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Abstract

In this article, we proposed a new lifetime model the so-called Slash Lindley- Rayleigh model. The new model is yielded
as a ratio of 2-independent random variables, namely, a Lindley-Rayleigh model (numerator) divided by a special case
of Beta distribution (denominator), specifically, an exponent to the uniform model. This proposed distribution may
be theorized as stretching for a Lindley Rayleigh model, which is more flexible as concerns the kurtosis of the model.
Certain important probabilistic and statistical characteristics have been founded, and the parameters of the model were
estimated depending on the maximum likelihood approach. The simulation study technique has been implemented to
assess the performance of the ML method by using the Monte Carlo technique. Also, real sample data of lifetimes
were applied to state the usefulness and flexibility of the new model to model a positive date with surplus kurtosis.
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1 Introduction

Lindley [20] raised the Lindley (”Lin” for short) probability density function (pdf) for dealing with observations of
lifetime which relates to the exponential family. The model of Lindley can be used instead of an exponential positive
data model in case of the hazard rate pattern is unimodal or bathtub (Bakouch et al.) [6], see also Mohammed et. al.
[3], Rawaa and Mahdi [5]. The mathematical and probabilistic characteristics and the MLE problem for the parameter
of the Lin- model were derived by Ghitany et al [13]. Mazucheli and Achcar [21] concluded that the Lin- model was
more flexible in comparison with the exponential model beside it can be considered a good choice to use it instead of
exponential or Weibull models. The Ray- model was proposed by Rayleigh (”Ray” for short) in (1880) as a particular
case of the Weibull model of cdf given by

G (x) =

{
1− e

−x2

2α x > 0,
0, elsewhere

Several formulas for the Ray-distribution have been devoted to supplying flexibility to model a positive sample.
Dyer and Whisenand [11] used the Ray model in the engineering field. Fernandez [12] discussed the parameter
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estimation of the Ray- model. The transmuted Ray-model was developed by Merovci [22], Afaq et.al. [2] studied the
transmuted inverse Ray- model and its properties, Alaa and Iqbal derived the reliability and hazard rate functions
estimates of the Rayleigh-Logarithmic model [17]. The model of Slashed generalized Rayleigh was discussed by Yuri
et al.[18]. Lately, Cakmakyapan et al. [8] have proposed models of Lin-G, that can be yielded through taking the
integration for the pdf corresponding to the Lin- model. To be more accurate and clear, an r.v. X follows a Lin –G
(LG) pdf If its cdf is given by

FLG(x; θ, ω) =

∫ − ln(1−G(x,ω))

0

θ2

1 + θ
(1 + t) exp(−θt)dt

= 1−
(
1− θ

1 + θ
ln[1−G(x,ω)]

)
[1−G(x,ω)]θ

(1.1)

And so, the pdf is given by

fLG(x; θ,ω) =
θ2

1 + θ
g(x,ω)[1− ln(1−G(x,ω))][1−G(x,ω)]θ−1 where x > 0

where G(x,ω) is the cdf of the baseline probability density function, g(x,ω)) represents its pdf and ω denotes to
vector of the parameters in G.

The particular state assumed by eq. (1.1) is the family of the Lindley-Rayleigh (LR) model which is obtained
when G denotes the distribution function of the one-parameter Rayleigh model, namely, an r.v. X is distributed a LR
model, represented by LR(α, θ) ), if its pdf is given by

fX (x; θ, α) =
θ2

α (1 + θ)
x

[
1 +

x2

2α

]
e
−
(

x2

2α

)
, x > 0 (1.2)

where α > 0 is a scale parameter,and θ > 0 is the shape parameter.

The LR model has been considered to increase the flexibility of the Lin-model via combining a single extra pa-
rameter, which it means that Ray- model is assumed to be the baseline pdf. Despite that, the right tail of the LR
distribution is not heavy enough to conciliate data with surplus kurtosis and data with outliers. It is worth mention-
ing that this kind of data appears repeatedly in applied research in various fields like reliability and survival analysis,
biometry, demography, environmental sciences, engineering fields, actuarial and management sciences, and some other
fields. To vanquish this restriction, in this article we proposed an extension of the LR model, the so-called Slash
Lindley-Rayleigh (SLR) model. And to be more precise, the SLR model can be given by the ratio of 2- i.r.vs., the first
one is the LR model in the numerator, and the second one is the exponent of a rectangular model (denominator). The
new model will be shown later that it can be used instead of the LR law to model observations that show a surplus
kurtosis. It is important to mention that the SLR is yielded by using the same concept as that applied in Torres
et. al. [15], and Venegas et.al [16], where the slash-elliptical model was obtained as a ratio of 2-independent r.vs.,
an elliptical model (numerator) divided by an exponent of a uniform pdf (denominator), yielding a distribution with
more heaviness tail than the elliptical or normal distributions.

