Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 1881–1889 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2022.28677.3959

Some notes on the greedy basis for Banach spaces under ε -isometry

Minanur Rohman^{a,b,*}, İlker Eryılmaz^a

^aDepartment of Mathematics, Faculty of Science, Ondokuz Mayıs Üniversitesi, Türkiye ^bDepartment of Primary School Teacher Education, School of Islamic Studies Ma'had Aly Al-Hikam Malang, Indonesia

(Communicated by Choonkil Park)

Abstract

In this paper, we discuss some conditions of a greedy basis for Banach space X under a standard ε -isometry mapping. We show that if X and Y are Banach spaces, (x_n) is a greedy basis for X, and $f: X \to Y$ is a standard ε -isometry, then $(f(x_n))$ is a greedy basis for a subspace of Y. As a result, if f is a surjective standard ε -isometry, then $(f(x_n))$ is a greedy basis for Y. We also show that $span \{(f(x_n))\}^*$ is isomorphic with $\Psi \subset Y^*$ where Ψ is defined as

 $\Psi := \overline{span} \left\{ \psi_n : \psi_n \in Y^* \text{ and } |\langle x_n^*, x \rangle - \langle \psi_n, f(x) \rangle | < 3\varepsilon a \right\}$

where $\|\psi_n\| = a = \|x_n^*\|$.

Keywords: ε -isometry, greedy basis, Banach space, stability 2020 MSC: Primary 46B04; Secondary 46B15, 46B20

1 Introduction

The study of ε -isometry emerged from Mazur-Ulam's paper showing that any surjective isometry mapping $g: X \to Y$ is affine, where X and Y are real Banach spaces [16]. Besides, if g(0) = 0, then g is a linear mapping. These results indicate that isometry mapping has an important role. Note that this result does not work for complex Banach spaces. Hence, X and Y always refer to real Banach spaces. The surjective conditions and g(0) = 0 in the Mazur-Ulam's theorem are weakened by Figiel who showed that for any isometric mapping, there is a bounded linear operator $F: \overline{span}(g(X)) \to X$ with ||F|| = 1 such that $Fg = Id_X$ which shows that the domain of Fg must be X, i.e., for any isometry mapping $g, Fg: X \to X$ is an isometry [11]. ε -isometry is a generalization of the concept of isometry, which was introduced in 1945 by Hyers and Ulam. Suppose that there is a mapping $f: X \to Y$ where X and Y are Banach spaces. If for any $\varepsilon \geq 0$, the mapping f satisfies

$$\left|\left\|f\left(x\right) - f(y)\right\| - \left\|x - y\right\|\right| \le \varepsilon$$

for every $x, y \in X$, then the mapping f is called an ε -isometry. Obviously, 0-isometry is just an isometry. Also, f is called standard if f(0) = 0.

*Corresponding author

Email addresses: minanurrohmanali@gmail.com (Minanur Rohman), rylmz@omu.edu.tr (İlker Eryılmaz)

Hyers-Ulam [14] showed that for any standard surjective ε -isometry mapping f between Hilbert spaces, there is always a surjective isometry mapping g such that

$$\|f(x) - g(x)\| \le 10\varepsilon.$$

To this result, many mathematicians have been interested in looking for the ε -isometry conditions in more general spaces (see [3, 4]) or in reducing the value of 10 in the above inequality (see [12, 13]). Finally, Omladič and Šemrl [18] gave a general result on any real Banach spaces with

$$\|f(x) - g(x)\| \le 2\varepsilon.$$

On the other hand, by providing a counterexample Qian showed that Figiel's theorem does not apply to any ε -isometry and any Banach spaces [19]. Therefore, Cheng *et al.* [6] first provided a solution to this problem, which is to find the stability of the nonsurjective standard ε -isometry under weak topology. The theorem is as follows.

Theorem 1.1. ([6], Lemma 2.4) Suppose that $f: X \to Y$ is a standard ε -isometry. Then for each $x^* \in X^*$, there is $\varphi \in Y^*$ that satisfies $\|\varphi\| = r = \|x^*\|$, such that

$$|\langle x^*, x \rangle - \langle \varphi, f(x) \rangle| \leq \kappa r \varepsilon$$
, for all $x \in X$,

where $\kappa = 4$.

