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Abstract

In this article, we introduce the concept of ℜ-control fuzzy metric spaces. We prove some fixed point results in the
sense of ℜ-control fuzzy metric spaces and furnish our work with several non-trivial examples to verify the validity of
the proposed results. In the end, we incorporate this work with an application to solve an integral equation.
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1 Introduction

Since the inception of Banach contraction principle, many authors studied fixed point theory vividly and enriched
this field with different ideas. This classical result was generalized in different spaces and different structures were
attained using this topic. In this connectedness, Bakhtin [3] and Czerwik [5] gave a generalization of metric space, and
named it as the b-metric space, with a triangle inequality weaker than that of metric spaces. On the other hand, Zadeh
[23] introduced the concept of fuzzy sets and generalized the notion of metric space using fuzzy sets and named the
new space as the fuzzy metric space. Since then, these results have become the center of interest for many researchers
and in this sequel Roldan et al. [18] introduced interrelationships between fuzzy metric structures. Gupta et al. [10]
presented the graphical interpretation of fuzzy metric space. Chauhan et al. [4] initiated Banach contraction theorem
for fuzzy cone-metric space. Altun et al. [1] introduced the notion of Ordered non-Archidemedean fuzzy metric spaces
and utilized this concept to investigate some fixed point results. Recently, Deng [6] generalized the notion of fuzzy
metric and introduced fuzzy b-metric space. Many authors used fuzzy b-metric space in different formats, to investigate
fixed point results, we refer the readers to please check [7, 14, 17, 20, 8, 22, 9]. Later, Mehmood [13] introduced the
concept of extended fuzzy b-metric spaces and generalized fuzzy b-metric spaces. Recently, Mlaiki [16] introduced the
concept of controlled metric type spaces and Sezen [21] used this concept of controlled metric spaces and introduced
the notion of controlled fuzzy metric spaces, which is the generalization of fuzzy b-metric spaces and extended fuzzy
b-metric spaces.
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Most recently, Khalehoghli et al. [12] introduced the notion of an ℜ-set and gave a real generalization of Banach’s
fixed point results. Many authors used this idea to help them work on different structures. Lately, Ali et al. extended
this concept to investigate fixed point in partial metric spaces. Baghani et al. [2] initiated fixed point theorem for
set-valued mappings in ℜ-complete metric spaces. Javed et al. [11] utilized this concept to find fixed point results in
fuzzy b-metric space. Sawangsup [19] used this idea to discuss fixed point results for JS-quasi contraction of multi-
dimensional mapping with the transitivity, and many more. For more information and results in fuzzy metric spaces
and applications, see [1, 4, 10, 15, 18].

In this article, we generalize and extend the concept of control fuzzy metric spaces and introduce the concept of
ℜ-control fuzzy metric spaces. To validate our results, we impart our work with an example and towards the end, we
present an application to solve integral equation.

2 Preliminaries

First, we recall some fundamental definitions related to this article.

Definition 2.1. [6] A 4-tuple (X,∆, ∗, u) is called fuzzy b-metric space if X is an arbitrary (nonempty) set, ∗ is a
continuous t-norm and ∆ is a fuzzy set on X ×X × (0,∞) satisfying the following conditions for all x,w, z ∈ X and
t, s > 0, and a given real number u ≥ 1,

B1) ∆(x,w, t) > 0;

B2) ∆(x,w, t) = 1 if and only if x = w;

B3) ∆(x,w, t) = ∆(w, x, t);

B4) ∆(x, z, u(t+ s)) ≥ ∆(x,w, t) ∗∆(w, z, s);

B5) ∆(x,w, ·) : (0,∞) → [0, 1] is continuous.

Definition 2.2. [13] A 4-tuple (X,∆α, ∗, α) is called an extended fuzzy b-metric space if X is a (nonempty) set,
α : X × X → [1,∞) , ∗ is a continuous t-norm and ∆α is a fuzzy set on X × X × [0,∞) satisfying the following
conditions for all x,w, z ∈ X and t, s > 0,

∆1) ∆α(x,w, 0) = 0;

∆2) ∆α(x,w, t) = 1 if and only if x = w;

∆3) ∆α(x,w, t) = ∆α(w, x, t);

∆4) ∆α(x, z, α(x, z)(t+ s)) ≥ ∆α(x,w, t) ∗∆α(w, z, s);

∆5) ∆α(x,w, ·) : (0,∞) → [0, 1] is continuous.

Definition 2.3. [21] A triple (X,∆γ , ∗) is called a control fuzzy metric space if X is a (nonempty) set, γ : X ×X →
[1,∞) , ∗ is a continuous t-norm and ∆γ is a fuzzy set on X ×X × [0,∞) satisfying the following conditions for all
x,w, z ∈ X and t, s > 0,

1) ∆γ(x,w, 0) = 0;

2) ∆γ(x,w, t) = 1 if and only if x = w;

3) ∆γ(x,w, t) = ∆γ(w, x, t);

4) ∆γ(x, z, t+ s) ≥ ∆γ(x,w,
t

γ(x,w) ) ∗∆γ(w, z,
s

γ(w,z) );

5) ∆γ(x,w, ·) : (0,∞) → [0, 1] is continuous.

