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Abstract

The purpose of this paper is to investigate the finite-order transcendental entire solutions to specific types of non-linear
differential-difference equations. Moreover, our results generalize some of the previous results. Some examples are
provided to show that our results are best in certain sense.
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1 Introduction

Throughout the paper, we assume that the reader has prior knowledge of the fundamental results and standard
notations of Nevanlinna theory. The terms T'(r, f), N(r, f) and m(r, f) represents the characteristic function, counting
and proximity functions of f. Whenever S(r, f) is defined, it has the property that S(r, f) = o(T(r, f)) as r — oo,
possibly outside of any set E of finite logarithmic measure. We say that function h(z) is a small meromorphic with
respect to f(z) if and only if T'(r, h) = o(S(r, f)). Specifically, Nevanlinna’s theory plays an extremely important role
to analyze the existence and solvability of non-linear differential, difference and differential-difference equations.

In 1964, Hayman [8] investigated the following non-linear differential equation
f"+ Ha(f) = F(2), (1.1)

where d is the degree of the differential polynomial H; and the result is:

Theorem 1.1. [§] If f and F(z) be non-constant meromorphic functions and n > d+1in (L.I). If N(r, f)+N (r, &) =
S(r, f), then F' = (f + v)™, where v is small meromorphic function of f.
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An extension of Tumura—Clunie theory is Theorem it is based on a theorem suggested by Tumura[l8]. How-
ever, the proof of which was completed by Clunie[5]. Consequently, many studies have been done on the non-linear
differential equation by considering various forms of F(z). One can refer [10] [13 [12] [16] for more details about
non-linear differential equations.

In recent times, several authors have been interested in investigating the solution of the following type of equation
U4 Hy (2, f) = h1(2)e"*®) 4+ hy(2)e2®), (1.2)

where d is the degree of the differential polynomial Hy, and v1(2), va(2), hy and hy are polynomials. There are a few
works that are relevant to the topics that can be seen in [9] 211 [13], [I'7, [7, [I]. For instance, Liu et al. [I5] studied the
existence of meromorphic solution of (|1.2]) and the result is:

Theorem 1.2. [I5] Let n > 3 be an integer and d. < n — 2 be the degree of differential polynomial Hy, . Consider
O]

the polynomials v1, vy of degree k(> 1) and hi, hy be two small non-zero meromorphic functions of e If A
Uz

2 22l 11},

n—1" n ?

and any one of the these occur:

1. Hy, #0.

() n
2. Hy, =0, %5 & {3, 4=} then (L.2)
2

does not have the meromorphic transcendental solution f with N(r, f) = S(r, f).

L. W. Liao et al. [I3] studied the differential equation of the form

Frf 4 Hy (2, f) = €(2)e?@), (1.3)

and obtained the result by taking £(z)(# 0) as rational function and p(z) as non-constant polynomial.

Theorem 1.3. [I3] Let f be a meromorphic solution of (1.3)) with finite number of poles, then

for d. < n —1 and the rational function s(z) satisfies s™ [(n + 1)s’ + p's] = (n + 1)¢&.

In 2012, Z. T. Wen et al. [19] classified certain non-linear difference equation of the form
fr 4 h(2)e"H f(z + 0) = Q(a), (1.4)

examined the entire solution of finite order. Later, 2017 M. F. Chen et al.[2] studied the existence of finite-order entire
solutions of following non-linear difference equations

"+ a(2)Acf(2) = p1e™® + poe™®, n > 2

and
P+ q(2)e? P f(z+¢) = pre* + pae ™, n >3

where ¢, @ are non-zero polynomials, ¢, A\, p;, o;(i = 1,2) are non-zero constants.

In this paper we consider the following non-linear difference equation of the form:
P4+ €(2)f(z+ ¢)eC®) = hy (2) €13 + hy (2) €23, (1.5)

where n be an integer, ¢ € C\ {0}, h1(z), h2(z) be non-zero small functions of f and £(z), G(z) [G(z) is non constant],
v1(2) and va(z) are non-zero polynomials, and the result is:

Theorem 1.4. If f is finite-order transcendental entire solution of (L.5)) with n > 3 and deg v1 # deg vs, then the
following holds:
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1. Suppose deg v1 < deg vy and p(f) = deg vy, then every solution of f satisfies p(f) < max{deg v1,deg v2} =
deg G and f = ,826%1, where 35" = p;.