A principal benefit of that technique is that a certain symmetric models can be simply developed to uphold the
increased kurtosis. An analogous concept also has been used to lifetime r.vs. in Gomez et.al. [14] , Monasterio et. al.
[23] , Bolfarine et.al [25, 24], and Hugo et. at. [28] ,and others [7, 27, 10, 26, 1, 19].

Our article is organized as follows: More than one statistical representation of the SLR distribution are proposed
in closed forms and figures of the probability density function with various parameters values are presented. Some
statistical characteristics have been concluded, like the non central moments, geometric mean, the reliability and
failure rate functions which also are given in closed forms, all those are discussed in section 2. In section 3 , the
MLE method is used to estimate parameters of the distribution by solving non-linear system of equations by using
R- program . In section 4, A simulation data is applied to show the usefulness and flexibility of the proposed model
Finally, in section 5, the conclusions are summarized.

2 The New Lifetime SLR Model

In this section, firstly we introduce more than one probabilistic form of the SLR model together with analytical
formulas for both pdf and cdf. Then, some mathematical and statistical characteristics of the model are derived.
Specifically, closed forms are derived for the moments including mean, and variance, and besides the geometric mean,
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also the skewness and kurtosis coefficients have been derived which vary with respect to variation of the parameter
values. Also, the reliability and hazard functions are studied and show different shapes.

Definition 2.1. Suppose that X denotes a LR(α, θ) model given in eq. 1.2 with U follows the rectangular model
with the interval (0, 1). A r.v. Y follows a SLR model, denoted by:

Y =
X

U
1
q

, q > 0 (2.1)

where X and U are independent.

Proposition 2.2. Suppose that Y denotes to a SLR (α, θ, q) model. Then the pdf of Y is given by:

fY (y;α, θ, q) =
θ2

α (1 + θ)
y

∫ 1

0

t
2
q

[
1 +

y2t
2
q

2α

]
exp

[
−θ

(
y2t

2
q

2α

)]
dt (2.2)

where α > 0 denotes the scale parameter, θ > 0 is the shape parameter, and q > 0 is a kurtosis parameter.

Proof . Using a probabilistic formula given in eq. (2.1) the transformation of the variables technique, getting the
Jacobian, and calculate the pdf of Y as follows: From eq. (1.2) we have X ∼ LR (α, θ) and U ∼ u ∈ (0, 1), then by

using the transformation Y = X

U
1
q
and T = U , we have X = Y T

1
q , where value of the Jacobian is calculated by:

∥J∥ =

∥∥∥∥∥ ∂x
∂y

∂x
∂t

∂u
∂y

∂u
∂t

∥∥∥∥∥ =

∥∥∥∥∥ t1/q y 1
q t

1

q−1

0 1

∥∥∥∥∥ = t1/q.

So, the j.p.d.f. of Y and T are given by

f (y, t) =
θ2

(1 + θ)α
yt

1
q

[
1 +

y2t
2
q

2α

]
e
−θ

(
y2t

2
q

2α

)
.t

1
q , y > 0, 0 < t < 1. (2.3)

Now by integrating eq.2.3 with respect to the variable T , we get the marginal probability function of the r.v.Y
which represent the required result. □

3 Results

Theorem 3.1. Suppose that Y denotes a SLR(α, θ, q) model. Then,

fY (y;α, θ, q) =
q (2α)

q
2

(1 + θ) θ
2
q yq+1

[
θγ

(
q

2
+ 1,

θy2

2α

)
+ γ

(
q

2
+ 2,

θy2

2α

)]
, y > 0 (3.1)

where γ denotes to lower incomplete gamma function which is written as [9]

γ (s, z) =

∫ z

0

ts−1e−t dt (3.2)

furthermore, the upper incomplete gamma function is given as [9]

Γ(s, z) =

∫ ∞

z

ts−1e−tdt (3.3)

Proof . Using the substitution w = θy2t
2
q

2α in eq. (2.2) and solving the integration:

fY (y;α, θ, q) =
θ2

(1 + θ)α
y

∫ 1

0

t
2
q

[
1 +

y2t
2
q

2α

]
e
−θ

(
y2t

2
q

2α

)
dt.
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Let w = θy2t
2
q

2α , then t
2
q = 2α

θy2w. So, we have t =
(

2α
θy2

) q
2

w
q
2 . This implies that

dt =

(
2α

θy2

) q
2 q

2
w

q
2−1 dw.

Thus,

fY (y;α, θ, q) =
θ2

(1 + θ)α
y

∫ θy2

2α

0

(
2α

θy2

)
w
[
1 +

w

θ

]
e−w

(
2α

θy2

) q
2 q

2
w

q
2−1 dw

=
q (2α)

q
2

(1 + θ) θ
q
2−1yq+1

[∫ 2α
θy2

0

w
q
2 e−wdw +

1

θ

∫ 2α
θy2

0

w
q
2+1e−wdw

]
.