Definition 2.4. [21] Let X be a set and let ζ : X → X and O(ν) = {ν0, ζν0, ζ2ν0, . . .} (for some ν0 ∈ X) be the
orbit of ζ. A function T : X → X is said to be ζ-orbitally lower semi continuous at u ∈ X if for νn ∈ O(ν0) such that
νn → u, we get T (u) ≥ limn→∞ supT (νn).

Example 2.5. [2] Let ℜ be a binary relation on X and define the binary relation ℜ such that xℜy if and only if xℜy
or yℜx.Then ℜ is a binary relation on X.

Example 2.6. [11] Let X = [0,∞) and define xℜw if xw = min{x,w}. Take x0 = 0. Then (X,ℜ) is an ℜ-set.
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Definition 2.7. [2] Suppose that (X,ℜ) is an ℜ-set. A sequence {xn} is said to be an ℜ-sequence if (∀n;xnℜxn+1)
or (∀n;xn+1ℜxn).

Definition 2.8. [12] (a) A metric space (X, d) is called an ℜ-metric space if (X,ℜ) is an ℜ-set.
(b) A mapping T : X → X is called ℜ-continuous at x ∈ X if for each ℜ-sequence {xn} in X, limn→∞ d(xn, x) = 0,

limn→∞ d(Txn, Tx) = 0. Furthermore, T is called ℜ-continuous on X if T is ℜ-continuous at each x ∈ X.

(c) A mapping T : X → X is called ℜ-preserving if xℜw, then TxℜTw for all x,w ∈ X.

(d) An ℜ-sequence {xn} in X is said to be an ℜ-Cauchy sequence if for every ϵ > 0 there exists an integer n such
that d (xn, xm) < ϵ for all n,m ≥ N. It is clear that xnℜxm or xmℜxn.

(e) X is called ℜ-complete if every ℜ-Cauchy sequence is convergent.

3 Main Results

In this section we introduce the notion of ℜ-control fuzzy metric space and prove some fixed point results.

Definition 3.1. A 4-tuple (X, θ, ∗,ℜ) is called an ℜ-control fuzzy metric space if for a nonempty set X, a reflexive
binary relation ℜ on X, a mapping γ : X×X → [1,∞) , continuous t-norm ∗ and a fuzzy set θ on X×X× (0,∞), the
following conditions hold for all t, s > 0 and for all x,w, z ∈ X with either (xℜz or zℜx) or (xℜw or wℜx) or (wℜz
or zℜw),

(θ1) θ(x,w, t) > 0;

(θ2) θ(x,w, t) = 1 if and only if x = w;

(θ3) θ(x,w, t) = θ(w, x, t);

(θ4) θ(x, z, t+ s) ≥ θ(x,w, t
γ(x,w) ) ∗ θ(w, z,

s
γ(w,z) );

(θ5) θ(x,w, ·) : (0,∞) → [0, 1] is continuous.

Example 3.2. Let X = Z = A ∪B, where A = {−1,−2,−3, . . .} and B = {0, 1, 2, 3, . . .}. Define a binary relation ℜ
by xℜw ⇐⇒ x+ w ≥ 0. Define θ : X ×X × (0,∞) → [0, 1] as

θ(x,w, t) =

{
1 if x = w,
t

t+max{x,w} otherwise.

For all t > 0 and x,w ∈ X with continuous t-norm ∗ defined as t1 ∗ t2 = t1 · t2, define γ : X ×X → [1,∞) as

γ(x,w) =

{
1, x, w ∈ A or x = 0 or w = 0
max {x,w} , otherwise.

It can be easily seen that (X, θ, ∗,ℜ) is an ℜ-control fuzzy metric space but it is not a control fuzzy metric space.

First, we will check that (X, θ, ∗,ℜ) is an ℜ-control fuzzy metric space.

It is clear that (θ1), (θ2) and (θ5) hold.

(θ3) θ(x,w, t) = θ(w, x, t) for all x,w ∈ X, t > 0 such that (xℜz or zℜx), since

θ(x,w, t) =
t

t+max{x,w}
=

t

t+max{w, x}
= θ(w, x, t).

(θ4) θ(x, z, γ(x,w)γ(w, z)(t + s) ≥ θ(x,w, t) ∗ θ(w, z, s) for all x,w, z ∈ X, t, s > 0 with either (xℜz or zℜx) or
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(xℜw or wℜx) or (wℜz or zℜw), since

max{x, z} ≤ γ(x,w)[max{x,w}] + γ(w, z)[max{w, z}]
=⇒ tsmax{x, z} ≤ γ(x,w)(ts+ s2)[max{x,w}] + γ(w, z)(ts+ t2) [max{w, z}]
=⇒ tsmax{x, z} ≤ γ(x,w)(t+ s)s[max{x,w}] + γ(w, z)(s+ t)t[max{w, z}]

=⇒ tsmax{x, z} ≤ γ(x,w)γ(w, z)(t+ s)[
smax{x,w}
γ(w, z)

+
tmax{w, z}
γ(x,w)

]

=⇒ tsmax{x, z} ≤ γ(x,w)γ(w, z)(t+ s)[smax{x,w}+ tmax{w, z}]
=⇒ tsmax{x, z} ≤ γ(x,w)γ(w, z)(t+ s)[smax{x,w}+ tmax{w, z}