2. Suppose deg v1 < deg vo and p(f) > deg va, then every solution of f satisfies p(f) = deg G > maxz{deg v1, deg vs}.
Similarly we can get for deg vy < deg v1, p(f) > deg vy

Following are two examples that illustrate the sharpness of our result.

Example 1.5. Let f = ze3 be a finite-order transcendental entire solution of the difference equation

z+1

3+ zeZQf(z +1) =2%" + (22 + z)e’z2+ 5

Here n =3, {(2) = z, G(z) = 22, c = 1(#£ 0), h1(2) = 2%, hao(2) = 22 + 2, v1(2) = 2z and v2(2) = 2% + 2. Then
clearly we can see that deg v; = 1 < 2 = deg v2 and p(f) = deg v1 = 1, p(f) =1 < max{l,2} = 2 = deg G and
f = ze*. Thus, the conclusion (i) of the Theorem (1.4]) holds.

Example 1.6. Let f = ze=*" is a transcendental entire solution of finite order of the difference equation

2+ ze22+1f(z +1)= (22 +2)e % + PR
Here n =3, £(2) = 2z, G(2) = 22 + 1, c = 1(#£ 0), h1(2) = 22 + 2, ha(2) = 22, v1(2) = —22 and vy(2) = —322. Clearly
deg vy =1 < 2=deg vy and p(f) =2 =deg G > maxz{l,2} and f = ze . Thus, the conclusion (i) of the Theorem
(1.4) holds.

Later in 2016, K. Liu[I4] studied the transcendental finite-order entire solutions to the differential-difference equa-
tion
"+ 1(2)e D B (2 + ) = Q(2), (1.6)
where n > 2, (k > 1) is an integer, ¢ € C\ {0} and h(2)(# 0) , Q(z) are polynomials and H(z) is a polynomial of degree
> 1. Eventually, Chen et. al[2] and Xu et al. [20] replaced Q(z) in (1.4), (1.6 by p1e7* + poe™"* and pie®'* + pye®2?,
where p1, p2, 1, a1 and as are constants, obtained the results. Later, in 2020, W. Chen et al.[3] investigated the
following non-linear differential-difference equation

P4 afr Tt 4+ £(2)efTP) f(z + ¢) = (2)eP?), (1.7)

where n € I't, q, H, r, p are polynomials of degree > 1, ¢ # 0 and a are constants, proved the following result.

Theorem 1.7. [3] Let n € I, n > 3 when a # 0 and n > 2 when a = 0. Let f be a entire non-vanishing transcendental
solution to ([1.7)) with finite order. Thus, each solution f yields any of the following

1. p(f) < degp=deg H and f = Ce , where C is constant.
2. p(f) =deg H > deg p.

In the same paper, the author also proved the solutions of equation (|1.7]), where q(z)ep(z) replaced by pje** +pge™??,

A, p1 and py are non-zero constants. In 2021, Nan Li et al. obtained the result to the equation (|1.7) for the case n = 2
and a = 0 and also replaced q(z)ep(z) by p1e®'? + pee“2*  where p1, p2, a1 and aq are non-zero constants, and proved
the existence of entire solutions.

Theorem 1.8. [I1] Let ¢, a # 0 be constants, &, G , ¢ , p be polynomials such that G, p are not constants and &, ¢ # 0.
Suppose that f is a transcendental entire solution with finite order of the equation

P2t aff +6(2)e“ D f(z + ) = q(2)e"), (1.8)
satisfying A(f) < p(f), then deg G = deg p, and one among the following relations holds:

1. p(f) <deg G =degp, and f = Ce=
2. p(f) =deg G = deg p.
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It is also fascinating to explore the finite-order entire solutions of the following differential-difference equation
Franftt 4 s(2)eCE B (2 4 o) = h(2)er, (1.9)

where n > 0 be an integer, n # 0, ¢ € C\ {0} and h(z), s(z), G(z)(> 1) and p(z) are non-constant polynomials, and
the result is:

Theorem 1.9. Let f be a non-vanishing finite-order transcendental entire solution of (1.9)), n # 0 when n > 3 and
1n =0 when n > 2. Then each solution f satisfies any one of the following:

1. p(f) <degp=deg G and f = Ce .
2. p(f) =deg G > deg p.

Following are two examples that illustrate the sharpness of our result.

