
Int. J. Nonlinear Anal. Appl. 14 (2023) 7, 327–330
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.28135.3813

On CLS-modules and the S-closure of a submodule

Bahram Vakili

Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran

(Communicated by Abasalt Bodaghi)

Abstract

A module M is called a CLS-module if every S-closed submodule of M is a direct summand of M [9]. We give a
characterization for CLS-modules and obtain a sufficient condition for CLS-submodules of a CLS-module. Also, we
characterize the splitting property in terms of UT -modules and the S-closure of submodules.
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1 Introduction

In what follows, all rings R have identities and all modules are unitary right R-modules, unless otherwise stated.
Let us give some basic notations and terminologies. If M is a module, then the notations A ≦ M , A ≦e M mean A
is a submodule of M , A is an essential submodule of M , respectively. The singular submodule of M is Z(M) = {m ∈
M | annr(m) ≦e RR}. M is called a singular module if Z(M) = M ; and M is nonsingular if Z(M) = 0. The singular
submodule of RR is denoted by Zr(R).

Recall from [3] that a submodule A of a module M will be called S-closed if M/A is nonsingular (In [10], Tercan
and Yücel call S-closed by “z-closed”). We use L∗(M) to denote the collection of all S-closed submodules of M . A
submodule K of M is called closed (in M) if K has no proper essential extension in M. In general, closed submodules
need not be S-closed. For example, 0 is a closed submodule of any module M , but 0 is S -closed in M only if M is
nonsingular. It is well known that, every S-closed submodule of a module M is a closed submodule, and every closed
submodule of a nonsingular module is S-closed in M . (For example, see [7, Lemma 2.3] or [3, Proposition 2.4].)

Let M be an R-module and A ≦ M . The purpose of this paper is to study the S-closure of A in M . In section 2,
we show that if M is nonsingular and K is the S-closure of a submodule A in M , then K is the only essential closure
of A (i.e. maximal essential extention (see [8])) in M ; in particular, K is the only S-closed submodule of M for which
A ≦e K. This generalizes [3, Proposition 2.3(c)] without the condition Zr(R) = 0.

A module M is said to be a CLS-module if every S-closed submodule of M is a direct summand of M [9]. We
give a characterization for CLS-modules, and we show that if M is a CLS-module and L is a submodule of M with
the property that X ≦⊕ M implies X ∩ L ≦⊕ L, then L is a CLS-module. As a consequence, every fully invariant
submodule and every distributive submodule of a CLS-module is a CLS-module.
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An important question for a module over a commutative ring is: when does it split, in the sense that its singular
submodule is a direct summand? As in [1], a ring R has the splitting property (SP ) if every R-module splits. We
characterize the splitting property in terms of UT -modules and the S-closure of submodules.

2 The results

Let M be an R-module and A ≦ M . Recall from [3] that the S-closure of A in M is the intersection of all S-closed
submodules of M containing A.

Proposition 2.1. Let M be a nonsingular R-module, A ≦ M and K be the S-closure of A in M . Then K is the
only essential closure of A in M .

Proof . We know that the essential closure always exists. Now let K ′ be an essential closure of A in M . Hence
A ≦e K ′ and K ′ is closed in M . But since M is nonsingular so K ′ is S-closed in M , i.e. K ′ ∈ L∗(M), and so
K = ∩

A⊆N∈L∗(M)
N ⊆ K ′. Now, A ≦ K ≦ K ′ and A ≦e K ′ , hence K ≦e K ′ and since K is closed in M so K = K ′.

Therefore, K is the only essential closure of A in M . □

Recall from [8] that a module M is called UC-module if every submodule has a unique essential closure in M . An
immediate consequence of 2.1 is the following corollary which is a Johnson’s result [4, Theorem 6.4].

Corollary 2.2. Every nonsingular module is a UC-module.

The next result is a generalization of [3, Proposition 2.3(c)] without the condition Zr(R) = 0.