Using definition of the lower incomplete gamma function, we get

fY (y;α, θ, q) =
q (2α)

q
2

(1 + θ) θ
q
2 yq+1

[
θγ

(
q

2
+ 1 ,

θy2

2α

)
+ γ

(
q

2
+ 2,

θy2

2α

)]
.

□

Theorem 3.2. Suppose that Y is a SLR(α, θ, q) model. Then,

fY (y;α, θ, q) =
q2(2α)q/2

2(1 + θ)θq/2yq+1

(
1 + θ +

q

2

)[
Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

)]
− q

(1 + θ)y

[
1 + θ +

q

2
+

θy2

2α

]
exp

[
−θy2

2α

]
, y > 0

(3.4)

Proof . To prove that we can use the following characteristics concern with gamma, lower, and upper incomplete
gamma functions [9]

1. Γ(a+ 1) = aΓ(a)

2. γ(a, z) = Γ(a)− Γ(a, z), a ̸= 0,−1,−2, . . .

3. Γ(a+ 1, z) = aΓ(a, z) + zae−z

By returning to eq. 3.1, we have

γ

(
q

2
+ 1,

θy2

2α

)
=

q

2

(
Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

))
− θ

q
2 yq

(2α)
q
2

e−
θy2

2α (A)

where we use here z = θy2

2α and a = q
2 . Also, we have

γ

(
q

2
+ 2,

θy2

2α

)
= Γ

(q
2
+ 2
)
− Γ

(
q

2
+ 2,

θy2

2α

)
and here if we use a = q

2 + 1 z = θy2

2α , we have the left side

q

2

(q
2
+ 1
)(

Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

))
−
(q
2
+ 1
) θ

q
2 y

(2α)
q
2

e
−θy2

2α − θ
q
2+1yq+2

(2α)
q
2+1

· e
−θy2

2α . (B)

Now, by putting the relations (A) and (B) in eq. (3.1), we will get the result. □

The following result is very important, because it will be used in the parameters estimation problem of SLR
distribution by MLE method.

Corollary 3.3. Suppose that Y/U = u denotes to a r.v. follows LR(u
−2
q α , θ ) distribution, where U denotes the

rectangular distribution on (0, 1). Hence, Y has a SLR(α, θ, q) distribution.
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Proof . If (Y/U = u) ∼ LR
(
u

−2
q α, θ

)
, then

fY/U

(
y; u

−2
q α, θ

)
=

θ2

u
−2
q α(1 + θ)

y

[
1 +

y2

2u
−2
q α

]
exp

[
−θ

(
y2

2u
−2
q α

)]

=
θ2

(1 + θ)

(
yu

2
q

α

)[
1 +

y2u
2
q

2α

]
exp

[
−θ

(
y2u

2
q

2α

)]

and

fY (y;α, θ, q) =

∫ 1

0

fY/U

(
y; u

−2
q α, θ

)
fU (u)du

=
θ2

(1 + θ)

∫ 1

0

(
yu

2
q

α

)[
1 +

y2u
2
q

2α

]
exp

[
−θ

(
y2u

2
q

2α

)]
du

=
θ2

α(1 + θ)
y

∫ 1

0

u
2
q

[
1 +

y2u
2
q

2α

]
exp

[
−θ

(
y2u

2
q

2α

)]
du. (3.7)

Now, if we follow the same transformation using in the proof of Theorem 3.2, namely, w = θ

(
y2u

2
q

2α

)
, then, find the

Jacobian calculate the integral with respect to the variable U over (01), we will find that the formula of the marginal
probability density function for the r.v.Y is given by the form:

fY (y;α, θ, q) =
q(2α)

q
2

(1 + θ)θ
q
2 yq+1

[
θγ

(
q

2
+ 1,

θy2

2α

)
+ γ

(
q

2
+ 2,

θy2

2α

)]
.

It is to say, Y ∼ SLR(α, θ, q). □

Remark 3.4. As particular state for SLR model ,one can observe that the SLR(α, θ, q) model converges to the LR
model when q → ∞, i.e. we have from Proposition 2.2, the following

fY (y; α , θ, q) =
θ2

α (1 + θ)
y

∫ 1

0

t
2
q

[
1 +

y2t
2
q

2α

]
exp

[
−θ (

y2t
2
q

2α
)

]
dt

lim
q→∞

fY (y; α , θ, q) =
θ2

α (1 + θ)
y

[
1 +

y2

2α

]
exp

[
−θ (

y2

2α
)

]
, y > 0.