+max{x,w}max{w, z}]
=⇒ γ(x,w)γ(w, z)(t+ s)ts+ tsmax{x, z} ≤ γ(x,w)γ(w, z)(t+ s)ts

+γ(x,w)γ(w, z)(t+ s)[smax{x,w}+ tmax{w, z}+max{x,w}max{w, z}]
=⇒ γ(x,w)γ(w, z)(t+ s)ts+ tsmax{x, z} ≤ γ(x,w)γ(w, z)(t+ s)

[ts+ smax{x,w}+ tmax{w, z}+max{x,w}max{w, z}]
=⇒ ts[γ(x,w)γ(w, z)(t+ s) + max{x, z}] ≤ γ(x,w)γ(w, z)(t+ s)[t+max{x,w}]

[s+max{w, z}]

=⇒ γ(x,w)γ(w, z)(t+ s)

γ(x,w)γ(w, z)(t+ s) + max{x, z}
≥ ts

[t+max{x,w}][s+max{w, z}]

=⇒ γ(x,w)γ(w, z)(t+ s)

γ(x,w)γ(w, z)(t+ s) + max{x, z}
≥ t

t+max{x,w}
· s

s+max{w, z}
=⇒ θ(x, z, γ(x,w)γ(w, z)(t+ s)) ≥ θ(x,w, t) ∗ θ(w, z, s).

Now, we show that X is not a control fuzzy metric space.

θ(x, z, γ(x,w)γ(w, z)(t+ s)) =
γ(x,w)γ(w, z)(t+ s)

γ(x,w)γ(w, z)(t+ s) + max{x, z}
,

θ(x,w, t) =
t

t+max{x,w}
,

θ(w, z, s) =
s

s+max{w, z}
.

Thus
γ(x,w)γ(w, z)(t+ s)

γ(x,w)γ(w, z)(t+ s) + max{x, z}
≥ t

t+max{x,w}
· s

s+max{w, z}
.

Now, let x = w = z = −1. Then γ(x,w) = γ(w, z) = 1, max{x, z} = max{x,w} = max{w, z} = −1. This implies

t+ s

t+ s− 1
≥ t

t− 1
· s

s− 1
=

ts

(t− 1)(s− 1)
, t, s ̸= 1.

Take t = s = 2. This is a contradiction. Hence X is not a control fuzzy metric space.

Example 3.3. Let X = {−1, 1, 2, 3, 4, . . .} = A ∪B, where A = {−1, 1} and B = N \ {1}. Define a binary relation ℜ
by xℜw ⇐⇒ x+ w ≥ 0. Define θ : X ×X × [0,∞) → [0, 1] as

θ(x,w, t) =



1, if x = w
t+ 1

x

t+ 1
w

, if x ∈ B and w ∈ A
t+ 1

w

t+ 1
x

, if x ∈ A and w ∈ B
t+ 1

max{x,w}
t+ 1

min{x,w}
, otherwise.

With continuous t-norm ∗ defined as t1 ∗ t2 = t1 · t2, define γ : X ×X → [1,∞) as

γ(x,w) =

{
1, x, w ∈ A or x = 0 or w = 0
max {x,w} , otherwise.



On ordered theoretic controlled fuzzy metric spaces 5

Then (X, θ, ∗,ℜ) is an ℜ-control fuzzy metric space but it is not a control fuzzy metric space. First, we show that
(X, θ, ∗,ℜ) is an ℜ-control fuzzy metric space.

(θ1), (θ2), (θ3) and (θ5) are obvious.

(θ4) We will show that θ(x, z, t + s) ≥ θ(x,w, t
γ(x,w) ) ∗ θ(w, z,

s
γ(w,z) ) for all x,w, z ∈ X, t, s > 0 with either (xℜz

or zℜx) or (xℜw or wℜx) or (wℜz or zℜw).
We have the following cases to prove (θ4):

Case 1) If z = x, then θ(x, z, t+ s) = 1. Also

θ(x,w,
t

γ(x,w)
) ≤ 1 and θ(w, z,

s

γ(w, z)
) ≤ 1.

This implies

θ(x,w,
t

γ(x,w)
) ∗ θ(w, z, s

γ(w, z)
) ≤ 1.

Case 2) If z = w, then θ(w, z, s
γ(w,z) ) = 1 and clearly θ(x, z, t+ s) ≥ θ(x,w, t

γ(x,w) ). This implies

θ(x, z, t+ s) ≥ θ(x,w,
t

γ(x,w)
) ∗ θ(w, z, s

γ(w, z)
).

Case 3) If z ̸= x, z ̸= w and x = w, then θ(x,w, t
γ(x,w) ) = 1 and clearly,

θ(x, z, t+ s) ≥ θ(w, z,
s

γ(w, z)
).

This implies

θ(x, z, t+ s) ≥ θ(x,w,
t

γ(x,w)
) ∗ θ(w, z, s

γ(w, z)
).