Recently, Cheng and Dong (2020) proved that the constant κ can be optimized to $\kappa = 3$ [5]. The usage of Theorem 1.1 can be found in ([7, 8, 9, 20, 21, 23, 24]). In this paper, the symbols w and w^* will refer to weak and weak^{*} topology, respectively. B_X and S_X are unit ball and unit sphere of a Banach space X, respectively. The other used notions and symbols are commonly found in some textbooks (see [2, 10, 17]).

2 Greedy basis under ε -isometry

Let (x_n) be a Schauder basis for a Banach space X. Then clearly

$$\left\|\sum_{n=1}^{m_1} \alpha_n x_n\right\| \le M \left\|\sum_{n=1}^{m_2} \alpha_n x_n\right\|$$

whenever $m_1, m_2 \in \mathbb{N}$, $m_1 \leq m_2$, and $\alpha_1, \alpha_2, \ldots, \alpha_{m_2} \in \mathbb{F}$. The scalar M is the basis constant for (x_n) . If P_m is a natural projection for (x_n) , i.e., $P_m(\sum_n \alpha_n x_n) = \sum_{n=1}^m \alpha_n x_n$, then

$$||x - P_m(x)|| \le (M+1) \inf_{\{\beta_n\}} \left| x - \sum_{n=1}^m \beta_n x_n \right||$$
 (2.1)

which shows that $P_m(x)$ is a near-best approximation for $x \in X$.

Let x_n^* be the coordinate functional of x_n for each n and rearrange the order of (x_n) by choosing the biggest value of $|\langle x_n^*, x_n \rangle|$ from m elements as the first order. Next, choose the biggest value of $|\langle x_n^*, x_n \rangle|$ from m-1 elements as the second order. Continuing this process, the permutation $\rho:\mathbb{N} \to \mathbb{N}$ can be obtained such that $\left|\langle x_{\rho(j)}^*, x_{\rho(j)} \rangle\right| >$ $\left|\langle x_{\rho(k)}^*, x_{\rho(k)} \rangle\right|$ whenever j < k. Let $A_m(x) \subset \mathbb{N}$ be the set of indices obtained from this process. In this case, the m-th greedy approximation of x is defined as

$$\mathcal{G}_m(x) = \sum_{n \in A_m(x)} x_n^*(x) x_n.$$

The sequence of maps $(\mathcal{G}_m(x))_{m=1}^{\infty}$ is called *greedy algorithm* associated with the basis (x_n) . If the function $\sigma : \mathcal{G}_m(x) \to \mathbb{R}$ is defined as $\sigma(\mathcal{G}_m) = \sup_{\|x\| \le 1} \|\mathcal{G}_m(x)\|$, then the homogeneity of \mathcal{G}_m shows that the function σ is a norm-defined function on $(\mathcal{G}_m(x))_{m=1}^{\infty}$. For convenience, let $\sigma(\mathcal{G}_m) = \|\mathcal{G}_m\|$. Obviously $\|\mathcal{G}_m\| > 0$ and $\|\mathcal{G}_m\| = 0$ if

and only if \mathcal{G}_m is a zero mapping for all m. The triangle inequality follows from the fact that $\mathcal{G}_m(x)$ is just a series. Albiac and Kalton [2] and Temlyakov ([25, 26]) gave the further discussion of this greedy process.

There are two types of bases regarding for greedy approximation $\mathcal{G}_m(x)$. The first type is $\mathcal{G}_m(x) \to x$ as $m \to \infty$ without using unconditional condition of basis (x_n) for X and the second type is using the unconditionality of (x_n) . In the first case, the basis (x_n) is called a quasi-greedy basis while (x_n) is called a greedy basis for the second case.

Definition 2.1. Let X be a Banach space and (x_n) be a basis for X. The basis (x_n) is a quasi-greedy basis if $(\mathcal{G}_m(x))_{m=1}^{\infty}$ converges to x in norm topology for all $x \in X$.

The previous discussion shows that the sequence $(\mathcal{G}_m(x))_{m=1}^{\infty}$ is related to the basis (x_n) . Therefore, to get a quasi-greedy basis, firstly the Banach space X must contain a basis (x_n) .