Example 1.10. Let f = e~ % be a finite-order transcendental entire solution of the differential-difference equation

P+ 4290+ l)ez2+er1 =z,

Example 1.11. Let f = e*” is a transcendental entire solution of finite order of the differential-difference equation

f3+f2f/+zf/(2+1)€222—2z—1 _ (222+4Z+1)6322.

Thus, by above examples we can see that the conclusion (¢) and (i¢) holds.

2 Preliminaries

Lemma 2.1. [22] If fr(2), 1 <k <m, and gi(z), 1 <k < m, m > 2 are entire functions that meet conditions listed
below

1. > fk(z)eg’“(z) =0,
k=1

2. The orders of fj are less than that of e9()=9n(2) for 1 < k < m, 1 <k<l<n<m,then fy =0for1 <k <m.

Lemma 2.2 ([6] Clunie’s lemma). Let f be a non-constant finite order meromorphic solution of

where P(z, f) and Q(z, f) are difference polynomials in f with small meromorphic function as coefficients, and let
c € C, § < 1. If the total degree of Q(z, f) is a polynomial in f and its shifts are at most n, then

T(r+lclf)

PG ) = o (T o e )

r

for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3. [10] Assume that f(z) be a transcendental meromorphic function, p, ¢,r and s are small functions of f
with prs # 0. If pf2 + qff' +r(f')? = s, then

/

S
r(q® — Apr)— + a(q® — 4pr) — r(q®> — 4pr)' + (¢ — 4pr)r’ = 0.

Lemma 2.4. [4] Let f be a non-constant meromorphic function and 7y, 72 be two complex numbers such that 7y # 5.
Let f(z) be a meromorphic function with finite order o, then each € > 0, then

m <r, fevm ) — 0 (r ).

flz+mn2)
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Lemma 2.5. [22] Let f be a non-zero meromorphic function. Then
m (r, fT,) = O(logr) as r — o

if f is finite order, and

m (7“, J%) = O(logr(T(r, f))) as r — o0
possibly outside a set E of r with finite linear measure if f is of infinite order.

Lemma 2.6. [4] Let f(z) be a meromorphic function with order p(f) < oo, and let 1 be a fixed non-zero complex
number, then for each € > 0, we have T(r, f(z +¢)) = T(r, f) + O(r*=+¢) + O(log ).

Lemma 2.7. [22] Let f be a meromorphic function in the complex plane that is not constant and k is a positive
integer. Then we have the following inequality

N (7“, ﬁ) <N (r,%) +kN(r, f) + S(r, f)-

Proof of Theorem [1.4k

Suppose f be a transcendental entire solution of finite order to (1.5) and now, in order to prove the theorem, we
will look at the following cases:

Case 1. If p(f) < max{deg v1,deg vo}, then from (1.5 and lemma it follows that

T(r,e%) = m(r,e),
=m (7‘ hie”t 4 hae”? — fn)
U Ef(zto) ’
f 1 v1 V2
<m (T, W) +m (r, f) +m (r, h1e’ + hoe®?) +nm(r, f) + S(r, f),
=(n+1T(r,f)+ T (r,h1e"* + hoe"?) + S(r, ).

i.e T(r,e¥) < T (r, h1e't + hge¥?) + S(r, f), which implies

deg G < max{deg v1, deg; va}. (2.1)

Meanwhile, we have from and Lemma [2.4] that
T (r,hie? + hoe®) =m (v, f* + £f (2 + c)e) + S(r, f),
< nm(r, f) +m(r,e%) +m (7‘, f(zfm> +m (r, }) +S(r, f),
=(n+1)T(r,f)+T (r,e) +S(r, f),
<T(re?) +50r 1),

which implies
max{deg v1,deg v2} < deg G. (2.2)

From (2.1 and (2.2]), we have
deg G = max{deg vi,deg vo} and p(f) < degG.
For convenience, we write f(z 4 ¢) = f., G(z) = G, similarly for hy, ho, v1 and v, then (1.5) take the form

fn + €fC€G = h1e”t + hg@vr", (23)
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By differentiating (2.3)),we get
nf" U 4+ Agfee® = hyAje’ + hyAge®?, (2.4)

Where A = & + 7 f +G A = % + v} and Ay = %’ + v} are small functions of f. Eliminating e”* and e”2 from (2.3)

and ( we get

A f" = nf" T 4 (AL = A)Efee = ho(Ar — Ag)e®?, (2.5)
Agf™ —nfm U 4 (Ag — A)Efee® = —hy(A) — Ag)e®, (2.6)

since deg v1 # deg vq, clearly Ay — Ay # 0. We have deg v1 < deg vy and deg v1 = p(f), differentiating (2.5) and
eliminating €2, we get

Bse® + B, =0, (2.7)
where 4, , ,
By = {A4 (<AI_A>+5 +j§c+a>} (Ay — A)ES,
By = "2 [(As = A0) 2 = n(Ay + Ag) [F + nln = D)2 +nf "
and

B hf (A; — AY
A4—(h2+ + 14 )

Since p(f) < deg G by and 1emma we get B3 = B, = 0. From B3 = 0, we must have either A, — A =0
or [ - (G +$+ & +G’>} =0.

