APPROXIMATELY HIGHER HILBERT C^{*}-MODULE DERIVATIONS

M. B. GHAEMI ${ }^{1}$ AND B. ALIZADEH ${ }^{2 *}$

Dedicated to the 70th Anniversary of S.M.Ulam's Problem for Approximate Homomorphisms
Abstract. We show that higher derivations on a Hilbert C^{*}-module associated with the Cauchy functional equation satisfying generalized Hyers-Ulam stability.

1. Introduction

Let A be a C^{*}-algebra and M be a linear space that is a left A-module with a scalar multiplication satisfying $\lambda(x a)=x(\lambda a)=(\lambda x) a$ for $x \in M, a \in A, \lambda \in \mathbb{C}$. The space M is called a pre-Hilbert A-module or inner product A-module if there exists an inner product $<.,>: M \times M \rightarrow A$ with the following properties:
$1 .<x, x>\geq 0$; and $<x, x>=0$ iff $x=0$;
2. $\langle\lambda x+y, z\rangle=\lambda\langle x, z\rangle+\langle y, z\rangle$;
3. $<a x, y>=a<x, y>$;
4. $\left\langle x, y>^{*}=<y, x\right\rangle$.
M is called a (left) Hilbert A-module, or a Hilbert C^{*}-module over the C^{*}-algebra A if it is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|_{A}^{\frac{1}{2}}$. We always assume that the linear structure of A and M are compatible.
(i) The $C^{*}-\operatorname{algebra} A$ itself can be reorganized to become a Hilbert A-module if we define the inner product $\langle a, b\rangle=a b^{*}$. The Hilbert Submodules of A are precisely its closed (left) ideals.
(ii) Every inner product space is a left Hilbert \mathbb{C}-module; cf [9, 27].

A linear mapping $d: M \rightarrow M$ is called a derivation on the Hilbert C^{*}-module M if it satisfies the condition $d(\langle x, y>z)=<d(x), y>z+\langle x, d(y)\rangle z+\langle x, y\rangle$ $d(z)$ for every $x, y, z \in M$ (see [1, 10]). It is clear that every adjointable mapping T satisfying $T^{*}=-T$ is a derivation. The converse is not true in general; see [1].

Let \mathbb{N} be the set of natural numbers. For $m \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. A sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{m}\right\}$ (resp. $H=\left\{h_{o}, h_{1}, \ldots, h_{n}, \ldots\right\}$) of linear maps from Hilbert

[^0]A-module M into Hilbert A-module N is called a higher derivation of rank m (resp. infinite rank) from M into N if
$$
h_{n}(<x, y>z)=\sum_{i+j+k=n}<h_{i}(x), h_{j}(y)>h_{k}(z)
$$
holds for each $n \in\{0,1, \ldots, m\}$ (resp. $n \in \mathbb{N}_{0}$) and all $x, y, z \in M$. A higher derivation of rank 0 from M into N is a homomorphism; that is, h_{0} is linear and $h_{o}(<x, y>z)=<h_{0}(x), h_{o}(y)>h_{o}(z)$. The higher derivation H from M into N is said to be onto if $h_{o}: M \rightarrow N$ is onto. The higher derivation H on M is called strong if h_{0} is an identity mapping on M. A strong higher derivation of rank 1 on M is a derivation. Thus, a higher derivation is a generalization of both a homomorphism and a derivation (for similar definitions on algebras, see [7]).

The stability of functional equations was first introduced by S. M. Ulam [26] in 1940. In 1941, D. H. Hyers [5] gave a partial solution of Ulam's problem for the case of approximate additive mappings in the context of Banach spaces. In 1978, Th. M. Rassias [24] generalized the theorem of Hyers by considering the stability problem with unbounded Cauchy differences $\|f(x+y)-f(x)-f(y)\| \leq$ $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right),(\epsilon>0, p \in[0,1))$. This phenomenon of stability that was introduced by Th. M. Rassias [24] is called the Hyers-Ulam-Rassias stability (or the generalized Hyers-Ulam stability). In 1992, Găvruta [4] generalized the Th.M. Rassias theorem as follows:

Suppose $(G,+)$ is an ablian group and X is a Banach space $\varphi: G \times G \longrightarrow[0, \infty)$ satisfying

$$
\tilde{\varphi}(x, y)=\frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y\right)<\infty
$$

for all $x, y \in G$. If $f: G \rightarrow X$ is a mapping with

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$, then there exists a unique mapping $T: G \rightarrow X$ such that $T(x+y)=$ $T(x)+T(y)$ and $\|f(x)-T(x)\| \leq \tilde{\varphi}(x, x)$ for all $x, y \in G$.
R. Badora [2] and T. Miura et al. [11] proved the Ulam-Hyers stability and the Isaac and Rassias-type stability of derivations [6]; M. Bavand Savadkouhi, M. Eshaghi Gorrdji, J. M. Rassias, and N. Ghobadipour [3] have contributed works regarding the stability of ternary Jordan derivations. Yong-Soo Jung and IckSoon Chang [7] investigated the stability and superstability of higher derivations on rings. Amyari and M. S. Moslehian [1] studied the stability of derivations on Hilbert C^{*}-modules (see also [12]-[25]).

2. Main Results

We start our work with a known fixed point theorem.
Theorem 2.1. (The alternative of fixed point). Suppose (X, d) be a generalized complete metric space and $J: X \rightarrow X$ is a strictly contractive mapping; that is,

$$
d(J x, J y) \leq L d(x, y)(x, y \in X)
$$

for some $L<1$. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, T^{n+1} x\right)=\infty, \forall n \geq 0
$$

or

$$
d\left(J^{n} x, J^{n+1} x\right)<\infty, \forall n \geq n_{o}
$$

for some natural n_{0}. Moreover, if the second alternative holds, then:
(i) The sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(ii) y^{*} is a unique fixed point of J in $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\infty\right\}$; and $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)(x, y \in Y)$.
Lemma 2.2. ([lemma 2, 1]) Let X be a linear space and Y be a Banach space $0 \leq L<1$ and $\lambda \geq 0$ are given numbers and $\psi: X \rightarrow[0, \infty)$ has the property

$$
\psi(x) \leq \lambda L \psi\left(\frac{x}{\lambda}\right)
$$

for all $x \in X$. Assume that $S=\{g: X \rightarrow Y: g(0)=0\}$ and the generalized metric d on S is defined by

$$
d(g, h)=\inf \{c \in(o, \infty):\|g(x)-h(x)\| \leq c \psi(x), \forall x \in X\} .
$$

Then the mapping $J: S \rightarrow S$ given by $J g(x)=\frac{1}{\lambda} g(\lambda x)$ is a strictly contractive mapping.

Theorem 2.3. Let $\varphi: M^{5} \rightarrow[0, \infty)$ be a control function such that

$$
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y, 2^{n} u, 2^{n} t, 2^{n} z\right)}{2^{n}}=0
$$

for all $x, y, u, t, z \in M$. Suppose that $F=\left\{f_{0}, f_{1}, \ldots, f_{n}, \ldots\right\}$ is a sequence of mappings from M into N such that $f_{n}(0)=0$ and

$$
\begin{equation*}
\left\|f_{n}(\lambda x+y+<u, t>z)-\lambda f_{n}(x)-f_{n}(y)-\sum_{i+j+k=n}<f_{i}(u), f_{j}(t)>f_{k}(z)\right\| \leq \varphi(x, y, u, t, z) \tag{2.1}
\end{equation*}
$$

for all $x, y, u, t, z \in M, n \in \mathbb{N}_{0}, \lambda \in \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. Assume that there exists $0 \leq L<1$ such that the mapping $\psi(x)=\varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0,0\right)$ has the property

$$
\begin{equation*}
\psi(x) \leq 2 L \psi\left(\frac{x}{2}\right) \tag{2.2}
\end{equation*}
$$

for all $x \in M$. Then there exists a unique higher derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from M into N such that