Definition 2.2. Let X be a Banach space and (x_n) be a basis for X. Assume that (p_n) and (q_n) are sequences of positive integers such that $p_n < q_n$ for each $n \in \mathbb{N}$. Then *Block basic sequence* is a sequence (y_n) such that $y_n = \sum_{i=p_n}^{q_n} x_i^*(x)x_i$ for each n.

Since $||y_n|| = \left\|\sum_{i=p_n}^{q_n} x_i^*(x)x_i\right\| \le M \left\|\sum_{i=1}^n x_i^*(x)x_i\right\|$ for all $q_n \le n$, (y_n) is a basic sequence taken with respect to (x_n) ([2], Lemma 1.3.5). The following theorem gives the rule to decide when a basis is quasi-greedy.

Theorem 2.3. ([27], Theorem 1) A basis (x_n) for a Banach space X is quasi-greedy if and only if there is $C_{qg} \ge 1$ such that $\|\mathcal{G}_m(x)\| \le C_{qg} \|x\|$ for all $x \in X$ and $m \in \mathbb{N}$.

The following proposition is similar to Schauder basis.

Theorem 2.4. ([27], Proposition 3) Let (x_n) be a quasi-greedy basis for a Banach space X and (β_n) be a bounded sequence of nonzero scalars. Then $(\beta_n x_n)$ is also a quasi-greedy basis for X.

Since $0 < ||x_n|| < \infty$ for all elements of a basis, the following definition is reasonable (see [2, 15, 28]).

Definition 2.5. Let X be a Banach space and (x_n) be a basis for X. (x_n) is called a *democratic basis* if blocks of the same size are uniformly comparable under the norm, that is, there is a *democracy constant* $C_d \ge 1$ such that $\left\|\sum_{n \in A} x_n\right\| \le C_d \left\|\sum_{n \in B} x_n\right\|$ for every $A, B \subset \mathbb{N}$ with |A| = |B|.

The constant C_d shows how far a basis being a democracy is. Let an upper democracy function be defined as

$$\chi_{u}(m) = \sup_{|A| \le m} \left\| \sum_{n \in A} x_{n} \right\|$$

and a lower democracy function be defined as

$$\chi_l(m) = \inf_{|A| \ge m} \left\| \sum_{n \in A} x_n \right\|.$$

By this new definition, a basis (x_n) is democratic if and only if $\chi_u(m) \approx \chi_l(m)$, i.e., $\sup \frac{\chi_u(m)}{\chi_l(m)} < \infty$ and $\sup \frac{\chi_l(m)}{\chi_u(m)} < \infty$ (see [2]).

As in inequality (2.1), we have the same result for greedy basis, that is,

$$\|x - \mathcal{G}_m(x)\| \le (K+1) \inf_{\substack{\{\beta_n\}\\A_m(x)}} \left\|x - \sum_{n \in A_m(x)} \beta_n x_n\right\|.$$

Note that the infimum is taken over scalar β_n and the set $A_m(x)$. Therefore, the following definition emerges.

Definition 2.6. Let X be a Banach space and (x_n) be a basis for X. (x_n) is called a *greedy basis* if there is a *greedy constant* $C_g \ge 1$ such that

$$\left\|x - \mathcal{G}_{m}\left(x\right)\right\| \leq C_{g} \inf_{A_{m}\left(x\right), \beta_{n}} \left\|x - \sum_{n \in A_{m}\left(x\right)} \beta_{n} x_{n}\right\|$$

where $\beta_n \in \mathbb{R}$ and A is an index set with $|A_m(x)| = m$.

For simplicity, let $\sum_{m} = \sum_{n \in A_{m}(x)} \beta_{n} x_{n}$. Now we are ready to discuss the stability of greedy basis under ε -isometry mapping.

Theorem 2.7. Let (x_n) be a greedy basis for X and $f: X \to Y$ be a standard ε -isometry. Then $(f(x_n))$ is a greedy basis for span $\{(f(x_n))\} \subset Y$ equivalence to (x_n) .