Case 4) If z ̸= x, z ̸= w and x ̸= w, then we have the following cases:

1. x, z ∈ A and w ∈ B;

2. w ∈ A and x, z ∈ B;

3. w, z ∈ A and x ∈ B;

4. x,w ∈ A and z ∈ B;

5. z ∈ A and x,w ∈ B;

6. x ∈ A and w, z ∈ B;

7. x, b, w ∈ A;

8. x, b, w ∈ B.

Proof of (1): If x, z ∈ A and w ∈ B, then

θ(x, z, t+ s) =
t+ s+ 1

max{x,z}

t+ s+ 1
min{x,z}

.

Observe that max{x, z} = min{x, z} = 1. This implies θ(x, z, t+ s) = 1. On the other hand,

θ(x,w,
t

γ(x,w)
) =

t
γ(x,w) +

1
w

t
γ(x,w) +

1
x

.

Observe that γ(x,w) = w. Then

θ(x,w,
t

γ(x,w)
) =

xt+ x

xt+ w
< 1, and θ(w, z,

s

γ(w, z)
) =

s
γ(w,z) +

1
w

s
γ(w,z) +

1
z

.
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Observe that γ(w, z) = w. Then

θ(w, z,
s

γ(w, z)
) =

zs+ z

zs+ w
< 1.

This implies

θ(x, z, t+ s) ≥ θ(x,w,
t

γ(x,w)
) ∗ θ(w, z, s

γ(w, z)
).

Similarly, for the other cases, we can prove it. Thus (X, θ, ∗,ℜ) is an ℜ-control fuzzy metric space. Now, we show
that θ is not a control fuzzy metric space. Let x,w, z ∈ A and also let x = z = 1, w = −1 and t, s > 1. Then
θ(x, z, t+ s) = 1. On the other hand,

θ(x,w,
t

γ(x,w)
) =

t+ 1

t− 1
, (t ̸= 1),

θ(w, z,
s

γ(w, z)
) =

s+ 1

s− 1
, (s ̸= 1).

This implies

1 ≥ t+ 1

t− 1
+
s+ 1

s− 1
.

This contradicts to the condition (4) in Definition 2.3 and hence θ is not a control fuzzy metric space.

Remark 3.4. Every control fuzzy metric space is an ℜ-control fuzzy metric space but the converse is not true.

Remark 3.5. Note that Example 3.2 also holds for t-norm t1 ∗ t2 = min{t1, t2}.

Definition 3.6. Let (X, θ, ∗,ℜ) be an ℜ-control fuzzy metric space. Then an ℜ-sequence {xn} in X is said to be
ℜ-convergent to x if limn→∞ θ(xn, x, t) = 1 for all t > 0.

Definition 3.7. Let (X, θ, ∗,ℜ) be an ℜ-control fuzzy metric space. Then a sequence {xn} in X is said to be an
ℜ-Cauchy sequence if for each ϵ > 0 and t > 0 there exists n0 ∈ N such that θ(xn, xm, t) > 1− ϵ for all n, m > n0.

Definition 3.8. Let (X, θ, ∗,ℜ) be an ℜ-control fuzzy metric space. If each ℜ-Cauchy sequence is convergent, then
X is called ℜ-complete.

Definition 3.9. A mapping T : X → X is called ℜ-continuous in an ℜ-control fuzzy metric space (X, θ, ∗,ℜ) if for
each ℜ-sequence {xn} in X such that limn→∞ θ(xn, x, t) = 1 for all t > 0, limn→∞ θ(Txn, Tx, t) = 1 for all t > 0.
Furthermore, T is called ℜ-continuous if T is ℜ-continuous in each x ∈ X. Also, T is called ℜ-preserving if TxℜTw
whenever xℜw.

Remark 3.10. It is necessary that the limit of a convergent sequence is unique in an ℜ-control fuzzy metric space.

Remark 3.11. It is necessary that the convergent sequence is ℜ-Cauchy sequence in an ℜ-control fuzzy metric space.

Definition 3.12. Let x,w ∈ [0, 1] with xℜw and Ψ be the class of all mappings ψ : [0, 1] → [0, 1] such that ψ is
ℜ-continuous, nondecreasing and ψ(ϑ) > ϑ for all ϑ ∈ (0, 1).

If ψ ∈ Ψ, then ψ(1) = 1 and limn→∞ ψn(ϑ) = 1 for all ϑ ∈ (0, 1).

Theorem 3.13. Let (X, θ, ∗,ℜ) be an ℜ-complete control fuzzy metric space with γ : X ×X → [1,∞) and suppose
that

lim
t→∞

θ(x,w, t) = 1 (3.1)

for all x ∈ X. Assume that T : X → X is ℜ-continuous, ℜ-contractive and ℜ-preserving and satisfies

θ(Tx, Tw, kt) ≥ θ(x,w, t) (3.2)
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for all x,w ∈ X with xℜw, t > 0, where k ∈ (0, 1). Also assume that for every x ∈ X,

lim
n→∞

γ(xn, w) and lim
n→∞

γ(w, xn)

are exist. Then T has a unique fixed point in X. Furthermore,

lim
n→∞

θ(Tnu, u, t) = θ(u, u, t) = 1

for all u ∈ X and t > 0.