Subcase 1.1. Suppose A1 — A =0, then we have %/ + % +G = % + v}, on integrating, we get

£f.eC = cghie’™, c3 # 0. (2.8)

If ¢3 = 1, then substituting (2.8) in (2.3]), we get f™ = hoe"2. Since p(f) < degvs, which is absurd. If ¢5 # 1, then

substituting (2.8) in (2.3), we get

M+ (1 — ) £f.eC = hoe. (2.9)
On differentiating (2.9 and eliminating "2, we get
1
Agfm —nfr i + (1_c> (A — A)Efee® = 0. (2.10)
3

Equation (2.10)) can be written as: Bse® + Bg = 0, where Bs = (1 — —) (Ay — A)Ef. and Bg = f* L (Aaf — nf’).
Similar to subcase 1.1, we get Bs = Bg = 0, from By = 0, we must have A5 — A = 0. Since ¢3 # 1 and £f. # 0,
Ay = As. Hence, it is contradictory to Ay — A2 7é 0.

Subcase 1.2. Suppose Ay — (M + = + + G’) = 0, then integrating, we get

(A1 — A)efee = ca(Ar — Ag)hge™, ¢y # 0. (2.11)

We claim that ¢4 = 1, otherwise from (2.11)), we have
f(z) = H(2)e"®), where p(f) = deg(u), (2.12)
and H(z) = ¢4 [hg((j:géﬁllEj:g:ﬁfz(’:)c)))] €' u(z) = va(z — ¢) — G(z — ¢). Substituting (2-11) and ([2:12) in ([2.5),
we get H" ' (A1 H —n (W + Hu')) ") = (1 — ¢4)ha (A1 — Az) e”2. Since ¢4 # 1, we have deg u = deg vo, which is

contradiction. Therefore ¢, = 1, putting (2.11)) in [2.5)), we get f*~1 (A1 f —nf’) =0 = A;f—nf’ =0, on integrating,
we get

fn = 65]'11161)17 Cs 75 0. (2.13)
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We claim ¢5 = 1. Otherwise, substituting (2.13]) in (2.3 and on simple calculation, we get

(c5 — 1)h1e" = hge® — £f.eC. (2.14)

Since deg vy = deg G > deg v; and by lemma we get (c5 — 1)hy = 0, since hy # 0, therefore we must have
c5 = 1. Similarly, we can prove another case as well.

Case 2. If p(f) > maz{deg v1,deg v}, it follows from lemma [2.4] and

T (r, eG) =T (r, eG) + S(r, f),

. h1e"t + hoe¥2 — f7
<m(r,e’) +m(r,e’?) + (n+ L)ym(r, f) + S(r, f).

i.e, T (r,e) < (n+1)T(r, f) + S(r, f), which implies that

deg (G) < p(f).
We now prove deg G = p(f). Otherwise, if deg(G) < p(f), denoting R(z) = £e% and P(z) = hje®* + hge?, then

T(r,P) = S(r, f) and T'(r, R) = S(r, f), substituting R(z) and P(z) in (2.3, we get f* = P — Rf. and using lemma
2.2\ we get m(r, f) = S(r, f) and N(r, f) = S(r, f), therefore T'(r, f) = S(r, f), which is absurd.

deg G = p(f) > max{deg v1, deg va}.
Case 3: If p(f) = max{deg v1,deg v}, it follows from lemma and (2.3))that

T (r, eG) =m (r, eG) + S(r, f),

—m (7‘, hie'? Jr?;cevz _ fn) N S(n f)’
ST (r,e™)+T(r,e”) + (n+1)T(r f) + S, f).

i.e, T (r,e%) < 2p(f) + S(r, f), which implies that

deg G < p(f).