Proposition 2.3. Let M be a nonsingular R-module, A ≦ M and K be the S-closure of A in M . Then K is the
only S-closed submodule of M for which A ≦e K.

Proof . We know that K is closed in M . Also by 2.1, A ≦e K. Now let K ′ ∈ L∗(M) with A ≦e K ′. We have
A ≦ K ≦ K ′ and A ≦e K

′ . Hence K ≦e K
′ and since K is closed in M so K = K ′, as required. □

Let M be an R-module. The S-closure of any submodule of M is S-closed in M , and the S-closure of any S-closed
submodule A of M is A itself. Therefore, M is a CLS-module if and only if the S-closure of any submodule of M is a
direct summand of M . The following proposition gives a characterization for CLS-modules in the case that the ring
is nonsingular.

Proposition 2.4. Let M be an R-module. If for every A ≦ M there exists an S-closed submodule K of M such that
K is a direct summand of M with K ⊇ A and K/A is singular, then M is a CLS-module. The converse is true if R
is nonsingular.

Proof . Suppose that M has the stated property. Let A be an S-closed submodule of M . By hypothesis, there exists
an S-closed submodule K of M such that K is a direct summand of M with K ⊇ A and K/A is singular. Since A
is S-closed in M , K/A ≦ M/A implies that K/A is nonsingular. Hence K/A is both singular and nonsingular, which
implies that K/A = 0 and so K = A. Therefore, A is a direct summand of M . It follows that M is a CLS-module.

Conversely, let R be nonsingular and M be a CLS-module. Let A ≦ M . Suppose that K is the S-closure of A
in M . Hence K ⊇ A and K is S-closed in M . Also since Zr(R) = 0, it follows from [3, Proposition 2.3(a)] that
K/A = Z(M/A). Hence K/A is singular. Also since M is a CLS-module and K is S-closed in M , so K is a direct
summand of M . □

The following proposition gives a sufficent condition for CLS-submodules of a CLS-module.

Proposition 2.5. Let M be a CLS-module. Let L be a submodule of M with the property that X ≦⊕ M implies
X ∩ L ≦⊕ L. Then L is a CLS-module.

Proof . Let A ≦ L. Then A ≦ M and since M is a CLS-module, it follows from Proposition 2.4 that there exists
an S-closed submodule K of M such that K is a direct summand of M with K ⊇ A and K/A is singular. Now, by
hypothesis, K ≦⊕ M implies that K ∩ L ≦⊕ L. Now, K ∩ L ⊇ A and (K ∩ L)/A is a submodule of the singular
module K/A, so (K ∩L)/A is sigular. On the other hand, L/(K ∩L) ∼= (K +L)/K ≦ M/K implies that K ∩L is an
S-closed submodule of L. Therefore, by Proposition 2.4, L is a CLS-module. □
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Given any map f : M → N in Mod-R, we have f(Z(M)) ⊆ Z(N). In particular, for any module M we have
f(Z(M)) ⊆ Z(M) for all f ∈ EndR(M), so that Z(M) is a fully invariant submodule ofM . (Recall that a submodule A
of M is called a fully invariant submodule if f(A) ⊆ A for all f ∈ EndR(M).) Also, since HomR(Z(M), Z(M)/N) = 0
for all N ∈ L∗(Z(M)), so L∗(Z(M)) = {Z(M)}, i.e. Z(M) is the only S-closed submodule of Z(M). It follows that
Z(M) is a CLS-module for any module M . In general we have the following corollary:

Corollary 2.6. Let M be a CLS-module. Then every fully invariant submodule of M is a CLS-module.

Proof . Let L be a fully invariant submodule of M . If M = X⊕X ′ for some X, X ′ ≦ M , then L = (L∩X)⊕(L∩X ′).
It follows from Proposition 2.5 that L is a CLS-module.. □

A submodule A of an R-module M is called a distributive submodule if A ∩ (X + Y ) = (A ∩X) + (A ∩ Y ), for all
submodules X, Y of M . Clearly, if L is a distributive submodule of M then X ≦⊕ M implies X ∩L ≦⊕ L. Hence we
have the following corollary by using Proposition 2.5.

