1.85 × 10−3 5.69 × 10−3 6.01 × 10−2 4.92 × 10−2 3.79 × 10−8 4.45 × 10−6

0.45 1.78 × 10−3 1.60 × 10−3 6.10 × 10−2 2.08 × 10−2 1.70 × 10−8 7.46 × 10−7

0.8 1.62 × 10−3 1.01 × 10−3 6.95 × 10−2 5.72 × 10−3 6.31 × 10−7 9.77 × 10−7

Table 3: Comparison of the absolute error for different size of support at t = 0.3 and N = 32 (Example 5.1)

si=0.5 si=2.5 si=4

x |e1| |e2| |e1| |e2| |e1| |e2|

−0.95 2.25 × 10−2 1.08 × 10−2 2.66 × 10−4 1.93 × 10−2 2.6 × 10−4 2 × 10−2

−0.6 3.53 × 10−3 6.34 × 10−3 2.34 × 10−3 2.54 × 10−3 2.1 × 10−3 2.3 × 10−3

−0.25 2.58 × 10−3 3.75 × 10−3 6.66 × 10−4 9.48 × 10−3 7.0 × 10−4 9.9 × 10−3

0.1 1.73 × 10−3 2.21 × 10−4 1.09 × 10−3 3.91 × 10−4 9.8 × 10−4 3.29 × 10−4

0.45 3.16 × 10−3 7.71 × 10−4 2.85 × 10−3 8.13 × 10−3 2.7 × 10−3 7.16 × 10−3

0.8 1.01 × 10−2 2.03 × 10−2 3.20 × 10−4 3.54 × 10−3 3.25 × 10−4 4.03 × 10−3

Table 4: Comparison of the absolute error for different number of domain nodes at t = 0.3 (Example 5.1)

N=8 N=32 N=105 N=200

x |e1| |e2| |e1| |e2| |e1| |e2| |e1| |e2|

−0.95 2.21 × 10−1 1.00 × 10−1 3.80 × 10−2 1.95 × 10−2 4.45 × 10−2 5.34 × 10−3 3.86 × 10−8 7.86 × 10−8

−0.6 5.41 × 10−3 6.41 × 10−3 3.43 × 10−3 4.09 × 10−3 4.49 × 10−2 3.77 × 10−2 2.12 × 10−8 8.89 × 10−8

−0.25 8.53 × 10−3 2.49 × 10−3 4.90 × 10−3 4.12 × 10−3 1.92 × 10−1 1.56 × 10−1 2.47 × 10−8 1.43 × 10−7

0.1 3.20 × 10−1 8.54 × 10−3 5.24 × 10−3 1.05 × 10−3 4.88 × 10−2 6.45 × 10−2 4.18 × 10−8 8.15 × 10−8

0.45 9.92 × 10−1 9.43 × 10−1 4.17 × 10−3 5.62 × 10−3 1.10 × 10−1 1.77 × 10−1 2.21 × 10−8 7.88 × 10−8

0.8 1.51 × 10+1 1.39 × 10+1 5.88 × 10−3 1.23 × 10−2 1.78 × 10−3 7.19 × 10−2 2.19 × 10−8 1.29 × 10−7

Table 5: Condition number and root mean square error for different size of support and number of nodal points (Example 5.2)

si=0.5 si=2.5 si=4

N RMSE CN RMSE CN RMSE CN

8 9.41 × 10−1 9.58 × 10+3 1.15 × 10−2 9.33 × 10+3 2.00 × 10−2 1.76 × 10+6

32 6.32 × 10−2 1.00 × 10+15 1.25 × 10−3 4.92 × 10+12 4.32 × 10−2 5.75 × 10+13

105 3.34 × 10−2 2.10 × 10+18 2.30 × 10−2 6.53 × 10+14 3.53 × 10−2 8.72 × 10+16

200 1.07 × 10−5 9.00 × 10+19 1.12 × 10−7 2.05 × 10+15 7.02 × 10−5 1.80 × 10+18

Example 5.2. Consider the same problem in Example 5.1. Here, Ψ0, P =

(
P1

P2

)
and q =

(
q1
q2

)
are chosen such that
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Figure 3: Comparison of the absolute error (|E1|(left), |E2|(right)) for different size of support for our method(ζ6) with N = 32
at x = 0.6, (Example 5.1)

the exact solution is

Ψ(x, t) =

(
x5(x2 − 1)cos(πt)
x2(x2 − 1)e−t

)
,

and Φ(x, t) =

(
ϕ1
ϕ2

)
is the numerical solution. In this example, there are a comparison between the ICN–QIE, ICN–

FDM and our method in tables 6 and 7. Also, a comparison between different cases in terms of the number of nodes
in the Table 9 and different sizes of support in the Table 8 are given.

