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Abstract

The purpose of the present paper is to find the necessary and sufficient conditions and inclusion relations for Pascal
distribution series to be in some subclasses of analytic univalent functions of κ–starlike and κ–uniformly convex
functions of order ϑ in the open unit disk U. Further, we consider an integral operator related to Pascal distribution
series, and several corollaries and consequences of the main results are also considered.
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1 Introduction and definitions

Let A denote the class of functions of the form

f(ζ) = ζ +

∞∑
n=2

anζ
n, ζ ∈ U, (1.1)

which are analytic in the open unit disk U := {ζ ∈ C : |ζ| < 1} and normalized by the conditions f(0) = 0 = f ′(0)− 1.
Also, denote by T the subclass of A consisting of functions of the form

f(ζ) = ζ −
∞∑

n=2

anζ
n, ζ ∈ U, with an ≥ 0, (1.2)

introduced and studied extensively by Silverman [27].
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For functions f ∈ A given by (1.1) and g ∈ A given by g(ζ) = ζ+
∞∑

n=2
bnζ

n, we recall that the well-knownHadamard

(or convolution) product of f and g is given by

(f ∗ g)(ζ) := ζ +

∞∑
n=2

anbnζ
n, ζ ∈ U.

A function f ∈ A is said to be starlike of order ϑ (0 ≤ ϑ < 1), if

Re

(
ζf ′(ζ)

f(ζ)

)
> ϑ, ζ ∈ U.

This function class is denoted by S∗(ϑ), and we also write S∗ ≡ S∗(0), where S∗ denotes the class of functions f ∈ A
such that f(U) is a starlike domain with respect to the origin.

A function f ∈ A is said to be convex of order ϑ (0 ≤ ϑ < 1), if

Re

(
1 +

ζf ′′(ζ)

f ′(ζ)

)
> ϑ, ζ ∈ U.

This class is denoted by K(ϑ), and K ≡ K(0) represents the well-known standard class of convex functions. It is an
established fact that

f ∈ K(ϑ) ⇔ ζf ′(ζ) ∈ S∗(ϑ).

Definition 1.1. A function f is uniformly convex (starlike) in U if f is in the class CV(ST ) and has the property
that for every circular arc γ contained in U, with center µ also in U, the arc f(γ) is convex (starlike) with respect
to f(µ). The class of uniformly convex functions is denoted by UCV and the class of uniformly starlike functions by
UST .

Goodman [15, 16] gave the following analytic characterization of these classes:

Theorem 1.2. A function f of the form (1.1) is in the class UCV if and only if

Re

(
1 + (ζ − µ)

f ′′(ζ)

f ′(ζ)

)
≥ 0, (ζ, µ) ∈ U× U,

and is in the class UST if and only if

Re

(
f(ζ)− f(µ)

(ζ − µ)f ′(ζ)

)
≥ 0, (ζ, µ) ∈ U× U.

For a more detailed on uniformly convex and starlike functions, we refer the reader to [17, 18, 21, 9, 26, 12, 10].

We recall the following notions of subclasses of κ–uniformly convex functions and the corresponding subclass of
κ–uniformly starlike functions due to [26].

For −1 < ϑ ≤ 1 and κ ≥ 0 a function f ∈ A is said to be in the class of:

(i) κ–uniformly starlike functions of order ϑ, denoted by SP (ϑ, κ), if it satisfies the condition

Re

(
ζf ′(ζ)

f(ζ)
− ϑ

)
> κ

∣∣∣∣ζf ′(ζ)

f(ζ)
− 1

∣∣∣∣ , ζ ∈ U, (1.3)

and

(ii) κ–uniformly convex functions of order ϑ, denoted by UCV(ϑ, κ), if it satisfies the condition

Re

(
1 +

ζf ′′(ζ)

f ′(ζ)
− ϑ

)
> κ

∣∣∣∣ζf ′′(ζ)

f ′(ζ)

∣∣∣∣ , ζ ∈ U. (1.4)

From (1.3) and (1.4) it follows that

f ∈ UCV(ϑ, κ) ⇔ ζf ′(ζ) ∈ SP (ϑ, κ).
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Definition 1.3. Let 0 ≤ λ < 1, 0 ≤ ϑ < 1 and κ ≥ 0.