We now prove deg G = p(f). Otherwise, if deg G < p(f), and denoting L(z) = &%, then T(r,L) = S(r, f) and
(2.3) becomes

"+ Lf. = hie’* + hoe. (2.15)

differentiating and eliminate €"* and e¥? by using , we get
A fm —nf" f + Ri(z, f) = hoAgze', (2.16)
Ao f" = nf" M+ Ga(z, f) = —h1 Aze™, (2.17)

where G1(z, f) = A1Lf. — (Lf.), Ga(z, f) = AsLf. — (Lf.) and A3 = A; — As. On differentiating (2.16) and
eliminating €2, we get

J"720(2) = Galz, f), (2.18)
where Ga(z, f) = G} — A4G1 and ¢(z) = (A4A1 — A) f2 —n(As + A ff' +n(n—1)(f)2+nff . Suppose Gy = 0,
then we have Gj — A4,G; = 0.

If G, = 0, on integrating we get Lf. = cghie” (cg # 0), from this f(z) = Hy(2)e"**=9) where Hy(z) =
ﬁhl(z—c)evl('z’c) and deg v1 = p(f). Since deg v = p(f) > deg v1, it is a contradiction. Therefore, G1(z, f) # 0,
then we have G} — A4G1 = 0, on integrating G; = c7 Azhee??, 7 # 0, substituting in (2.16)), we get f*~1 (A1 f — nf’)
(?17 — 1) G1(z, f). Since n > 3, whether or not ¢; = 1, we get from lemma that A1 f —nf’ =0, on integrating we
get f™ = cghie®, cg # 0 and p(f) = deg v1, again which is contradiction. Therefore, Ga(z, f) # 0 and it follows that
@(z) # 0. Consider

$(z) =maf? +maf f' +ma(f)? +maff (2.19)
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where my = A4Ay — A, mo = —n(As+ A1), m3 = n(n — 1), my = n and my, ms be a meromorphic functions that are
non-zero with T'(r,m;) = S(r, ), ¢ =1,2. We now turn to the following cases:

Subcase 3.1. If f has finite number of zeros, then it possible to assume f is of the form f(z) = Ry(z)ef2(*),
where R; and Ry are polynomials, Ry # 0 and deg Ry = deg vs, deg Ry > deg G. Substituting f(z) in (2.16)), we get

[AlRl — nR?_l (R/1 + RlR/Q)] €nR2(Z) + [AlLRl (Z + C) — L/Rl — L(Rll + R2R1 (Z + C))] €R2(Z+C) = hQAgevz. (220)

If AyR; — nRY 1 (R] + RiR}) e"F2(*) = 0, then on integrating we get
cghie’t = R{LeRQ, cg £ 0
and since deg v1 < deg Ro, it follows from lemma that hy = 0, which is absurd. Therefore
A1Ry —nRY Y (Ry + Ry Rp) e"f2(2) £ 0

and suppose

Ry(2) = an2" + Uy 12" Ve + ag where a;, b; 0 <1< n
va(2) = buz™ + b sl Th are constants and
2 n n—1 0 anbn 7& 0
[R?fl (AlRl _ n(R/l + RIR/Q))] e(nan—bn)zk e + (nao _ b0)+
[A1LRi(z +¢) — L'Ry — L(R}, + RoRy (2 + ¢))] e(® 02" ... + (ag — bo) = haAs.

From (12.1]), we get contradiction.

Subcase 3.2. Suppose f has infinitely many zeors, then proceeding similar to case 3.2 of [3], we get simple zeros
of f are infinite. On differentiating (2.19)), we get

¢ =my 2+ (2my +my) ff A+ ma(f)2 +maff + (2ms +ma)f'f +maff (2.21)

From and 7 we obtain
7 [(mad —msd)f+ @ms +ma)of | = Flmd! —mo)f+

1"

) (2.22)
(mad" — (2m1 +my)) f' + (ma¢’ — mad)f —madf } :

If f has simple zero at zp and not the zero and pole of the coefficients of (2.22]). Putting zy in ([2.22]), we observe
that zg is zero of (mad — m3d’) f' + (2ms +my)df . Let

(M2 — mzd!) [/ + (2ms +ma)pf
7 .