Theorem 3.5. Assume that Y denotes to a SLR(α, θ, q) model .Then the cumulative density function can be obtained

FY (y;α, θ, q) = 1− q(2α)
q
2

2(1 + θ)θ
q
2 yq

(
1 + θ +

q

2

)[
Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

)]
+

q

2(1 + θ)
e
−θ
(

t2

2α

)
, y > 0.

Proof . Recall that Γ(a, z) is defined for all real numbers except when a ̸= 0,−1,−2, . . .. So

FY (y;α, θ, q) =

∫ y

0

f(t;α, θ, q)dt = 1−
∫ ∞

y

f(t, α, θ, q)dt

=1−
∫ ∞

y

q2(2α)
q
2

2(θ + 1)θ
q
2 tq+1

[
1 + θ +

q

2

] [
Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

)]
dt

+
q

(1 + θ)

∫ ∞

y

1

t

(
1 + θ +

q

2
+ θ

t2

2α

)
e
−θ
(

t2

2α

)
dt.

Solving the integrals in the above two terms and after some calculations and simplification, we get the required
result. □
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Figure 1: Probability density function of the SLR(α, θ, q) model for various parameters values

3.1 The Moments

The non-central moments of the SLR model could be formulated in closed expression via the gamma function,
and for doing that, in the beginning, we provide a general explicit formula for the moments of LR distribution in the
following lemma.

Lemma 3.6. Assume that X denotes a LR(α, θ) model. Then

E (Xr) =
r(2α)

r
2

4θ
r
2

(
2 +

r

θ + 1

)
Γ
(r
2

)
, r = 1, 2, . . . (3.8)

Proof . We have LR(α, θ) distribution given in (1.2), and using the substitution w = θ x2

2 α , and using concepts of
the gamma function, we will get

E (Xr) =
θ2

α(θ + 1)

∫ ∞

0

[(
2α

θ

) 1
2

w
1
2

]r+1 (
1 +

w

θ

)
e−w · 1

2

(
2α

θ

) 1
2

w− 1
2 dw

=
θ2

2α(θ + 1)

(
2α

θ

) r
2+1

·
∫ ∞

0

w
r
2

(
1 +

w

θ

)
e−wdw

=
rθ(2α)

r
2

2(θ + 1)θ
r
2

[
2(θ + 1) + r

2θ

]
Γ
( r
2

)
Therefore

E (Xr) =
r (2α )

r
2

4 θ
r
2

(
2 +

r

θ + 1

)
Γ
(r
2

)
.

□

Proposition 3.7. Assume that Y denotes a SLR(α, θ, q) model. Then

E (Y r) =
r (2α )

r
2

4 θ
r
2

(
2 +

r

θ + 1

)
q

q − r
Γ
(r
2

)
,∀r < q, r = 1, 2, . . . (3.9)
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Proof . By virtue of eq. (2.1), together with an assumption that X and U were. i.r.vs., that will yields

E (Y r) = E (Xr) .E
(
U

− r
q

)
(A)

where U ∼ u ∈ (0, 1) and we have

E
(
U

−r
q

)
=

∫ 1

0

u
−r
q du =

u
−r
q +1

−r
q + 1

]1
0

(3.11)

=E
(
U

− r
q

)
=

q

q − r
, r < q. (3.12)

Then put (B) in (A), and keep in mind E (Xr) given in eq. (3.8), hence the result is obtained clearly. As
a consequence of eq. (3.9), we can find the corresponding formulas of the mean, variance, skewness and kurtosis
coefficients as will be seen in the following corollaries. □

Theorem 3.8. Assume that Y denote to a SLR(α, θ, q) model, for all q > 1, then the mathematical expectation
(average) of Y is yielded by

µY = E (Y ) =
1

2

√
απ

2θ

(
2 +

1

θ + 1

)
q

q − 1
,

for all q > 1 and for all q > 2 the variance of Y is given by

V ar (Y ) =
qα

2θ

[
2

q − 2

(
2 +

2

θ + 1

)
− qπ

4 (q − 1)
2

(
2 +

1

θ + 1

)2
]
,

for all q > 2.

Proof . By putting r = 1 in eq. (3.9), we get the mean of Y and when r = 2, we get the second moment. Using the

facts Γ
(
1
2

)
=

√
π, and V ar (Y ) = E(Y

2
)− µ2

Y , we get the variance of Y. □

Theorem 3.9. Assume that Y denotes a SLR(α, θ, q) model. Then for all q > 3, the coefficient of skewness is obtained
by √

β1 =

3
√
π

q−3

(
2 + 3

θ+1

)
− 3q

√
π

(q−1)(q−2)

(
2 + 1

θ+1

)(
2 + 2

θ+1

)
+ q2π

3
2

4(q−1)3

(
2 + 1

θ+1

)3
√
q

[
2

q−2

(
2 + 2

θ+1

)
− qπ

4(q−1)2

(
2 + 1

θ+1

)2] 3
2

.