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{L}{1-L} \psi(x)
$$

for each $n \in \mathbb{N}_{0}$ and for all $x \in M$.
Proof. Setting $\lambda=1, y=x$, and $u=t=z=0$ in (2.1) implies

$$
\begin{equation*}
\left\|f_{n}(2 x)-2 f_{n}(x)\right\| \leq \varphi(x, x, 0,0,0) \tag{2.3}
\end{equation*}
$$

It follows from (2.2) and (2.3) that

$$
\left\|\frac{1}{2} f_{n}(2 x)-f_{n}(x)\right\| \leq \frac{1}{2} \psi(2 x) \leq L \psi(x)
$$

for each $n \in \mathbb{N}_{0}$ and $x \in M$. So $d\left(f_{n}, T f_{n}\right) \leq L<\infty$, where the mapping T defined on $S=\left\{g_{n}: M \rightarrow N: g_{n}(0)=0\right\}$ by $\left(T g_{n}\right)(x)=\frac{1}{2} g_{n}(2 x)$ is a strictly contractive function as in lemma 2.2. Applying the fixed point alternative, we deduce the existence of a mapping $h_{n}: M \rightarrow N$ such that h_{n} is a fixed point of T that is $h_{n}(2 x)=2 h_{n}(x)$ for all $x \in M$. Since $\lim _{m \rightarrow \infty} d\left(T^{m} f_{n}, h_{n}\right)=0$, it follows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f_{n}\left(2^{m} x\right)}{2^{m}}=h_{n}(x) \tag{2.4}
\end{equation*}
$$

for all $x \in M, n \in \mathbb{N}_{0}$. The mapping h_{n} is the unique fixed point of T in the set $U=\left\{g_{n} \in S: d\left(f_{n}, g_{n}\right)<\infty\right\}$. Hence h_{n} is the unique fixed point of T such that $\left\|f_{n}(x)-h_{n}(x)\right\| \leq K \psi(x)$ for some $K>0$ and for all $x \in M$. Again, by applying the fixed point alternative theorem, we infer that

$$
d\left(f_{n}, h_{n}\right) \leq \frac{1}{1-L} d\left(f_{n}, T f_{n}\right) \leq \frac{L}{1-L}
$$

so

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{L}{1-L} \varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0,0\right)
$$

for all $x \in M, n \in \mathbb{N}_{0}$. It follows from (2.1) that

$$
\left\|f_{n}(\lambda x+y)-\lambda f_{n}(x)-f_{n}(y)\right\| \leq \varphi(x, y, 0,0,0)
$$

By replacing x and y in (2.4) by $2^{n} x$ and $2^{n} y$, respectively, dividing both sides by 2^{n} and taking $n \rightarrow \infty$, we get

$$
h_{n}(\lambda x+y)=\lambda h_{n}(x)+h_{n}(y),
$$

for all $\lambda \in \mathbb{T}$ and all $x, y \in M$.
Now, let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and let K be a natural number greater than $4|\lambda|$. Then $\left|\frac{\lambda}{K}\right|<\frac{1}{4}<1-\frac{2}{3}=\frac{1}{3}$. By Theorem 1 in [8], there exist numbers $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{T}$ such that $3 \frac{\lambda}{K}=\lambda_{1}+\lambda_{2}+\lambda_{3}$. By the additivity of each $h_{n}, n \in \mathbb{N}_{0}$, we get $h_{n}\left(\frac{1}{3} x\right)=\frac{1}{3} h_{n}(x)$ for each $n \in \mathbb{N}_{0}$ and all $x \in M$. Therefore,

$$
\begin{gathered}
h_{n}(\lambda x)=h_{n}\left(\frac{K}{3} \cdot 3 \cdot \frac{\lambda}{K} x\right)=\frac{K}{3} h_{n}\left(3 \cdot \frac{\lambda}{K} x\right)=\frac{K}{3} h_{n}\left(\lambda_{1} x+\lambda_{2} x+\lambda_{3} x\right) \\
=\frac{K}{3}\left(h_{n}\left(\lambda_{1} x\right)+h_{n}\left(\lambda_{2} x\right)+h_{n}\left(\lambda_{3} x\right)\right)=\frac{K}{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) h_{n}(x)=\lambda h_{n}(x),
\end{gathered}
$$