Proof. Since (x_n) is a greedy basis for X, there exists a set $A_m(x) \subset \mathbb{N}$ with $|A_m(x)| = m$ such that

$$\|x - \mathcal{G}_m(x)\| \le C_g \inf_{\mathbf{z}_m \in \Sigma_m} \|x - \mathbf{z}_m\|$$

whenever $C_g \geq 1$. Recall that $\mathcal{G}_m(x)$ is a greedy approximation for each $x \in X$. Hence there is a unique decreasing sequence $(|x_n^*(x)|)$ of scalars such that $\mathcal{G}_m(x) = \sum_{n \in A_m(x)} x_n^*(x) x_n$. By the definition of $A_m(x)$, each $|x_n^*(x)| > 0$ for all $n \in A_m(x)$, otherwise $|x_n^*(x)| = 0$. Thus $\lim_n x_n^*(x) = 0$. Since f is a standard ε -isometry and there is $\psi_n \in Y^*$ for any $x_n^* \in X^*$ with $\|\psi_n\| = \|x_n^*\|$ (Theorem 1.1), $\sum_{n \in A_m(x)} x_n^*(x) f(x_n)$ must be convergent in Y. This shows that $(f(x_n))$ is a quasi-greedy basis for span $\{(f(x_n))\}$. Let $\delta > 0$. Since $\sum_{n \in A_m(x)} x_n^*(x) f(x_n)$ is convergent to some member of Y, it has some convergent subseries $\sum_{i=1}^{\infty} x_{n_i}^*(x) f(x_{n_i})$. Clearly, every greedy basis is unconditional. Thus, there is an $N(\delta) = N \in \mathbb{N}$ such that for every $m_2 > m_1 \geq N$,

$$\left\|\sum_{n=m_1+1}^{m_2} x_n^*\left(x\right) x_n\right\| < \frac{\delta}{M_0}$$

for some $M_0 < \infty$. Since f is a standard ε -isometry,

$$\left\|\sum_{n=m_1+1}^{m_2} x_n^*\left(x\right) f\left(x_n\right)\right\| < \frac{\delta}{M}$$

for some $M < \infty$. Hence if $N \leq n_k < \cdots < n_{k+l}$, then

$$\left\|\sum_{i=k+1}^{k+l} x_{n_{i}}^{*}(x) f(x_{n_{i}})\right\| \leq M \left\|\sum_{i=n_{k}+1}^{n_{k+l}} x_{i}^{*}(x) f(x_{i})\right\| < \delta$$

which shows that $\sum_{i} x_{n_i}^*(x) f(x_{n_i})$ is Cauchy. If $n_i \notin A_m(x)$ is taken, then

$$\min\left\{ |x_{n}^{*}(x)|: n \in A_{m}(x) \right\} > \max\left\{ \left| x_{n_{i}}^{*}(x) \right|: n_{i} \notin A_{m}(x) \right\}.$$

Since the construction of $A_m(x)$ uses greedy approximation, $(f(x_n))$ is an unconditional basis for span $\{(f(x_n))\}$. Besides, the Cauchy condition of $\sum_i x_{n_i}^*(x) f(x_{n_i})$ implies that for some $r \in \mathbb{N}$

$$\sup_{i \ge r} \frac{\sup_{|A_m(x)| \le m} \left\| \sum_{n_i \in A_m(x)} x_{n_i}^*(x) f(x_{n_i}) \right\|}{\inf_{|A_m(x)| \ge m} \left\| \sum_{n_i \in A_m(x)} x_{n_i}^*(x) f(x_{n_i}) \right\|} < \infty.$$

Hence, $(f(x_n))$ is a democratic basis for $span\{(f(x_n))\}$. These two facts show that $(f(x_n))$ is a greedy basis for $span\{(f(x_n))\}$.