Proof . Since (X, θ, ∗,ℜ) is an ℜ-complete control fuzzy metric space, there exists x0 ∈ X such that x0ℜw for all
w ∈ X. This implies x0ℜTx0. Assume

x1 = Tx0, x2 = T 2x0 = Tx1, . . . , xn = Tnx0 = Txn−1.

If xn = xn−1 then xn is a fixed point of T. Suppose that xn ̸= xn−1 for all n ∈ N. Since T is ℜ-preserving, {xn} is
an ℜ-sequence and T is an ℜ-contraction, we have

θ(xn, xn+1, t) = θ(Txn−1, Txn, t) ≥ θ(xn−1, xn,
t

k
)

≥ · · · ≥ θ(x0, x1,
t

kn−1
). (3.3)

Now, from (θ4), we have

θ(xn, xn+m, t) ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+m,

t

2γ(xn+1, xn+m)
)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+m,
t

(2)2γ(xn+1, xn+m)γ(xn+2, xn+m)
) (3.4)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+3,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+2, xn+3)
)

∗θ(xn+3, xn+m,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+3, xn+m)
)

≥ · · · ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
)

∗[∗n+m−2
i=n+1 θ(xi, xi+1,

t

(2)m−2(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
)]

∗[θ(xn+m−1, xn+m,
t

(2)m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
)]

≥ θ(x0, x1,
t

2kn−1γ(xn, xn+1)
)

∗[∗n+m−2
i=n+1 θ(x0, x1,

t

(2)m−1ki−1(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
)]

∗[θ(x0, x1,
t

(2)m−1kn+m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
)].

Now, taking the limit as n→ ∞ in (3.4) and (3.3 ) together with (3.1), we have

lim
n→∞

θ(xn, xn+m, t) ≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1
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for all t > 0 and n,m ∈ N. Thus {xn} is an ℜ-Cauchy sequence in X. From the completeness of (X, θ, ∗,ℜ), there
exists u ∈ X such that

lim
n→∞

θ(xn, u, t) = 1 (3.5)

for all t > 0. Now, since T is an ℜ-continuous mapping, θ(xn+1, Tu, t) = θ(Txn, Tu, t) → 1 as n → ∞. For t > 0 and
from (θ4), we have

θ(u, Tu, t) ≥ θ(u, xn+1,
t

2γ(u, xn+1)
) ∗ θ(xn+1, Tu,

t

2γ(xn+1, Tu)
) (3.6)

= θ(u, xn+1,
t

2γ(u, xn+1)
) ∗ θ(Txn, Tu,

t

2γ(xn+1, Tu)
).

Taking n → ∞ in (3.6) and using (3.5), we get θ(u, Tu, t) = 1 for all t > 0, that is, Tu = u. Now, let w ∈ X
be another fixed point for T . Then there exists t > 0 such that θ(u,w, t) ̸= 1. We have x0ℜu and x0ℜw. Since T is
ℜ-preserving,

Tnx0ℜTnu and Tnx0ℜTnw for all n ∈ N.

From (3.2), we have

θ(Tnx0, T
nu, t) ≥ θ(Tnx0, T

nu, kt) ≥ θ(x0, u,
t

kn
)

and

θ(Tnx0, T
nw, t) ≥ θ(Tnx0, T

nw, kt) ≥ θ(x0, w,
t

kn
).

Thus we have

θ(u,w, t) = θ(Tnu, Tnw, t) ≥ θ(Tnx0, T
nu,

t

2γ(x0, u)
) ∗ θ(Tnx0, T

nw,
t

2γ(x0, w)
)

≥ θ(x0, u,
t

kn2γ(x0, u)
) ∗ θ(x0, w,

t

kn2γ(x0, w)
)

for all n ∈ N. Taking the limit as n→ ∞, we get θ(u,w, t) = 1 for all t > 0 and hence u = w. □

Corollary 3.14. Let (X, θ, ∗,ℜ) be an ℜ-complete control fuzzy metric space. Let T : X → X be ℜ-contractive and
ℜ-preserving. Also, if {xn} is an ℜ-sequence with xn → x ∈ X, then xℜxn for all n ∈ N. Furthermore, T has a unique
fixed point x∗ ∈ X and limn→∞ θ(Tnx, x∗, t) = θ(x∗, x∗, t) for all x ∈ X and t > 0.

Proof . The proof of this corollary runs along the same line as the proof of Theorem 3.13 that {xn} is an ℜ-Cauchy
sequence and converges to x∗ ∈ X. Hence x∗ℜxn for all n ∈ N. From (3.1), we have

θ(Tx∗, xn+1, t) = θ(Tx∗, Txn, t) ≥ θ(Tx∗, Txn, kt) ≥ θ(x∗, xn, t)

and
lim
n→∞

θ(Tx∗, xn+1, t) = 1.

Then we have

θ(x∗, Tx∗, t) ≥ θ(x∗, xn+1,
t

2γ(x∗, xn+1)
) ∗ θ(xn+1, Tx∗,

t

2γ(xn+1, Tx∗)
).