Table 6: Comparison of the relative error between results in [10] and our method at t = 0.8 (Example 5.2)

ICN-QIE ICN-FDM O ur method (ζ6)

x |E1| |E2| |E1| |E2| |E1| |E2|

−0.95 1.09 × 10−4 1.40 × 10−2 1.53 × 10−2 7.97 × 100 1.37 × 10−6 5.46 × 10−6

−0.6 6.05 × 10−4 6.46 × 10−2 6.46 × 10−2 2.28 × 10+1 3.59 × 10−6 2.12 × 10−6

−0.25 1.58 × 10−2 2.67 × 100 2.67 × 100 1.41 × 100 9.80 × 10−5 2.51 × 10−6

0.1 5.89 × 10−1 1.74 × 10+2 7.74 × 10+2 8.92 × 10+2 1.7 × 10−2 2.34 × 10−6

0.45 1.70 × 10−3 5.96 × 10−3 5.96 × 10−3 4.21 × 10+1 8.98 × 10−6 1.94 × 10−8

0.8 2.19 × 10−4 1.44 × 10−2 1.44 × 10−2 1.20 × 10+1 5.26 × 10−7 3.03 × 10−8

Table 7: Comparison of the relative error between results in [10] and our method at x = −0.5 (Example5.2)

ICN-QID ICN-FDM O ur method (ζ6)

t |E1| |E2| |E1| |E2| |E1| |E2|

0.1 1.34 × 10−4 2.83 × 10−6 4.70 × 10−2 3.82 × 100 4.07 × 10−6 2.26 × 10−6

0.3 1.20 × 10−3 1.76 × 10−5 5.87 × 10−2 1.16 × 10+1 5.58 × 10−6 3.60 × 10−6

0.5 ∗ 3.34 × 10−5 ∗ 1.98 × 10+1 ∗ 2.56 × 10−6

0.7 1.88 × 10−3 4.00 × 10−5 1.34 × 10−1 2.88 × 10+ 1.79 × 10−6 3.74 × 10−6

0.9 7.11 × 10−4 2.93 × 10−5 1.30 × 10−1 3.89 × 10+ 3.13 × 10−6 5.45 × 10−6

6 Conclusion

In this paper, we considered a developed formulation of the MLPG method based on the compactly supported
radial basis functions. It was successfully implemented in the numerical solution of linear partial differential equations.
The proposed method was tested on examples in the form of two variables with different numbers of nodes and different
sizes of support. We compared other methods with our result. The comparisons were shown in tables and figures.
The results showed the validity and accuracy of the proposed method and we have got better results compared to the
other methods.
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Table 8: Comparison of the absolute error for different size of support at t = 0.5 and N = 32 (Example 5.2)

si=0.5 si=2.5 si=4

x |e1| |e2| |e1| |e2| |e1| |e2|

−0.95 2.4 × 10−1 1.0 × 10−3 3.19 × 10−3 4.99 × 10−3 9.90 × 10−3 9.04 × 10−3

−0.6 2.3 × 10−1 9.1 × 10−3 2.45 × 10−3 6.07 × 10−3 1.33 × 10−2 6.84 × 10−3

−0.25 6.4 × 10−2 3.7 × 10−4 2.93 × 10−3 1.05 × 10−3 1.73 × 10−2 1.55 × 10−3

0.1 2.7 × 10−2 1.1 × 10−4 2.02 × 10−3 1.47 × 10−2 1.12 × 10−2 1.20 × 10−2

0.45 5.5 × 10−2 2.5 × 10−4 2.89 × 10−5 1.52 × 10−2 1.90 × 10−3 1.32 × 10−2

0.8 5.8 × 10−3 6.5 × 10−3 1.76 × 10−3 1.19 × 10−2 1.24 × 10−2 1.20 × 10−2

Table 9: Comparison of the absolute error for different number of domain nodes at x = 0.3 (Example 5.2)

N=8 N=32 N=105 N=200

t |e1| |e2| |e1| |e2| |e1| |e2| |e1| |e2|

0.1 7.38 × 10−1 3.24 × 100 5.84 × 10−2 4.65 × 10−4 3.52 × 10−4 2.17 × 10−3 6.97 × 10−8 2.91 × 10−7

0.3 1.09 × 10−1 2.36 × 100 1.74 × 10−2 1.22 × 10−2 1.79 × 10−4 2.01 × 10−3 6.87 × 10−8 1.95 × 10−7

0.5 5.05 × 10−1 1.37 × 100 1.32 × 10−3 1.08 × 10−2 3.90 × 10−5 1.86 × 10−3 1.20 × 10−7 5.68 × 10−7

0.7 8.09 × 10−1 6.63 × 10−1 1.65 × 10−2 3.46 × 10−2 8.90 × 10−5 1.51 × 10−3 1.01 × 10−7 6.27 × 10−7

0.9 8.94 × 10−1 3.75 × 10−1 6.12 × 10−2 2.03 × 10−2 2.29 × 10−4 1.11 × 10−3 6.39 × 10−8 3.91 × 10−7

Table 10: Condition number and root mean square error for different size of support and number of nodal points (Example 5.2)

si=0.5 si=2.5 si=4

N RMSE CN RMSE CN RMSE CN

8 9.65 × 10−1 9.58 × 10+3 3.21 × 10−1 9.33 × 10+3 1.03 × 10−1 1.76 × 10+6

32 4.03 × 10−2 1.00 × 10+15 1.50 × 10−2 4.92 × 10+12 4.13 × 10−2 5.75 × 10+13

105 7.13 × 10−3 2.10 × 10+18 3.39 × 10−4 6.53 × 10+14 4.71 × 10−3 8.72 × 10+16

200 2.32 × 10−4 9.00 × 10+19 1.27 × 10−7 2.05 × 10+15 8.12 × 10−5 1.80 × 10+18

Figure 4: Comparison of the absolute error (|E1|(left), |E2|(right)) for different size of support for our method(ζ6) with N = 32
at x = 0.15, Example 5.2
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