What is left to prove is that (x_n) and $(f(x_n))$ are equivalent greedy bases for X and $span\{(f(x_n))\}$, respectively. Note that if $T: X \to span\{(f(x_n))\}$ is an isomorphism, then

$$T\left(\mathcal{G}_{m}\left(x\right)\right) = \mathcal{G}_{m}\left(T\left(x\right)\right)$$

and so we just need to prove the existence of such isomorphism. For any coordinate functionals $\psi_n \in Y^*$ and $y \in span\{(f(x_n))\}$, let $T: X \to span\{(f(x_n))\}$ be defined as

$$T\left(\sum_{n} x_{n}^{*}(x) x_{n}\right) = \sum_{n} \psi_{n}(y) f(x_{n})$$

By uniqueness of a greedy approximation \mathcal{G}_m , it is easy to show that T is well-defined, linear, and injective. Let (x_n^*, x_n) and $(\psi_n, f(x_n))$ be the orthogonal systems for greedy bases (x_n) and $(f(x_n))$, respectively. Suppose that $u_i \to u \in X$ and $Tu_i \to v \in span \{(f(x_n))\}$. If Tu = v, then T is bounded by the Closed Graph Theorem. Since $\mathcal{G}_m(x)$ and $\mathcal{G}_m(f(x))$ are greedy approximations, we have

$$\lim_{m} \left\| u - \mathcal{G}_m \left(u \right) \right\| = 0$$

and

$$\lim_{m} \left\| v - \mathcal{G}_m \left(f \left(x_n \right) \right) \right\| = 0$$

for any $u \in X$ and $v \in span \{(f(x_n))\}$. Therefore

$$\sum_{n \in A_m(u_i)} x_n^*(u_i) \, x_n = u_i \to u = \sum_{n \in A_m(u)} x_n^*(u) \, x_n.$$

Since $\psi_n \in Y^*$ is a coordinate functional for every n,

$$\sum_{u \in A_m(Tu_i)} \psi_n(Tu_i) f(x_n) = Tu_i \to v = \sum_{n \in A_m(v)} \psi_n(v) f(x_n).$$

The continuity of x_n^* and ψ_n implies Tu = v.

By Theorem 1.1, for any coordinate functional $x_n^* \in X^*$ there is $\psi_n \in Y^*$ with $||x_n^*|| = a = ||\psi_n||$ such that

$$|\langle x_n^*, x \rangle - \langle \psi_n, f(x) \rangle| < 3\varepsilon a$$

for every $x \in X$. Thus, T^{-1} is bounded and so $(f(x_n))$ is a greedy basis for $span\{(f(x_n))\}$ that is equivalent to greedy basis (x_n) . \Box

If f is a standard surjective ε -isometry, then $(f(x_n))$ is a greedy basis for Y. Since T is an isomorphism, there is an isomorphism $T^* : span \{(f(x_n))\}^* \to X^*$ with $||T|| = ||T^*||$ (see [17], Theorem 1.10.12). Hence, the following is just a consequence of Theorem 2.7.

Corollary 2.8. Let (x_n) be a greedy basis for X and $f: X \to Y$ be an ε -isometry with f(0) = 0. If (x_n^*) and (ψ_n) are sequences of coordinate functionals for (x_n) and $(f(x_n))$, respectively, then (x_n^*) and (ψ_n) are greedy basis for X^* and $span \{(f(x_n))\}^*$, respectively.

Theorem 2.9. ([22], Rosenthal) Every bounded sequence in a real or complex Banach space has a weakly Cauchy subsequence.

Theorem 2.10. Let (x_n) be a greedy basis for X and $f: X \to Y$ be an ε -isometry with f(0) = 0. Then there is an isometry mapping $U: X \to Y^{**}$.

Proof. Since (x_n) is a greedy basis, (x_n) is a bounded sequence. Hence, by Theorem 2.9 and Theorem 2.4, the sequence (αx_n) has a subsequence $(\alpha_k x_n)$ which is weakly Cauchy. Since (x_n) and $(f(x_n))$ are equivalent greedy bases, the sequence $\left(f\frac{(\alpha x_n)}{\alpha}\right)$ also has a weakly Cauchy subsequence $\left(f\frac{(\alpha k x_n)}{\alpha k}\right)$. Therefore, the subsequence $\left(f\frac{(\alpha k^{(n)} x_n)}{\alpha k^{(n)}}\right)$