Corollary 2.7. Let M be a CLS-module. Then every distributive submodule of M is a CLS-module.

In the rest of this section, R will denote a commutative ring. Recall from [5] and [2] that an R-module N is UF if
N is a nonsingular module and ExtR1 (N,S) = 0 for all singular modules S. Motivated by [5] and [2], we say that an
R-module S is UT if S is a singular module and ExtR1 (N,S) = 0 for all nonsingular modules N . An R-module M is
called split if Z(M) is a direct summand of M . As in [1], a ring R has spliting property (SP ) if every R-module splits.
An immediate consequence of Cateforis and Sandomierski [1, Proposition 1.12] is the following proposition.

Proposition 2.8. For any ring R, the following statements are equivalent:

1. R has SP ;

2. Z(R) = 0, and every nonsingular R-module is UF ;

3. Z(R) = 0, and every singular R-module is UT .

To prove the main results of this part, we first bring the following proposition.

Proposition 2.9. Let R be a nonsigular ring. Then the following statements are equivalent:

1. Every singular R-module is UT ;

2. For every R-module M , K/A is a UT -module for all A ≦ M , where K is the S-closure of A in M .

Proof . (i) ⇒ (ii): Let M be an R-module and A ≦ M . Suppose that K is the S-closure of A in M . Since R is
nonsigular , it follows from [3, Proposition 2.3(a)] that K/A = Z(M/A). Hence K/A is a singular R-module and so
K/A is a UT -module by (i).

(ii) ⇒ (i): Let S be a singular R-module. Then there exist R-modules A ≦e B such that M ∼= B/A by [6, Example
7.6(3)]. Suppose that K is the S-closure of A in B. By (ii), K/A is a UT -module. Now, A ≦ K ≦ B and A ≦e B
implies that K ≦e B. But since K is S-closed in B so K is closed in B and it follows that K = B. Hence B/A = K/A
is a UT -module. Therefore, M is a UT -module. □

Combining Propositions 2.8 and 2.9, we are now ready to state the most important result of this paper, which is
a characterization of rings with SP in terms of UF - modules, UT -modules and the S-closure of submodules.

Corollary 2.10. For any ring R, the following statements are equivalent:

1. R has SP ;

2. Z(R) = 0, and every nonsingular R-module is UF ;

3. Z(R) = 0, and every singular R-module is UT .

4. Z(R) = 0, and For every R-module M , K/A is a UT -module for all A ≦ M , where K is the S-closure of A in M .

Acknowledgement

The author would like to thank the referee for his/her helpful comments. The research was supported in part by
a grant from Islamic Azad University, Shabestar Branch.



330 Vakili

References

[1] V.C. Cateforis, and F.L. Sandomierski, The singular submodule splits off, J. Algebra 10 (1968), 149–165.

[2] J.D. Fuelberth and M.L. Teply, The torsion submodule of a finitely generated module splits off, Pacific J. Math.
40 (1972), 73–82.

[3] K.R. Goodearl, Ring Theory, Marcel Dekker, New York, 1976.

[4] R.E. Johnson, Structure theory of faithful rings II, Trans. Amer. Math. Soc. 84 (1957), 523–544.

[5] I. Kaplansky, The splitting of modules over integral domains, Arch. Math. 13 (1962), 341–343.

[6] T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.

[7] F.L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.

[8] P.F. Smith, Modules for which every submodule has a unique closure, Ring Theory (S. K. Jain and S. T. Rizvi,
eds.), World Scientific, 1993, pp. 302-313.

[9] A. Tercan, On CLS-modules, Rocky Mountain J. Math., 25 (1995), 1557–1564.
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