Taking the limit as n → ∞, we get θ(x∗, Tx∗, t) = 1 ∗ 1 = 1 and hence Tx∗ = x∗. The rest of the proof is similar
to the proof of Theorem 3.13. □

Theorem 3.15. Let (X, θ, ∗,ℜ) be an ℜ-complete control fuzzy metric space with γ : X ×X → [1,∞) and suppose
that

lim
t→∞

θ(x,w, t) = 1

for all x ∈ X. If T : X → X is ℜ-contractive and ℜ-preserving and satisfies

θ(Tx, T 2x, kt) ≥ θ(x, Tx, t)

for all x ∈ O(x), t > 0, where k ∈ (0, 1), then Tnx0 → u. Furthermore, u is a fixed point of T if and only if
Tx = θ(x, Tx, t) is ζ-orbitally lower semi continuous at u.



On ordered theoretic controlled fuzzy metric spaces 9

Proof . Since (X, θ, ∗,ℜ) is an ℜ-complete control fuzzy metric space, there exists x0 ∈ X such that x0ℜw for all
w ∈ X. Hence x0ℜTx0. Assume that

x1 = Tx0, x2 = T 2x0 = Tx1, . . . , xn = Tnx0 = Txn−1.

If xn = xn−1 then xn is a fixed point of T. Suppose that xn ̸= xn−1 for all n ∈ N. Since T is ℜ-preserving, {xn} is
an ℜ-sequence and T is an ℜ-contraction, we have

θ(Tnx0, T
n+1x0, kt) = θ(xn, xn+1, kt) ≥ θ(xn−1, xn,

t

k
)

≥ · · · ≥ θ(x0, x1,
t

kn−1
).

Now, from (θ4), we have

θ(xn, xn+m, t) ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+m,

t

2γ(xn+1, xn+m)
)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+m,
t

(2)2γ(xn+1, xn+m)γ(xn+2, xn+m)
)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+3,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+2, xn+3)
)

∗θ(xn+3, xn+m,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+3, xn+m)
)

≥ . . . ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
)

∗[∗n+m−2
i=n+1 θ(xi, xi+1,

t

(2)m−2(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
)]

∗[θ(xn+m−1, xn+m,
t

(2)m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
)]

≥ θ(x0, x1,
t

2kn−1γ(xn, xn+1)
) (3.7)

∗[∗n+m−2
i=n+1 θ(x0, x1,

t

(2)m−1ki−1(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
)]

∗[θ(x0, x1,
t

(2)m−1kn+m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
)].

Taking the limit as n→ ∞ in (3.7), we get

lim
n→∞

θ(xn, xn+m, t) ≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1

for all t > 0 and n,m ∈ N. Thus xn is an ℜ-Cauchy sequence in X. From the completeness of (X, θ, ∗,ℜ) there is
u ∈ X such that xn → Tnx0 = u. Assume that T is ℜ-semi continuous at u ∈ X. Then we have

θ(u, Tu, kt) = lim
n→∞

sup θ(Tnx0, T
n+1x0, kt)

≥ lim
n→∞

sup θ(x0, x1,
t

kn−1
) = 1.

Conversely, let u = Tu and xn ∈ Z with xn → u. Then we get

T (u) = θ(u, Tu, kt) = 1 ≥ lim
n→∞

supT (xn) = θ(Tnx0, T
n+1x0, kt),

as desired. □
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Theorem 3.16. Let (X, θ, ∗,ℜ) be an ℜ-complete control fuzzy metric space and T : X → X be ℜ-continuous,
ℜ-contractive, ℜ-preserving and satisfy

θ(x,w, t) > 0 =⇒ θ(Tx, Tw, t) ≥ ψ(θ(x,w, t))

for all x,w ∈ X and t > 0. Then T has a unique fixed point in X.

Proof . Since (X, θ, ∗,ℜ) is an ℜ-complete control fuzzy metric space, there exists x0 ∈ X such that x0ℜw for all
w ∈ X. Thus x0ℜTx0. Assume

x1 = Tx0, x2 = T 2x0 = Tx1, . . . , xn = Tnx0 = Txn−1.

If xn = xn−1 then xn is a fixed point of T. Suppose that xn ̸= xn−1 for all n ∈ N. Since T is ℜ-preserving, {xn} is
an ℜ-sequence and T is an ℜ-contraction, we have

θ(xn, xn+1, t) = θ(Tx−1, Txn, t) ≥ ψ(θ(xn−2, xn−1, t))

≥ · · · ≥ ψn(θ(x0, x1, t)).

Now, from (θ4), we have

θ(xn, xn+m, t) ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+m,

t

2γ(xn+1, xn+m)
)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+m,
t

(2)2γ(xn+1, xn+m)γ(xn+2, xn+m)
)

≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
) ∗ θ(xn+1, xn+2,

t

(2)2γ(xn+1, xn+m)γ(xn+1, xn+2)
)

∗θ(xn+2, xn+3,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+2, xn+3)
)

∗θ(xn+3, xn+m,
t

(2)3γ(xn+1, xn+m)γ(xn+2, xn+m)γ(xn+3, xn+m)
)

≥ . . . ≥ θ(xn, xn+1,
t

2γ(xn, xn+1)
)

∗[∗n+m−2
i=n+1 θ(xi, xi+1,

t

(2)m−2(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
)]

∗[θ(xn+m−1, xn+m,
t

(2)m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
)]

≥ ψn[θ(x0, x1,
t

2kn−1γ(xn, xn+1)
)] (3.8)

∗[∗n+m−2
i=n+1 ψ

i(θ(x0, x1,
t

(2)m−1ki−1(
∏i

j=n+1 (γ(xj , xn+m)γ(xi, xi+1))
))]

∗[ψn+m−1(θ(x0, x1,
t

(2)m−1kn+m−1(
∏n+m−1

i=n+1 γ(xi, xn+m))
))].