is a weakly Cauchy for any $n \in A_m(f(x))$ where $A_m(f(x))$ is related to $A_m(x)$. Note that $\alpha_k^{(n)} = \sum_{n \in A_m(x)} x_n^*(x)$ whenever x_n^* is a coordinate functional for each n. We can choose n = k such that $\alpha_k^{(k)} = \sum x_k^*(x)$. This shows that $\left(f\frac{(\alpha_k^{(k)}x_n)}{\alpha_k^{(k)}}\right)$ is a weakly Cauchy subsequence independent from x_n . Thus, Theorem 2.7 implies that for m = $1, 2, 3, \ldots, \mathcal{G}_m(y) = \sum_{n \in A_m(y)} \psi_n(y) \left(f\frac{(\alpha_k^{(k)}x_n)}{\alpha_k^{(k)}}\right)$ is a weakly Cauchy sequence of greedy approximation for any $y \in span\{(f(x_n))\}.$

Take a sequence $(y_n^{**}) \subset Y^{**}$ which is weak^{*} convergent to $y^{**} \in Y^{**}$, that is, $y^{**}y^* = w^* - \lim y_n^{**}y^*$. Since each y_n^{**} is a bounded linear functional, the Uniform Bounded Principle implies that Y^{**} is w^* -complete. Put $y_k^{**} = Q\left(f\frac{(\alpha_k^{(k)}x_n)}{\alpha_k^{(k)}}\right)$ where $Q: Y \to Y^{**}$ is canonical embedding. So w^* -completeness of Y^{**} implies that the weak^{*} limit of $\left(f\frac{(\alpha_k^{(k)}x_n)}{\alpha_k^{(k)}}\right)$ exists. Denote this weak^{*} limit by U, that is,

$$U(x_n) = w^* - \lim_k \left(f \frac{\left(\alpha_k^{(k)} x_n\right)}{\alpha_k^{(k)}} \right) \,.$$

Since Q is an isometric isomorphism from Y into Y^{**} , the mapping $U: X \to Y^{**}$ is well defined by Theorem 2.7. For each $n \in \mathbb{N}$, Theorem 1.1 shows that for every $x^* \in S_{X^*}$ there is $\psi \in S_{Y^*}$ such that

$$\left| \left\langle \psi, f \frac{\left(\alpha_k^{(k)} x_n \right)}{\alpha_k^{(k)}} \right\rangle - \left\langle x^*, x_n \right\rangle \right| \le \frac{3\varepsilon}{\alpha_k^{(k)}}$$

If we take the limit as $k \to \infty$, then it is easy to see that

$$\langle \psi, U(x_n) \rangle = \langle x^*, x_n \rangle.$$

As a consequence of the Hanh-Banach Theorem, there is an $x^* \in S_{X^*}$ such that $x^*(x) = ||x||$ for any nonzero $x \in X$ (see[17], Corollary 1.9.8). If we choose $x^* \in S_{X^*}$ such that

$$\left\langle x^*, x_{n_q} - x_{n_p} \right\rangle = \left\| x_{n_q} - x_{n_p} \right\|$$

then

$$\begin{aligned} \|x_{n_q} - x_{n_p}\| &= \langle x^*, x_{n_q} - x_{n_p} \rangle \\ &= \langle \psi, U(x_{n_q}) - U(x_{n_q}) \rangle \\ &= \langle \psi, U(x_{n_q}) \rangle - \langle \psi, U(x_{n_q}) \rangle \\ &\leq \|U(x_{n_q}) - U(x_{n_p})\|. \end{aligned}$$

On the contrary,

$$\begin{aligned} \|U(x_{n_{q}}) - U(x_{n_{p}})\| &= \left\| w^{*} - lim\left(\frac{f\left(m_{k}^{(k)}x_{n_{q}}\right) - f\left(m_{k}^{(k)}x_{n_{p}}\right)}{m_{k}^{(k)}}\right)\right\| \\ &\leq lim inf_{k} \left\| \left(\frac{f\left(m_{k}^{(k)}x_{n_{q}}\right) - f\left(m_{k}^{(k)}x_{n_{p}}\right)}{m_{k}^{(k)}}\right) \right\| \\ &\leq lim inf_{k} \frac{\left\|m_{k}^{(k)}x_{n_{q}} - m_{k}^{(k)}x_{n_{p}}\right\| + \varepsilon}{m_{k}^{(k)}} \\ &= \left\|x_{n_{q}} - x_{n_{p}}\right\|.\end{aligned}$$

Combining the last two inequalities, one gets that $U(x_n)$ is an isometry from X into Y^{**} .