(i) We denote by Pλ(ϑ, κ) the subclass of A consisting of functions f of the form (1.1) and satisfying the inequality

Re

(
ζf ′(ζ) + λζ2f ′′(ζ)

(1− λ)f(ζ) + λζf ′(ζ)
− ϑ

)
> κ

∣∣∣∣ ζf ′(ζ) + λζ2f ′′(ζ)

(1− λ)f(ζ) + λζf ′(ζ)
− 1

∣∣∣∣ , ζ ∈ U.

(ii) Also, let Qλ(ϑ, κ) be the subclass of A satisfying the analytic criteria

Re

(
λζ2f ′′′(ζ) + (1 + 2λ)ζf ′′(ζ) + f ′(ζ)

f ′(ζ) + λζf ′′(ζ)
− ϑ

)
> κ

∣∣∣∣λζ2f ′′′(ζ) + (1 + λ)ζf ′′(ζ)

f ′(ζ) + λζf ′′(ζ)

∣∣∣∣ , ζ ∈ U.

Also, let denote by P∗
λ(ϑ, κ) := Pλ(ϑ, κ)∩T and Q∗

λ(ϑ, κ) := Qλ(ϑ, κ)∩T , and we mention that the classes P∗
λ(ϑ, κ)

and Q∗
λ(ϑ, κ) were studied in [20].

Remark 1.4. (i) Choosing λ = 0 we get the class UCT (ϑ, κ) ≡ Q∗
0(ϑ, κ), and for λ = 1 we get the class M(ϑ, κ) ≡

Q∗
1(ϑ, κ) studied in [20].

(ii) Suitably specializing the parameters one can define various subclasses like

T SP (ϑ, κ) ≡ P∗
0 (ϑ, κ) and UCT (ϑ, κ) ≡ P∗

1 (ϑ, κ),

studied in [3].

(iii) Further, by taking κ = 0 we note that the classes T ∗(ϑ) ≡ T SP (ϑ, 0) and C(ϑ) ≡ UCT (ϑ, 0) have been studied
in [27].

(iv) Also, by taking ϑ = 0 we get the classes

T SP (κ) ≡ P∗
0 (0, κ) and UCT (κ) ≡ P∗

1 (0, κ),

studied in [30].

A variable x is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with probabilities

(1− q)m,
qm(1− q)m

1!
,
q2m(m+ 1)(1− q)m

2!
,
q3m(m+ 1)(m+ 2)(1− q)m

3!
, . . .

respectively, where q and m are called the parameters, and thus

P (x = k) =

(
k +m− 1

m− 1

)
qk(1− q)m, k = 0, 1, 2, 3, . . . .

Very recently, El-Deeb et al. [7] (see also [14, 5]) introduced a power series whose coefficients are probabilities of Pascal
distribution, that is

Ψm
q (ζ) := ζ +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mζn, ζ ∈ U,

where m ≥ 1, 0 ≤ q ≤ 1, and we note that, by ratio test the radius of convergence of above series is infinity. We also
define the series

Φm
q (ζ) := 2ζ −Ψm

q (ζ) = ζ −
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1(1− q)mζn, ζ ∈ U. (1.5)

Let consider the linear operator Im
q : A → A defined by the convolution or Hadamard product

Im
q f(ζ) := Ψm

q (ζ) ∗ f(ζ) = ζ +

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)manζ

n, ζ ∈ U,

where m ≥ 1 and 0 ≤ q ≤ 1.

Motivated by several earlier results on connections between various subclasses of analytic and univalent functions,
by using hypergeometric functions (see for example, [6, 13, 19, 28, 29]) and by the recent investigations (see, for
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example [1, 4, 2, 11, 20, 22, 24, 23, 25]), in the present paper we determine the necessary and sufficient conditions for
Φm

q to be in our classes P∗
λ(ϑ, κ) and Q∗

λ(ϑ, κ). We give connections of these subclasses with Rτ (A,B), and finally,

we give sufficient conditions for the function f such that its image by the integral operator Gm
q f(ζ) =

ζ∫
0

Im
q f(t)

t
dt

belongs to the above classes.