Proof . When we put r = 3 in eq. (3.9), we get the third moment, and by using definition of skewness coefficient
using the central moments, we get the required result

β1 =

[
E (Y − µY)

3
]2

[Var(Y )]3
,

where E (Y − µY)
3
= E

(
Y 3
)
− 3µY E

(
Y 2
)
+ 2µ3

Y . □

Theorem 3.10. Assume that Y denotes a SLR(α, θ, q) model, ∀ q > 4, then the kurtosis coefficient of Y is calculated
as

β2 =

4
q−4

(
2 + 4

θ+1

)
· 6qπ
(q−1)(q−3)

(
2 + 1

θ+1

)(
2 + 3

θ+1

)
+ 3q2π

(q−1)2(q−2)

(
2 + 1

θ+1

)2 (
2 + 2

θ+1

)
− 3q3π

16(q−1)4

(
2 + 1

θ+1

)4
q

[
2

q−2

(
2 + 2

θ+1

)
− qπ

4(q−1)2

(
2 + 1

θ+1

)2]2 .

Proof . When we put r = 4 in eq. (3.9), we get the fourth moment, and by using definition of kurtosis coefficient
using the central moments, we get the required result

β2 =
E(Y − µY)

4

[Var(Y )]2
,
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where E (Y − µY)
4
= E

(
Y 4
)
− 4µY E

(
Y 3
)
+ 6µ2

Y E
(
Y 2
)
− 3µ4

Y . □

Note: For various values of the kurtosis parameter q, it can be observed that the coefficient of kurtosis decreases
when q increases, and obvious that the SLR model has a broad interval of values for the skewness and kurtosis
measurements on the values of the parameters, it is to say that the proposed model SLR is substantial enough to deal
with the real lifetime data sets.

Theorem 3.11. Assume that Y denotes to a SLR(α, θ, q) model, then the geometric mean of Y (strictly positive) is
obtained by

G.M.=EXP

[
1

2

[
ln

(
2α

θ

)
− γ +

1

θ + 1

]
+

1

q

]
where γ = 0.5772156649 . . . is the Euler-Mascheroni constant.

Proof . From definition of the geometric mean for strictly positive continuous random variable, we have

G.M.=EXP [E [ln (Y )]]

where Y is given in eq. (2.1).

E [ln (Y )] = E

(
ln

X

U
1
q

)
= E (lnX)− 1

q
E (ln (U)) ,

and after evaluation the expectations in both terms using definition of di (and tri) gamma functions, we get the
required result. □

3.2 Reliability and Failure Rate Functions

The reliability and hazard functions are very important in lifetime studies. In the next two corollaries, we provide
the expressions of these two measurements which appeared in closed forms according to the upper incomplete gamma
function.

Theorem 3.12. Assume that Y denotes to a SLR(α, θ, q) model ,then the reliability function of Y is obtained as

RY (y) =
q(2α)q/2

2(1 + θ)θq/2yq

(
1 + θ +

q

2

)[
Γ
(q
2

)
− Γ

(
q

2
,
θy2

2α

)]
− q

2(1 + θ)
exp

[
−θ

(
y2

2α

)]
, y > 0.

Proof . From definition of the reliability function RY (y) = 1−FY (y), where F represents the cdf of a SLR distribution
given in Corollary 3.3, then the required result is obtained. □

Theorem 3.13. Assume that Y denotes to a SLR(α, θ, q) model, then the hazard rate function to Y can be obtained
as

hY (y) =

q(2α)q/2(1+θ+ q
2 )

θq/2yq+1

[
Γ
(
q
2

)
− Γ

(
q
2 ,

θy2

2α

)]
− 2

y

(
1 + θ + q

2 + θy2

2α

)
e−

θy2

2α

(2α)q/2(1+θ+ q
2 )

θq/2yq

[
Γ
(
q
2

)
− Γ

(
q
2 ,

θy2

2α

)]
− e−

θy2

2α

.

Proof . From definition of the hazard rate function

hY (y) =
fY (y)

1− FY (y)
=

fY (y)

RY (y)

where F represents the cdf of a SLR distribution given in Theorem 3.2, and f denotes to pdf given in Corollary 3.3,
then the required result is obtained. □

Note: If we try to take various values of the parameters, we can be observed obviously that both functions R(y)and
h(y) show a wide variety of ranges and hence, shapes. As a result. we can say that our new distribution SLR is useful
and flexible enough to model real lifetime data sets.
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Figure 2: Reliability function for the SLR(α, θ, q) distribution for various parameters values

Figure 3: The failure rate function for the SLR(α, θ, q) distribution with various parameters values
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4 Estimation of the Parameters Problem

In this section, we study the estimation of the parameters for the SLR(α, θ, q) distribution. The MLE method is
assumed to find MOLEs.