Corollary 2.11. Let (x_n) be a greedy basis for X and $f: X \to Y$ be an ε -isometry with f(0) = 0. Then $(f(x_n))$ is a greedy basis for span $\{(f(x_n))\}^{**} \subset Y^{**}$.

Note that if $\varepsilon = 0$ in Theorem 1.1, then obviously $\langle \psi_n, f(x_n) \rangle = \langle x_n^*, x_n \rangle$. Hence $\psi_n : X^* \to \overline{span}\{(f(x_n))\}^*$ is a linear isometry for each n. Let $\Psi \subset Y^*$ be defined as

$$\Psi := \overline{span} \{ \psi_n : \psi_n \in S_{Y^*} \text{ satisfies Theorem 1.1} \}$$

and every $y \in span \{(f(x_n))\} \subset Y$ be renormed by

$$|||y||| = \sup_{\psi \in S_{\Psi}} \psi(y) \,.$$

Since ψ is a linear isometry for $\varepsilon = 0$, we have $|||y||| = \sup_{x^* \in S_{X^*}} \langle x^*, x \rangle$. Combining this fact and Theorem 2.7, we can deduce that $(f(x_n))$ is isometrically equivalent to the greedy basis (x_n) .

Let $F = \overline{span} \{ (f(x_n)) \}$ for a greedy basis $(x_n) \subset X$. Since each $\psi \in \Psi$ depends on $x^* \in X^*$, if x^* separates points of X then ψ separates points of F. This fact gives the following theorem.

Theorem 2.12. Let X and Y be Banach spaces with Y reflexive, (x_n) be a greedy basis for X and $f: X \to Y$ be an ε -isometry with f(0) = 0. Let $F = \overline{span} \{(f(x_n))\}$ and

$$\Psi := \overline{span} \left\{ \psi_n : \psi_n \in Y^* \text{ and } |\langle x_n^*, x \rangle - \langle \psi_n, f(x) \rangle | < 3\varepsilon a. \right\}$$

If Ψ separates the points of F, then Ψ is linearly isomorphic to F^* .

Proof. Since Ψ separates the points of F, Ψ is a Hausdorff subspace. Hence for any $y^* \in \Psi$, there is a unique $x^* \in X^*$ such that $y^* = \psi_{x^*}$. Now, take any $y \in F$ and define $T : \Psi \to F^*$ as

$$T(y^*)(y) = T(\psi_{x^*})(y) = \psi_{x^*}(y)$$

Clearly, T is a linear operator. Since $(f(x_n))$ is a greedy basis for F (Theorem 2.7), T is bounded by the definition of greedy basis. If $\psi_{x^*}(f(x_n)) = 0$ for all n, then $\psi_{x^*} = 0$ and so Theorem 1.1 says that $x^* = 0$. Therefore, T is a one-to-one, bounded and linear operator.

The definition of T implies that $T(\Psi) \subset Y^*$ is a w^* -closed subspace. Besides, the Hanh-Banach Theorem shows that $\overline{T(\Psi)}^{w^*} = F^*$. Since Y is a reflexive space, $\overline{T(\Psi)}^{w^*} = \overline{T(\Psi)}^w = \overline{T(\Psi)}^{\|\cdot\|}$. Note that Ψ is a closed subspace of Y^* . If $F^* \subset Y^*$ is also a closed subspace, then the proof will be completed by deploying the Inverse Mapping Theorem.