for each $n \in \mathbb{N}_{0}$ and all $x \in M$, so that h_{n} is \mathbb{C}-linear for each $n \in \mathbb{N}_{0}$.
Next, we need to show that the sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ satisfies the identity

$$
h_{n}(<u, t>z)=\sum_{i+j+k=n}<h_{i}(u), h_{j}(t)>h_{k}(z)
$$

for each $n \in \mathbb{N}_{0}$ and all $x, y, z \in M$. Putting $x=y=0$ in (2.1) and

$$
\begin{equation*}
D_{n}(u, t, z)=f_{n}(<u, t>z)-\sum_{i+j+k=n}<f_{i}(u), f_{j}(t)>f_{k}(z), \tag{2.5}
\end{equation*}
$$

for each $n \in \mathbb{N}_{o}$ and all $u, t, z \in A$, we see that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{D_{n}\left(2^{r} u, 2^{r} t, 2^{r} z\right)}{2^{r}}=0 \tag{2.6}
\end{equation*}
$$

for each $n \in \mathbb{N}_{0}$ and all $u, t, z \in M$. By using (2.4), (2.5), and (2.6), we get

$$
\begin{gathered}
h_{n}(<u, t>z)=\lim _{r \rightarrow \infty} \frac{f_{n}\left(2^{r}<u, t>z\right)}{2^{r}}=\lim _{r \rightarrow \infty} \frac{f_{n}\left(<\left(2^{r} u\right),\left(2^{r} t\right)>\left(2^{r} z\right)\right.}{2^{3 r}} \\
=\lim _{r \rightarrow \infty} \frac{\sum_{i+j+k=n}<f_{i}\left(2^{r} u\right), f_{j}\left(2^{r} t\right)>f_{k}\left(2^{r} z\right)+D_{n}\left(2^{r} u, 2^{r} t, 2^{r} z\right)}{2^{3 r}} \\
=\lim _{r \rightarrow \infty} \sum_{i+j+k=n}<\frac{1}{2^{r}} f_{i}\left(2^{r} u\right), \frac{1}{2^{r}} f_{j}\left(2^{r} t\right)>\frac{1}{2^{r}} f_{k}\left(2^{r} u\right) \\
+\lim _{r \rightarrow \infty} \frac{D_{n}\left(2^{r} u, 2^{r} t, 2^{r} z\right)}{2^{3 r}}=\sum_{i+j+k=n}<h_{i}(u), h_{j}(t)>h_{k}(z)
\end{gathered}
$$

This completes the proof of the theorem.
As a consequence of the previous theorem, we show the Hyers-Ulam-Rassias stability of higher derivations.

Corollary 2.4. Let $0 \leq p<1, \alpha, \beta>0$ and $F=\left\{f_{o}, f_{1}, \ldots, f_{n}, \ldots\right\}$ is a sequence of mappings from M into N satisfying $f(0)=0$ and

$$
\begin{gathered}
\left.\| f_{n}(\lambda x+y+<u, t>z)-\lambda f_{n}(x)-f_{n}(y)-\sum_{i+j+k=n}<f_{i}(u), f_{j}(t)>f_{k}(z)\right] \| \\
\leq \alpha+\beta\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|t\|^{p}+\|z\|^{p}\right)
\end{gathered}
$$

for all $\lambda \in \mathbb{T}$ and all $x, y, u, t, z \in M$.
Then there exists a unique higher derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from M into N such that

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{\alpha+\beta 2^{1-p}\|x\|^{p}}{2^{1-p}-1}
$$

for all $x \in M$.
Proof. Put $\varphi(x, y, u, t, z)=\alpha+\beta\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|t\|^{p}+\|z\|^{p}\right)$, and let $L=\frac{1}{2^{1-p}}$ in the previous theorem. Then $\psi(x)=\alpha+2^{1-p} \beta\|x\|^{p}$, and there exists a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ with required properties.