To establish our main results, we need the following lemmas.

Lemma 1.5. [20, Theorem 1.3] A function f of the form (1.2) is in the class P∗
λ(ϑ, κ) if and only if

∞∑
n=2

(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)] |an| ≤ 1− ϑ. (1.6)

Lemma 1.6. [20, Theorem 1.4] A function f of the form (1.2) is in the class Q∗
λ(ϑ, κ) if and only if

∞∑
n=2

n(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)] |an| ≤ 1− ϑ.

2 Necessary and sufficient conditions for Φm
q ∈ P∗

λ(ϑ, κ) and Φm
q ∈ Q∗

λ(ϑ, κ)

For convenience throughout in the sequel, we use the following identities that hold at least for m ≥ 1 and 0 ≤ q < 1:

∞∑
n=0

(
n+m− 1

m− 1

)
qn =

1

(1− q)m
,

∞∑
n=0

(
n+m− 2

m− 2

)
qn =

1

(1− q)m−1
,

∞∑
n=0

(
n+m

m

)
qn =

1

(1− q)m+1
,

∞∑
n=0

(
n+m+ 1

m+ 1

)
qn =

1

(1− q)m+2
,

∞∑
n=0

(
n+m+ 2

m+ 2

)
qn =

1

(1− q)m+3
.

By simple calculations we derive the following relations:

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1 =

∞∑
n=0

(
n+m− 1

m− 1

)
qn − 1 =

1

(1− q)m
− 1,

∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1 = qm

∞∑
n=0

(
n+m

m

)
qn =

qm

(1− q)m+1
,

∞∑
n=3

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−1 = q2m(m+ 1)

∞∑
n=0

(
n+m+ 1

m+ 1

)
qn =

q2m(m+ 1)

(1− q)m+2
.

and
∞∑

n=4

(n− 1)(n− 2)(n− 3)

(
n+m− 2

m− 1

)
qn−1 = q3m(m+ 1)(m+ 2)

∞∑
n=0

(
n+m+ 2

m+ 2

)
qn

=
q3m(m+ 1)(m+ 2)

(1− q)m+3
.

Unless otherwise mentioned, we shall assume in this paper that 0 ≤ λ < 1, 0 ≤ ϑ < 1, κ ≥ 0 and 0 ≤ q < 1.

In the first two results we obtain the necessary and sufficient conditions for Φm
q to be in the classes P∗

λ(ϑ, κ) and
Q∗

λ(ϑ, κ), respectively.

Theorem 2.1. Let m ≥ 1. Then Φm
q ∈ P∗

λ(ϑ, κ), if and only if

λ(1 + κ)
q2m(m+ 1)

(1− q)m+2
+ [(2λ+ 1)(1 + κ)− λ(ϑ+ κ)]

qm

(1− q)m+1
≤ 1− ϑ. (2.1)
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Proof . Since Φm
q is defined by (1.5), in view of Lemma 1.5 it is sufficient to show that

∞∑
n=2

(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ 1− ϑ. (2.2)

Writing in left hand side of (2.2)

n = (n− 1) + 1,

n2 = (n− 1)(n− 2) + 3(n− 1) + 1,

we get

∞∑
n=2

(1 + nλ− λ)[n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m

=

∞∑
n=2

{
n2λ(1 + κ) + n [(1− λ)(1 + κ)− λ(ϑ+ κ)]− (1− λ)(ϑ+ κ)

}(n+m− 2

m− 1

)
qn−1(1− q)m

= λ(1 + κ)

∞∑
n=3

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+ [(2λ+ 1)(1 + κ)− λ(ϑ+ κ)]

∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+(1− ϑ)

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

= λ(1 + κ)
q2m(m+ 1)