4.1 The MLE Method

Assume that Y1, . . . , . . . , Yn be a r.s. of size n taken from the SLR(α, θ, q) model where its parameters are unknown.
And let y1, . . . , . . . , yn represent the corresponding observed values. By taking the L-function for the observations.
L(α, θ, q) =

∏n
i=1 fY (y, α, θ, q), it follows that the ln-L function is given by

ln L(α, θ, q) =
n

2
ln 2− n

2
lnα+ 2n ln θ − n ln(1 + θ) +

n∑
i=1

ln [G (yi)] (4.1)

G (yi) = G(y;α, θ, q) =

∫ 1

0

u1/qti
(
1 + ti

2
)
e−θ(ti2)du

and

ti =
yiu

1/q

√
2α

, i = 1, 2, 3, . . . , n.

To get the maximum likelihood estimators, we must find the partial derivatives of eq. (4.1) with respect to the
parameters (α, θ, q) respectively, and trying to find a solution for the following non-linear equations

n∑
i=1

G1(yi)

G(yi)
=

n

2α
(4.2)

n∑
i=1

G2(yi)

G(yi)
=

n

1 + θ
−2n

θ
(4.3)

n∑
i=1

G3(yi)

G(yi)
=0 (4.4)

where

G1 (yi) =
1

2α

∫ 1

0

u
1
q ti
[
ti
2
(
2θti

2 + 2θ − 3
)]

e−θ(ti
2) du (4.5)

G2 (yi) = −
∫ 1

0

u
1
q ti

3
(
1 + ti

2
)
e−θ(ti2) du (4.6)

G3 (yi) =
2

q2

∫ 1

0

ln (u)u
1
q ti
[
ti
2
(
θti

2 + θ − 2
)
− 1
]
e−θ(ti

2) du. (4.7)

Note that

G (yi) =

∫ 1

0

u
1
q ti
(
1 + ti

2
)
e−θ(ti2) du.

4.2 Important Practical Treatment

If we take a look at the system of equations 14-16, it is clear that the maximum likelihood estimators cannot be
yielded in closed forms. To get the MLE of the parameters it may either solve the mentioned non-linear system of
equations using numerical methods such as the Newton-Raphson method, which looks very difficult to be solved or
depending on another technique by solving the optimization problem bellow

MAX lnL(α, θ, q)

subject to α > 0

θ > 0

q > 0

(4.8)

Note that ln L(α, θ, q) is given in eq. (4.1). So, eq. (4.8) can be solved depending on R-programming language [30]
according to a function optimisation which requires convenient and feasible initial values (points) in the parameters
domain because it plays an important role and has a high effect in the obtained results, so, our choice was (0.25,0.5,1),
besides we need to prepare the gradient function to ln L(α, θ, q).
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4.3 Simulation Study

Here, we start with an algorithm to generate a positive sample from SLR(α, θ, q) model, where the algorithm was
depending on the formula in eq. (2.1), where Lindley distribution(say Z ) comes from a mixture distribution between
two random variables one of them is Exp(θ) and the other is Gamma distribution with (2, θ), after this we generate the
LR distribution (say V ) by computing V =

√
2αZ1/2, finally, we generate the SLR distribution (say Y )by calculating

the formula Y = V U−1/q where U ∼ Uni(0, 1). Next, we provide the technique of simulation to evaluate effectiveness
with performance for ML estimators by taking N = 1000 r of sizes n = 50, 75, 100 from SLR(α, θ, q) distribution for
various values parameters. Some statistical measurements were calculated for the simulated estimators such as the
bias (B) and the root mean square error (RMSE), for example, (i)B = θ∧ − θ and,

(ii) RMSE =
√

1
N

∑N
i=1 (θ

∧ − θ)
2
, and similar calculations were done for the other two parameters. All results

are stated in Table 1, and it can be seen that the maximum likelihood method exhibits reasonable estimates for three
parameters of SLR distribution, note that the RMSE decreases when n increases.

5 Real Data Application

Now, in this section, real sample observations are used for stating that the SLR model can be more convenient
in comparison to some else models used for dealing with and modelling positive sample set which exhibits high or
surplus kurtosis. We use 75 observations representing the lifetime of some machines taken from the general company
of textiles in Iraq which collects during three months and a half. Table 2 shows the following.

Some descriptive statistical measurements such as minimum, maximum, mean, median, quartiles, skewness, kurtosis
and standard deviation of the observations, where all these statistics are shown in a box plot of the lifetime observations
stated in Fig. 4. Then we will see that the SLR give a better fit in comparison with some other lifetime distribution
such as Lindley, Rayleigh, and Lindley-Rayleigh (LR) distributions. So, for the mentioned four distributions, Table 3
provides the estimates of ML with its standard deviations (SD), and its confidence intervals together with its length
of interval or difference (D). Also, the log-likelihood (lnL) values are stated and it is clear that the SLR model has the
greatest one.