In a similar fashion to theorem 2.3, we can prove the following theorem:
Theorem 2.5. Let $\varphi: M^{5} \rightarrow[0, \infty)$ be a control function with the property

$$
\lim _{n \rightarrow \infty} 2^{n} \varphi\left(2^{-n} x, 2^{-n} y, 2^{-n} u, 2^{-n} t, 2^{-n} z\right)=0
$$

for all $x, y, u, t, z \in A$. Assume that $F=\left\{f_{o}, f_{1}, \ldots, f_{n}, \ldots\right\}$ is a sequence of mappings from M into N satisfying $f(0)=0$ and
$\left\|f_{n}(\lambda x+y+<u, t>z)-\lambda f_{n}(x)-f_{n}(y)-\sum_{i+j+k=n}<f_{i}(u), f_{j}(t)>f_{k}(z)\right\| \leq \varphi(x, y, u, t, z)$,
for all $x, y, u, t, z \in M, \lambda \in \mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. Assume that there exists $0 \leq L<1$ such that the mapping $\psi(x)=\varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0,0\right)$ has the property

$$
\psi(x) \leq \frac{1}{2} L \psi(2 x)
$$

for all $x \in M$. Then there exists a unique higher derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from M into N such that

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{1}{1-L} \psi(x)
$$

for each $n \in \mathbb{N}_{0}$ and for all $x \in M$.
Proof. Setting $\lambda=1, y=x$, and $u=t=z=0$ in (2.7) implies

$$
\begin{equation*}
\left\|f_{n}(2 x)-2 f_{n}(x)\right\| \leq \varphi(x, x, 0,0,0) \tag{2.8}
\end{equation*}
$$

Replacing x by $\frac{x}{2}$ in (2.8), we obtain

$$
\left\|f_{n}(x)-2 f_{n}\left(\frac{x}{2}\right)\right\| \leq \psi(x) .
$$

for each $n \in \mathbb{N}_{0}$ and $x \in M$. Thus, $d\left(f_{n}, T f_{n}\right) \leq L<\infty$, where the mapping T defined on $S=\left\{g_{n}: M \rightarrow N: g_{n}(0)=0\right\}$ by $\left(T g_{n}\right)(x)=2 g_{n}\left(\frac{1}{2} x\right)$ is a strictly contractive function, as in lemma 2.2. Applying the fixed point alternative, we deduce the existence of a mapping $h_{n}: M \rightarrow N$ such that h_{n} is a fixed point of T that is $h_{n}\left(\frac{1}{2} x\right)=\frac{1}{2} h_{n}(x)$ for all $x \in M$. Since $\lim _{m \rightarrow \infty} d\left(T^{m} f_{n}, h_{n}\right)=0$, it follows that

$$
\lim _{m \rightarrow \infty} 2^{m} f_{n}\left(2^{-m} x\right)=h_{n}(x)
$$

for all $x \in M, n \in \mathbb{N}_{0}$. The mapping h_{n} is the unique fixed point of T in the set $U=\left\{g_{n} \in S: d\left(f_{n}, g_{n}\right)<\infty\right\}$. Hence, h_{n} is the unique fixed point of T such that $\left\|f_{n}(x)-h_{n}(x)\right\| \leq K \psi(x)$ for some $K>0$ and for all $x \in M$. Again, by applying the fixed point alternative theorem, we infer that

$$
d\left(f_{n}, h_{n}\right) \leq \frac{1}{1-L} d\left(f_{n}, T f_{n}\right) \leq \frac{1}{1-L},
$$

so

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{1}{1-L} \varphi\left(\frac{x}{2}, \frac{x}{2}, 0,0,0\right)
$$

for all $x \in M, n \in \mathbb{N}_{0}$. The rest is similar to the proof of theorem 2.3.
The following corollary is similar to corollary 2.4 for the case where $p>1$.
Corollary 2.6. Let $p>1, \alpha, \beta>0$ and $F=\left\{f_{o}, f_{1}, \ldots, f_{n}, \ldots\right\}$ is a sequence of mappings from M into N satisfying $f(0)=0$ and