Let $(y_n^*) \subset T(\Psi)$ be a sequence that converges to $y^* \in F^*$. Then for any $y \in F$

$$\lim_{n \to \infty} T(y_n^*)(y) = \lim_{n \to \infty} \psi_{x_n^*}(y)$$

exists for all n. Since $(x_n^*) \subset X^*$, its limit exists and say that $x_n^* \to x^*$. Thus, there is a subsequence $(x_{n_i}^*) \subset (x_n^*)$ such that

$$\lim_{i} \psi_{x_{n_{i}}^{*}} \left(f\left(x_{m}\right) \right) = \lim_{n} \psi_{x_{n}^{*}} \left(f\left(x_{m}\right) \right) = \psi_{x^{*}} \left(f\left(x_{m}\right) \right)$$

for all m. Therefore the following limit

$$\lim \psi_{x_{n}^{*}}(y) = \psi_{x^{*}}(y)$$

exists for all $y \in F$ and so $\overline{T(\Psi)}^{w} = T(\Psi) = F^*$. As a result, this shows that F^* is a norm-closed subspace. \Box

Acknowledgments

We thank OMU Functional Analysis and Function Theory Research Group (OFAFTReG) for discussion in the topic. The authors also thank the reviewers for their meaningful comments and suggestions.

References

- F. Albiac, J. L. Ansorena, S. J. Dilworth, and D. Kutzarova, Banach spaces with a unique greedy basis, J. Approx. Theory 210 (2016), 80–102.
- [2] F. Albiac and N.J. Kalton, Topics in Banach Space Theory, second edition, Springer, New York, 2016.
- [3] R. Bhatia and P. Semrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997), 497–504.
- [4] D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714.
- [5] L. Cheng and Y. Dong, A note on the stability of nonsurjective ε-isometries of Banach spaces, Proc. Amer. Math. Soc. 148 (2020), 4837–4844.
- [6] L. Cheng, Y. Dong and W. Zhang, On stability of nonlinear non-surjective ε-isometries of Banach spaces, J. Funct. Anal. 264 (2013), 713–734.
- [7] L. Cheng, Q. Fang, M. Kato and L. Sun, Classification of ε-isometries by stability, Pure Appl. Funct. Anal. 5 (2020), 555–577.
- [8] L. Cheng and Y. Zhou, On perturbed metric-preserved mappings and their stability characterizations, J. Funct. Anal. 266 (2014), 4995–5015.
- [9] D. Dai and Y. Dong, Stability of Banach spaces via nonlinear ε-isometries, J. Math. Anal. Appl. 414 (2014), 996–1005.
- [10] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2010.
- [11] T. Figiel, On nonlinear isometric embedding of normed linear space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 16 (1968), 185–188.
- [12] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983), 633–636.
- [13] P. M. Gruber, *Stability of isometries*, Trans. Amer. Math. Soc. **245** (1978), 263–277.
- [14] D.H. Hyers and S.M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292.
- [15] S.V. Konyagin and V.N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365–379.
- [16] S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C R Acad. Sci. Paris 194 (1932), 946–948.

- [17] R.E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1991.
- [18] M. Omladič and P. Šemrl, On nonlinear perturbation of isometries, Math. Ann. 303 (1995), 617–628.
- [19] S. Qian, ε -isometries embeddings, Proc. Amer. Math. Soc. **123** (1995), 1797–1803.
- [20] M. Rohman and İ. Eryılmaz, Weak stability of ε -isometry mapping on real Banach spaces, Eur. J. Sci. Tech. **34** (2022), 110–114.
- [21] M. Rohman, R.B.E. Wibowo and Marjono, Stability of an almost surjective epsilon-isometry mapping in the dual of real Banach spaces, Aust. J. Math. Anal. Appl. 13 (2016), 1–9.
- [22] H. Rosenthal, A characterization of Banach spaces containing c₀, J. Amer. Math. Soc. 7 (1994), 707–748.
- [23] L. Sun, A note on stability of non-surjective ε -isometries between the positive cones of L^p spaces, Indian J. Pure Appl. Math. **52** (2021), 1085–1092.
- [24] L. Sun, Hyers-Ulam stability of ε -isometries between the positive cones of c_0 , Results Math. 77 (2022), no. 1, Paper No. 37.
- [25] V.N. Temlyakov, Greedy approximation, Acta Numer. 17 (2008), 235–409.
- [26] V. Temlyakov, Greedy Approximation, Cambridge University Press, Cambridge, 2011.
- [27] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2000), 293–314.
- [28] P. Wojtaszczyk, Greedy type bases in Banach spaces, Const. Theory Funct., DARBA, Sofia, 2003, pp. 136–155.