(1− q)2
+ [(2λ+ 1)(1 + κ)− λ(ϑ+ κ)]

qm

1− q
+ (1− ϑ) (1− (1− q)m) ,

but this last expression is upper bounded by 1− ϑ if and only if (2.1) holds. □

Theorem 2.2. Let m ≥ 1. Then Φm
q ∈ Q∗

λ(ϑ, κ), if and only if

λ(1 + κ)
q3m(m+ 1)(m+ 2)

(1− q)m+3
+ [(5λ+ 1)(1 + κ)− λ(ϑ+ κ)]

q2m(m+ 1)

(1− q)m+2

+[(1 + κ)(4λ+ 3)− (2λ+ 1)(ϑ+ κ)]
qm

(1− q)m+1
≤ 1− ϑ. (2.3)

Proof . In view of Lemma 1.6 we must to show that

∞∑
n=2

n(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m ≤ 1− ϑ. (2.4)

Substituting

n3 = (n− 1)(n− 2)(n− 3) + 6(n− 1)(n− 2) + 7(n− 1) + 1,

n2 = (n− 1)(n− 2) + 3(n− 1) + 1,

n = (n− 1) + 1,
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in (2.4), we get

∞∑
n=2

n(1 + nλ− λ)[n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m

= λ(1 + κ)

∞∑
n=4

(n− 1)(n− 2)(n− 3)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+ [(5λ+ 1)(1 + κ)− λ(ϑ+ κ)]

∞∑
n=3

(n− 1)(n− 2)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+ [(1 + κ)(4λ+ 3)− (2λ+ 1)(ϑ+ κ)]

∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1(1− q)m

+(1− ϑ)

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

= λ(1 + κ)
q3m(m+ 1)(m+ 2)

(1− q)3
+ [(5λ+ 1)(1 + κ)− λ(ϑ+ κ)]

q2m(m+ 1)

(1− q)2

+[(1 + κ)(4λ+ 3)− (2λ+ 1)(ϑ+ κ)]
qm

(1− q)
+ (1− ϑ) (1− (1− q)m) ,

therefore, the last expression is upper bounded by 1− ϑ if the inequality (2.3) is satisfied. □

3 Sufficient conditions for Im
q (Rτ (A,B)) ⊂ P∗

λ(ϑ, κ) and Im
q (Rτ (A,B)) ⊂ Q∗

λ(ϑ, κ)

In [8] Dixit and Pad introduced the following subclass of A:

Definition 3.1. [8] A function f ∈ A is said to be in the class Rτ (A,B), with τ ∈ C \ {0} and −1 ≤ B < A ≤ 1, if
it satisfies the inequality ∣∣∣∣ f ′(ζ)− 1

(A−B)τ −B [f ′(ζ)− 1]

∣∣∣∣ < 1, ζ ∈ U.

Also, they proved the next sharp estimations regarding the coefficients of the power expansions for the functions
belonging to this class, as follows:

Lemma 3.2. [8] If f ∈ Rτ (A,B) is of the form (1.1), then

|an| ≤ (A−B)
|τ |
n
, n ∈ N \ {1},

and the result is sharp.

Making use of Lemma 3.2, we will study the action of the Pascal distribution series on the class P∗
λ(ϑ, κ).

Theorem 3.3. If f ∈ Rτ (A,B), then Im
q f ∈ P∗

λ(ϑ, κ) if

(A−B)|τ |
{
qmλ(1 + κ)

1− q
+ [(1 + κ)− λ(ϑ+ κ)] (1− (1− q)m)

− (1− λ)(ϑ+ κ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
≤ 1− ϑ. (3.1)

Proof . According to Lemma 1.5 it is sufficient to show that

∞∑
n=2

(1 + nλ− λ)[n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m |an| ≤ 1− ϑ.
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Since f ∈ Rτ (A,B), using Lemma 3.2 we have

|an| ≤
(A−B) |τ |

n
, n ∈ N \ {1},

therefore

∞∑
n=2

(1 + nλ− λ)[n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m |an|

≤(A−B) |τ |

{ ∞∑
n=2

1

n

[
n2λ(1 + κ) + n [(1− λ)(1 + κ)− λ(ϑ+ κ)]− (1− λ)(ϑ+ κ)