Taking the limit as n→ ∞ in (3.8), we get

lim
n→∞

θ(xn, xn+m, t) ≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1

for all t > 0 and n,m ∈ N. Thus {xn} is an ℜ-Cauchy sequence in X. From the completeness of (X, θ, ∗,ℜ), there
exists u ∈ X such that

lim
n→∞

θ(xn, u, t) = 1 (3.9)
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for all t > 0. Now, since T is an ℜ-continuous mapping, θ(xn+1, Tu, t) = θ(Txn, Tu, t) → 1 as n → ∞. For t > 0 and
from (θ4), we have

θ(u, Tu, t) ≥ θ(u, xn+1,
t

2γ(u, xn+1)
) ∗ θ(xn+1, Tu,

t

2γ(xn+1, Tu)
)

= θ(u, xn+1,
t

2γ(u, xn+1)
) ∗ θ(Txn, Tu,

t

2γ(xn+1, Tu)
)

≥ θ(u, xn+1,
t

2γ(u, xn+1)
) ∗ ψ(θ(xn, u,

t

2γ(xn+1, Tu)
)). (3.10)

Taking n → ∞ in (3.10) and using (3.9), we get θ(u, Tu, t) = 1 for all t > 0, that is, Tu = u. Now, let w ∈ X be
another fixed point for T . Then we have

x0ℜu and x0ℜw.

Since T is ℜ-preserving, Tnx0ℜTnu and Tnx0ℜTnw for all n ∈ N. Thus we have

θ(Tnx0, T
nu, t) ≥ θ(Tnx0, T

nu, kt) ≥ ψ(θ(x0, u, t))

and
θ(Tnx0, T

nw, t) ≥ θ(Tnx0, T
nw, kt) ≥ ψ(θ(x0, w, t)).

So we get

θ(u,w, t) = θ(Tnu, Tnw, t) ≥ θ(Tnx0, T
nu, kt) ∗ θ(Tnx0, T

nw, kt)

≥ ψ(θ(x0, u, t)) ∗ ψ(θ(x0, w, t)) ≥ θ(x0, u, t) ∗ θ(x0, w, t)

for all n ∈ N. This is a contradiction and hence u = w. □

Example 3.17. Let X = Z = A ∪ B, where A = {−1,−2,−3, . . .} ∪ {0, 1} and B = {2, 3, 4, . . .}. Define a binary
relation ℜ by xℜw ⇐⇒ x+ w ≥ 0. Define θ : X ×X × [0,∞) → [0, 1] as

θ(x,w, t) =

{
1 if x = w,
t

t+max{x,w} otherwise

}
for all t > 0 and x,w ∈ X with continuous t-norm ∗ defined as t1 ∗ t2 = t1 · t2. Define γ : X ×X → [1,∞) as

γ(x,w) =

{
1, x, w ∈ A or x = 0 or w = 0
max {x,w} , otherwise.

Then (X, θ, ∗,ℜ) is an ℜ-complete control fuzzy metric space. Observe that limt→∞ θ(x,w, t) = 1. Now, we define
T : X → X by

Tx =

{
x
2 if x ∈ A
1 if x ∈ B

for all x ∈ X. Observe that if xℜw then clearly TxℜTw. Now there are some cases to prove that T is an ℜ-contraction
for k ∈

[
1
2 , 1

)
.

1. If x,w ∈ A then Tx = x
2 and Tw = w

2 . This implies

θ(Tx, Tw, kt) = θ(
x

2
,
w

2
, kt) =

kt

kt+max{x
2 ,

w
2 }

≥ t

t+max{x,w}
= θ(x,w, t).

2. If x,w ∈ B then Tx = 1 and Tw = 1. This implies

θ(Tx, Tw, kt) = θ(1, 1, kt) =
kt

kt+max{1, 1}

≥ t

t+max{x,w}
= θ(x,w, t).
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3. If x ∈ A and w ∈ B then Tx = x
2 and Tw = 1. This implies

θ(Tx, Tw, kt) = θ(
x

2
, 1, kt) =

kt

kt+max{x
2 , 1}

≥ t

t+max{x,w}
= θ(x,w, t).

4. If x ∈ B and w ∈ A then Tx = 1 and Tw = w
2 . This implies

θ(Tx, Tw, kt) = θ(1,
w

2
, kt) =

kt

kt+max{1, w2 }

≥ t

t+max{x,w}
= θ(x,w, t).

Hence it is an ℜ-contraction. Now we show that it is not a contraction. If x,w ∈ A then Tx = x
2 and Tw = w

2 .
Thus

θ(Tx, Tw, kt) = θ(
x

2
,
w

2
, kt) =

kt

kt+max{x
2 ,

w
2 }
.