To give a comparison among the four distributions, we use the Criterion of AIC [4], and the Criterion of BIC [29].
The least values of these statistics are the better to fit the lifetime data, it is obvious that the SLR model gave a
better fit than the other three pdfs. Table 4 provides statistics of Kolmogorov-Smirnov (KSS) together with so-called
p-values which give us another certainty that the SLR model is the better.

Table 1: Bias and RMSE to a maximum likelihood estimators of α, θ, and q

α = 0.5, θ = 0.1

q n α̂ Bias RMSE θ̂ Bias RMSE q̂ Bias RMSE

1
50 0.4485 0.0515 0.0216 0.086 0.014 0.0047 0.8269 0.1731 0.0255
75 0.5383 -0.0383 0.0112 0.1123 -0.0123 0.0036 0.8946 0.1054 0.0242
100 0.4628 0.0372 0.0109 0.1113 -0.0113 0.0032 0.9022 0.0978 0.0141

2
50 0.5655 -0.0119 0.0034 0.105 -0.005 0.0015 2.3424 -0.3424 0.0411
75 0.5081 -0.0033 0.0034 0.1037 -0.0037 0.0009 2.1926 -0.1926 0.0389
100 0.4967 0.0033 0.0008 0.1032 -0.0032 0.0007 2.1529 -0.1529 0.0386

3
50 0.4785 0.0215 0.0067 0.0928 0.0072 0.0026 2.2799 0.7015 0.0787
75 0.5199 -0.0199 0.005 0.0934 0.0066 0.0022 3.1111 -0.1111 0.0508
100 0.4851 0.0149 0.0049 0.0939 0.0061 0.0019 3.092 -0.092 0.0449

5
50 0.4654 0.0346 0.0102 0.0904 0.0096 0.0032 5.5886 -0.5886 0.2472
75 0.529 -0.029 0.0084 0.1093 -0.0093 0.003 5.1326 -0.1326 0.2058
100 0.4767 0.0233 0.0068 0.1077 -0.0077 0.0027 5.0612 -0.0612 0.0809
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α = 0.5, θ = 0.1

q n α̂ Bias RMSE θ̂ Bias RMSE q̂ Bias RMSE

1
50 0.3505 0.0505 0.0232 0.5103 0.0897 0.0311 0.8269 0.1731 0.0393
75 0.3413 0.0413 0.0142 0.5159 0.0841 0.0287 0.8946 0.1054 0.0289
100 0.2691 0.0309 0.0132 0.6676 0.0676 0.0219 0.9022 0.0978 0.0274

2
50 0.3119 0.0119 0.0034 0.6299 0.0299 0.0096 2.3424 0.3424 0.0489
75 0.3393 0.0071 0.0033 0.6224 0.0224 0.0058 2.1926 0.1926 0.045
100 0.2980 0.0020 0.0005 0.5978 0.0022 0.0010 2.1529 0.1529 0.0423

3
50 0.3174 0.0174 0.0055 0.6460 0.0460 0.0169 2.2985 0.7015 0.0886
75 0.2860 0.0140 0.0045 0.5605 0.0395 0.0149 3.1111 0.1111 0.0683
100 0.2871 0.0129 0.0045 0.5632 0.0368 0.0126 3.0920 0.0920 0.0554

5
50 0.3230 0.0230 0.0074 0.5326 0.0674 0.0212 4.0894 0.9106 0.4189
75 0.3227 0.0227 0.0067 0.5425 0.0575 0.0179 5.2626 0.2626 0.2245
100 0.2792 0.0208 0.0059 0.6559 0.0559 0.0175 5.1227 0.1227 0.089

α = 0.3, θ = 0.6

q n α̂ Bias RMSE θ̂ Bias RMSE q̂ Bias RMSE

1
50 0.8971 0.1029 1.1232 0.8598 0.1402 1.1127 0.9022 0.0978 0.0255
75 1.0766 -0.0766 1.1127 1.1232 -0.1232 0.0473 0.8269 0.1731 0.0242
100 0.9256 0.0744 1.0932 1.1127 -0.1127 0.0361 0.8946 0.1054 0.0141

2
50 0.9307 0.0693 1.0767 1.0932 -0.1127 0.0323 2.1926 -0.1926 0.0411
75 1.0579 -0.0579 1.0499 0.9042 0.0932 0.0322 2.1529 -0.1529 0.0389
100 0.9535 0.0465 1.0373 1.0767 -0.0767 0.0301 2.3424 -0.3424 0.0386