$$
\begin{gathered}
\left\|f_{n}(\lambda x+y+<u, t>z)-\lambda f_{n}(x)-f_{n}(y)-\sum_{i+j+k=n}<f_{i}(u), f_{j}(t)>f_{k}(z)\right\| \\
\leq \alpha+\beta\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|t\|^{p}+\|z\|^{p}\right)
\end{gathered}
$$

for all $\lambda \in \mathbb{T}$ and all $x, y, u, t, z \in M$. Then there exists a unique higher derivation $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ of any rank from M into N such that

$$
\left\|f_{n}(x)-h_{n}(x)\right\| \leq \frac{\alpha 2^{p-1}+\beta\|x\|^{p}}{2^{1-p}-1}
$$

for all $x \in M$.
Proof. Put $\varphi(x, y, u, t, z)=\alpha+\beta\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|t\|^{p}+\|z\|^{p}\right)$, and let $L=\frac{1}{2^{p-1}}$ in the previous theorem. Then $\psi(x)=\alpha+2^{1-p} \beta\|x\|^{p}$ and there exists a sequence $H=\left\{h_{0}, h_{1}, \ldots, h_{n}, \ldots\right\}$ with required properties.

References

1. M. Amyari and M. S. Moslehian, Hyers-Ulam-Rassias Stability of derivations on Hilbert C^{*}-modules, Topological algebras and applications, Contemp. Math. 427, Providence, RI, (2007), 31-39.
2. R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167-173.
3. M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50 (2009) 1-9.
4. P. Găvuta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping, J. Math. Anal. Appl. 184 (1994), 431-436.
5. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941) 222-224.
6. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of -additive mappings, J. Approx. Theorey 72 (1993), 131-137.
7. Y. S. Jung and I. S. Chang, On approximately higher ring derivations, J. Math. Anal. Appl. 342 (2008) 636-643.
8. R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scan. 57 (1985), 249-266.
9. E. C. Lance, Hilbert C^{*}-modules, LMS Lecture Note Series 210, Cambridge University Press, 1995.
10. X. Liu and T. Z. Xu, Automatic continuity of derivations of Hilbert C^{*}-modules, J. Baoji College Arts Sci. Nat. Sci. 1995, no. 2, 14-17.
11. T. Miura, G. Hirasawa and S. E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), 522-530.
12. A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), 569-574.
13. A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the pexiderized Cauchy functional equation, J. Math. Anal. Appl. 335 (2007), 763-778.
14. A. Najati and G. Zamani Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), 1318-1331.
15. C. Park, On the stability of the quadratic mapping in Banach modules, J. Math. Anal. Appl. 27 (2002), 135-144.
16. C. Park, On the Hyers-Ulam-Rassias stability of generalized quadratic mappings in Banach modules, J. Math. Anal. Appl. 291 (2004), 214-223.
17. C. Park, On the stability of the orthogonally quartic functional equation, Bull. Iranian Math. Soc. (2005), 63-70.
18. C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007).
19. C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751 (2008).
20. W. Park and J. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Analysis-TMA 62 (2005), 643-654.
21. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
22. Th. M. Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
23. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl. 62 (2000), 23-130.
24. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
25. Th.M. Rassias, P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
26. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, 1940.
27. N. E. Wegge-Olsen, K-theory and C^{*}-algebra, a Friendly Approach, Oxford University Press, Oxford, England, 1993.
${ }^{1}$ Department of Mathematics, Iran University of Science and Technology, Tehran, Iran

E-mail address: mghaemi@iust.ac.ir
${ }^{2}$ PhD and Graduate Center, Payame Noor University, Shahnaz Alley Haj Mahmood Norian Street,

AND
Tabriz College of Technology, P. O. Box 51745-135, Tabriz, Iran. E-mail address: a_badrkhan@yahoo.com

[^0]: Date: Received: January 2010; Revised: Jun 2010.
 2000 Mathematics Subject Classification. Primary 39B52; Secondary 39B82; 46B99; 17A40.
 Key words and phrases. Hyers-Ulam stability; Hilbert C^{*}-modules; derivation ; higher derivation; fixed point theorem.
 *: Corresponding author.