Let x = w = −2, k = 9
10 and t = 10. This implies

θ(Tx, Tw, kt) =
9

9 +max{−1,−1}
≤ 10

10 + max{−2,−2}
= θ(x,w, t)

which implies θ(Tx, Tw, kt) ≤ θ(x,w, t). This is a contradiction.

If limn→∞ θ(xn, x, t) exists, then limn→∞ θ(Txn, Tx, t) exists. This implies that it is ℜ-continuous. Also observe
that limn→∞ γ(xn, w) and limn→∞ γ(w, xn) exist. Hence all the conditions of Theorem 3.13 are satisfied and 0 is a
unique fixed point of T.

4 Application

In this section, we apply Theorem 3.13 to fuzzy Fredholm type integral equation and investigate the existence and
uniqueness of fixed point.

Let X = C([e, g],ℜ) be the set of all continuous real valued functions defined on [e, g]. Consider the fuzzy Fredholm
type integral equation:

x(l) = f(t) + β

∫ g

e

F (l, t)x(l)dt for all l, t ∈ [e, g], (4.1)

where β > 0, f(t) is a fuzzy function of t and F ∈ X. Define θ by

θ(x(l), w(l), t) = supl∈[e,g]
t

t+max{x(l), w(l)}
for all x,w ∈ X and t > 0

with continuous t-norm ∗ defined as t1 ∗ t2 = t1 · t2. Define γ : X ×X → [1,∞) as

γ(x,w) =

{
1, x, w ∈ A or x = 0 or w = 0
max {x,w} , otherwise.

Then (X, θ,ℜ) is an ℜ-complete control fuzzy metric space.

Theorem 4.1. Assume that max{F (l, t)x(l), F (l, t)w(l)} ≤ max{x(l), w(l)} for x,w ∈ X, k ∈ (0, 1) and for all
l, t ∈ [e, g]. Also consider

∫ g

e
dt = g − e ≤ k < 1. Let T : X → X be

1. ℜ-preserving;
2. ℜ-contraction;
3. ℜ-continuous.

Then the fuzzy Fredholm type integral equation (4.1) has a unique solution.
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Proof . Define T : X → X by

Tx(l) = f(t) + β

∫ g

e

F (l, t)x(l)dt for all l, t ∈ [e, g].

Define ℜ as x(l)ℜw(l) if and only if x(l)w(l) ∈ {|x(l)|, |w(l)|}. We see that x(l) and Tx(l) belong to X. So observe
that if x(l)ℜw(l) then clearly Tx(l)ℜTw(l). Observe that the existence of a fixed point of the operator T is equivalent
to the existence of solution of the fuzzy Fredholm type integral equation. Now, for all x,w ∈ X, we have

θ(Tx(l), Tw(l), kt) = sup
l∈[e,g]

kt

kt+max{Tx(l), Tw(l)}

= sup
l∈[e,g]

kt

kt+max{
∫ g

e
F (l, t)x(l)dt,

∫ g

e
F (l, t)w(l)dt}

= sup
l∈[e,g]

kt

kt+
∫ g

e
max{F (l, t)x(l), F (l, t)w(l)}dt

≥ sup
l∈[e,g]

kt

kt+
∫ g

e
max{x(l), w(l)}dt

= sup
l∈[e,g]

kt

kt+max{x(l), w(l)}
∫ g

e
dt

≥ sup
l∈[e,g]

kt

kt+ kmax{x(l), w(l)}

≥ sup
l∈[e,g]

t

t+max{x(l), w(l)}
= θ(x(l), w(l), t).

Hence T is an ℜ-contraction. Suppose {xn} is an ℜ-sequence in X such that {xn} converges to x ∈ X. Since T is
ℜ-preserving and {Txn} is an ℜ-sequence, from (2), we have

θ(x(l), w(l), kt) ≥ θ(x(l), w(l), t).

So limn→∞ θ(x(l), w(l), t) is finite for all t > 0. It is clear that limn→∞ θ(x(l), w(l), kt) is finite. Hence T is ℜ-
continuous. Therefore, all the conditions of Theorem 3.13 are satisfied. Hence the operator T has a unique fixed point.
This means that the fuzzy Fredholm type integral equation (4.1) has a unique solution. □

Corollary 4.2. Let (X, θ, ∗) be an ℜ-complete control fuzzy metric space. Define T : X → X as

Tx(l) = f(t) + β

∫ g

e

F (l, t)x(l)dt for all l, t ∈ [e, g].

Suppose the following conditions hold:

1. max{F (l, t)x(l), F (l, t)w(l)} ≤ max{x(l), w(l)} for x,w ∈ X, k ∈ (0, 1) and for all l, t ∈ [e, g];

2.
∫ g

e
dt = g − e ≤ k < 1.

Then the integral equation (4.1) has a solution.

5 Conclusion

In this note, we introduced the notion of ℜ-controlled fuzzy metric space and some new type of fixed point theorems
in this new setting. Moreover, we provided a non-trivial example to demonstrate the viability of the proposed methods.
We have supplemented this work with an application that demonstrates how the built method outperforms those found
in the literature. Since our structure is more general than the class of fuzzy and controlled fuzzy spaces, our results
and notions expand and generalize a number of previously published results.
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