](n+m− 2

m− 1

)
qn−1(1− q)m

}

=(A−B) |τ |

{ ∞∑
n=2

[
nλ(1 + κ) + [(1− λ)(1 + κ)− λ(ϑ+ κ)]− 1

n
(1− λ)(ϑ+ κ)

]
(
n+m− 2

m− 1

)
qn−1(1− q)m

}

=(A−B) |τ | (1− q)m
[
λ(1 + κ)

∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1

+ [(1 + κ)− λ(ϑ+ κ)]
∞∑

n=2

(
n+m− 2

m− 1

)
qn−1 − (1− λ)(ϑ+ κ)

∞∑
n=2

1

n

(
n+m− 2

m− 1

)
qn−1

]

=(A−B) |τ | (1− q)m

{
qmλ(1 + κ)

(1− q)m+1
+ [(1 + κ)− λ(ϑ+ κ)]

(
1

(1− q)m
− 1

)

=− (1− λ)(ϑ+ κ)

q(m− 1)

[ ∞∑
n=0

(
n+m− 2

m− 2

)
qn − 1− (m− 1)q

]}

=(A−B)|τ |
{
qmλ(1 + κ)

1− q
+ [(1 + κ)− λ(ϑ+ κ)] (1− (1− q)m)

− (1− λ)(ϑ+ κ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
.

But this last expression is upper bounded by 1− ϑ if (3.1) holds, which completes our proof. □

Applying Lemma 1.6 and using the same technique as in the proof of Theorem 3.3, we have the following result:

Theorem 3.4. If f ∈ Rτ (A,B), then Im
q f ∈ Q∗

λ(ϑ, κ) if

(A−B) |τ |
[
λ(1 + κ)

q2m(m+ 1)

(1− q)2
+ [(2λ+ 1)(1 + κ)− λ(ϑ+ κ)]

qm

1− q

+(1− ϑ) (1− (1− q)m)

]
≤ 1− ϑ. (3.2)

Proof . According to Lemma 1.6 it is sufficient to show that

∞∑
n=2

n(1 + nλ− λ)[n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m |an| ≤ 1− ϑ. (3.3)

Since f ∈ Rτ (A,B), using Lemma 3.2 we have

|an| ≤
(A−B) |τ |

n
, n ∈ N \ {1},
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hence

∞∑
n=2

n(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m |an|

≤
∞∑

n=2

n(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m

(A−B) |τ |
n

= (A−B) |τ |
∞∑

n=2

(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m.

Using similar computations like in the proof of in Theorem 2.1 it follows that the inequality (3.3) is satisfied whenever
(3.2) holds. □

4 Properties of a special function

Theorem 4.1. If the function Gm
q is given by

Gm
q (ζ) :=

∫ ζ

0

Φm
q (t)

t
dt, ζ ∈ U, (4.1)

then Gm
q ∈ Q∗

λ(ϑ, κ), if and only if (2.1) holds.

Proof . According to (1.5) it follows that

Gm
q (ζ) = ζ −

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

ζn

n
, ζ ∈ U,

and using Lemma 1.6, by a similar proof like those of Theorem 2.1 we get that Gm
q f ∈ Q∗

λ(ϑ, κ) if and only if (2.1)
holds. □

Theorem 4.2. Let m > 1. Then the function Gm
q given by (4.1) is in the class P∗

λ(ϑ, κ) if and only if

qmλ(1 + κ)

1− q
+ [(1 + κ)− λ(ϑ+ κ)] (1− (1− q)m)

− (1− λ)(ϑ+ κ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m] ≤ 1− ϑ. (4.2)

Proof . According to Lemma 1.5, the function

Gm
q (ζ) = ζ −

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1(1− q)m

ζn

n

belongs to P∗
λ(ϑ, κ) if and only if the condition (1.6) is satisfied, where the coefficient an are

an := −
(
n+m− 2

m− 1

)
qn−1(1− q)m

1

n
, n ≥ 2.
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Using similar computations like in the proof of Theorem 3.3 we get