3
50 0.9571 0.0429 1.0317 0.9282 0.0718 0.0274 3.0920 -0.0920 0.0787
75 1.0398 -0.0398 0.9386 0.9342 0.0658 0.0258 2.2985 0.7015 0.0508
100 0.9702 0.0298 0.9342 0.9386 0.0614 0.0193 3.1111 -0.1111 0.0449

5
50 1.1310 -0.0237 0.9282 1.0499 -0.0499 0.0146 5.5886 -0.5886 0.2472
75 1.0162 -0.0162 0.9042 1.0373 -0.0373 0.0086 5.1326 -0.1326 0.2058
100 0.9933 0.0067 0.8598 1.0317 -0.0317 0.0073 5.0612 -0.0612 0.0809

α = 3, θ = 1.5

q n α̂ Bias RMSE θ̂ Bias RMSE q̂ Bias RMSE

1
50 3.5049 -0.5049 0.2222 1.2758 0.2242 0.0744 0.8269 0.1731 0.0267
75 3.4125 -0.4125 0.1359 1.2896 0.2104 0.0687 0.8946 0.1054 0.0376
100 2.6912 0.3088 0.1265 1.6690 -0.1690 0.0506 0.9022 0.0978 0.0253

2
50 3.1194 -0.1194 0.0313 1.5749 -0.0749 0.0230 2.3424 -0.3424 0.0469
75 3.3930 -0.0712 0.0309 1.5560 -0.0560 0.0134 2.1926 -0.1926 0.0430
100 2.9799 0.0201 0.0048 1.4946 0.0054 0.0024 2.1529 -0.1529 0.0405

3
50 3.1738 -0.1738 0.0525 1.6151 -0.1151 0.0404 2.2985 0.7015 0.0822
75 2.8604 0.1396 0.0428 1.4013 0.0987 0.0345 3.1111 -0.1111 0.0630
100 2.8712 0.1288 0.0417 1.4079 0.0921 0.0303 3.0920 -0.0920 0.0531

5
50 3.2299 -0.2299 0.0705 1.3315 0.1685 0.0505 4.0894 0.9106 0.4007
75 3.2265 -0.2265 0.0637 1.3563 0.1437 0.0429 5.2626 -0.2626 0.2151
100 2.7922 0.2078 0.0544 1.6399 -0.1399 0.0405 5.1227 -0.1227 0.0847

Table 2: Descriptive statistics of data

Summary data
Min 1st Qu Median Mean 3rd Qu. Max. skewness kurtosis SD
1.39 5.25 6.53 7.19 8.67 17.49 0.74 3.29 3.54
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Figure 4: Box plot of data

Table 3: Lifetime data, ML estimates, SD, confidence limits (L,U,D),log L ,AIC, and BIC for the fitted models

Dist. Parameter MLE SD L U D Log L AIC BIC

SLR
θ̂ 0.1426 0.0035 0.0851 0.1996 0.1145

284.64 -563.29 -556.33α̂ 2.6571 0.0501 2.5985 2.7161 0.1176
q̂ 4.8223 0.1777 4.7627 4.8853 0.1226

LR
θ̂ 0.1826 0.0435 0.1202 0.2453 0.1251

212.53 -421.07 -416.43
α̂ 2.4971 0.1099 2.4341 2.5607 0.1266

L α̂ 0.3140 0.1749 0.2504 0.3782 0.1278 199.25 -396.50 -394.18

R α̂ 0.3588 0.2198 0.2940 0.4243 0.1303 203.05 -404.09 -401.77

Table 4: Lifetime data, K-S statistic and p- values

sample Kolmogorov-Smirnov test
Distribution SLR LR R L
K.S. Statistic 0.085619 0.095212 0.12833 0.10713

p-value 0.6107 0.4759 0.1549 0.3316

6 Conclusions

In this study, we introduce an extension of the LR model for the purpose of getting a model that exhibits flexibility
to model lifetime observations with surplus kurtosis. The new model is formulated like a quotient of 2- r.vs., the first
variable (numerator) represents the Lindley-Rayleigh (LR) model and the second one (denominator) represents an
exponent of the uniform model. The proposed pdf gives us the ability to accommodate positive data exhibiting high
kurtosis besides outliers since the measurements of skewness and kurtosis show a large or broad interval of values. We
discuss the characteristics of this model (SLR) including moments, skewness and kurtosis coefficients, geometric mean,
reliability and hazard rate functions. Parameters of the SLR model have been estimated depending on the following
MLE approach The importance, performance, and priority of SLR distribution have been illustrated by using the
Monte Carlo technique and a real lifetime sample. The yielded calculations show that the new model gives advantage
fits with comparison to the other existing probability density functions.
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[15] H.W. Gómez, F.A. Quintana, and F.J. Torres, A new family of slash-distributions with elliptical contours, Statist.
Probab. Lett. 77 (2007), no. 7, 717–725.
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