∞∑
n=2

(1 + nλ− λ) [n(1 + κ)− (ϑ+ κ)]

(
n+m− 2

m− 1

)
qn−1(1− q)m

1

n

≤
∞∑

n=2

1

n

[
n2λ(1 + κ) + n [(1− λ)(1 + κ)− λ(ϑ+ κ)]− (1− λ)(ϑ+ κ)

](n+m− 2

m− 1

)
qn−1(1− q)m

=

∞∑
n=2

[
nλ(1 + κ) + [(1− λ)(1 + κ)− λ(ϑ+ κ)]− 1

n
(1− λ)(ϑ+ κ)

](
n+m− 2

m− 1

)
qn−1(1− q)m

= (1− q)m
{
λ(1 + κ)

∞∑
n=2

(n− 1)

(
n+m− 2

m− 1

)
qn−1

+ [(1 + κ)− λ(ϑ+ κ)]

∞∑
n=2

(
n+m− 2

m− 1

)
qn−1 − (1− λ)(ϑ+ κ)

∞∑
n=2

1

n

(
n+m− 2

m− 1

)
qn−1

}

= (1− q)m

{
qmλ(1 + κ)

(1− q)m+1
+ [(1 + κ)− λ(ϑ+ κ)]

(
1

(1− q)m
− 1

)

− (1− λ)(ϑ+ κ)

q(m− 1)

[ ∞∑
n=0

(
n+m− 2

m− 2

)
qn − 1− (m− 1)q

]}

=
qmλ(1 + κ)

1− q
+ [(1 + κ)− λ(ϑ+ κ)] (1− (1− q)m)

− (1− λ)(ϑ+ κ)

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m] .

It follows that (1.6) is satisfied if and only if the assumption (4.2) holds, which proves our result. □

5 Corollaries and consequences

By specializing the parameter λ = 0 in Theorem 2.1, Theorem 3.3, and Theorem 4.2 we obtain the following special
cases, respectively.

Corollary 5.1. Let m ≥ 1. Then Φm
q ∈ T SP (ϑ, κ), if and only if

(1 + κ)
qm

(1− q)m+1
≤ 1− ϑ. (5.1)

Corollary 5.2. If f ∈ Rτ (A,B), then Im
q f ∈ T SP (ϑ, κ) if

(A−B)|τ |
{
(1 + κ) (1− (1− q)m)− ϑ+ κ

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m]

}
≤ 1− ϑ.

Corollary 5.3. Let m > 1. Then the function Gm
q given by (4.1) is in the class T SP (ϑ, κ) if and only if

(1 + κ) (1− (1− q)m)− ϑ+ κ

q(m− 1)
[(1− q)− (1− q)m − q(m− 1)(1− q)m] ≤ 1− ϑ.

Putting the parameter λ = 0 in Theorem 2.2, Theorem 3.4, and Theorem 4.1 we obtain the following corollaries,
respectively.

Corollary 5.4. Let m ≥ 1. Then Φm
q ∈ UCT (ϑ, κ), if and only if

(1 + κ)
q2m(m+ 1)

(1− q)m+2
+ [3(1 + κ)− (ϑ+ κ)]

qm

(1− q)m+1
≤ 1− ϑ.
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Corollary 5.5. If f ∈ Rτ (A,B), then Im
q f ∈ UCT (ϑ, κ) if

(A−B)|τ |
[
(1 + κ)

qm

1− q
+ (1− ϑ) (1− (1− q)m)

]
≤ 1− ϑ.

Corollary 5.6. Let m ≥ 1. Then the function Gm
q given by (4.1) in the class UCT (ϑ, κ) if and only if (5.1) holds.

Concluding Remarks. Specializing the parameter λ = 0 and λ = 1 we can state various interesting inclusion
results (as proved in above theorems) for the subclasses studied in many other paper [3, 30, 31].
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