Clearly T'(r,~) = O(log r) and we can conclude by lemma [2.5 that v is rational function. It follows from (2.23))

V(2) = (2.23)

"o —Mmg n—1 ﬂ/ vf
Fo= [n(Qn— 1) 2n—1 ¢] U n(2n—1)¢ (2.24)
Substituting in , we obtain
d(2) = ur f? +uaf f' +us(f')?, (2.25)

where u; = m; + ﬁ, ug = ma(n — 1) [(TQA) — Zn’il%} and uz =n(n — 1),

uj, j = 1,2 are rational functions, and

T(r,u;) = S(r, f) i=1,2. (2.26)

By the similar argument of [3][from the equation (3.19) to (3.20)], we get

/
uz(ui — 4u1u3)£ + ugud — dugus + uhud — dujuz = usus — 4ugus. (2.27)

¢
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Denoting u2 — 4ujuz = v, now we will discuss the following cases

- w ¢’ wh . . . .
Subcase 3.2.1. If ¥ # 0, then we get - “2 T T won substituting all the parameters and integrating, we

get
k —en-y
evt +v2 n— 1 T,
hl h2A3 w ¢ ( f)?
possible only when v; = —wo, which is contradiction, since deg v1 < deg vs.

Subcase 3.2.2. If v = 0, then becomes
" 2
¢ =us (f’ - 2153f) : (2.28)
Let U = f' 4+ 32 f, ¥ # 0 and T(r,¢) = S(r, f), we have

T(r,U)=S(r,f) and f=¥-— 2—u3f (2.29)

Putting (2.29) in (2.16) and (2.17)), we get

(A1 + n) P U 4 Gy (2, ) = haAge

(2.30)
<A2 + 2n> fr=nUf £ Go(z, f) = —hiAze™
If Ay + 2“7211 =0 and As + 2“72371 = 0, then we get A3 = 0 which is absurd. Consequently, we claim
U2
A+ — A+ —n | =
( ey 3n> ( 2+2U3n>
Otherwise, since As # 0 and hg # 0, from ([2.30)), we have
1 1
N +N(r,f)=N + N(r,f)=85(r,f), l=1,2.
el " A
From Theorem equation (2.26)) and (2.29) there exist two small functions v, v5 of f such that
U2 n v
H1 = (Al + n) (f — 1/1) = h2A36 2, (231)
27.L3
and
<A2 + 2un) (f —v2)" = —hyAgze®. (2.32)

Based on Nevanlinna’s second fundamental theorem concerning to small functions that vy = vg, then from ([2.31))

and , we get
(B 58) g
(1 g) 0

2ug

v1—v2 __
e = —

possible only when vy = vy, which is contradiction to deg v1 < deg vs. Therefore,
p(f) = deg G = max{deg v1, deg va}.

Proof of Theorem Assuming n # 0. Suppose that f be a transcendental entire solution of finite order to (|1.9))
and now, in order to prove the theorem, we will look at the following cases:
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Case 1. If p(f) < deg p, then from and lemma (2.4) to (2.7), it follows that
T(r,e%) = m(r,e%),
he? — (f" +nf""'f")
=m|r, )
S+ 0)

< m (r,he?) +m (r, f* +nf"" 1f)+m<,

1
sf(k) z+c)+0( )

<T(r,eP)+nT(r, f) + ( f®z+¢)) =N (r, f(k) )—l—S(r ),

< T(r,e?) +nT(r, f) + T ( f;?“ +)c)) T(r, f(2 +¢)) — (r, f(zlﬂ)> KN (r, f(z+ &) + S(r, ),
< T(r,e?) + (n+ 1)T(r, f) +m < f(k)zitc ) +N ( r, f(k);:c)c)) N (r, M) 4 S0 1),
<TG+ (n+ DT )+ N (1, Bz 4 0)) + S, f),
<T(r,e’) + (n+1)T(r, f) + S(r, f),
i.e T(r,e¥) < T(r,eP) + S(r, f), which implies
deg G < deg p. (2.33)

Meanwhile, we have from (1.9) and Lemma [2.4] that
T(r,e?) = m(r,e?),
( frnfr T 4 seS f W (2 + c))
=m|r, ,

h

I
3

(k)
(r, ka(fz+0)> +m(r, f) +m(r,e®) +m(r, f* +f" ) + S0 ),

T(r,e%) + (n+ 1)T(r, f) + S(r, f),
T(r, eG) + S(r, f),

IN A

which implies
deg p < deg G. (2.34)

From and ( -7 we have

deg G=degp and p(f) <degG.
For convenient, we write ([1.9) as follows
Frnfr T 4 s(2) fPeS = her. (2.35)

Differentiating ([2.35)) and eliminating eP, we get

Hie% + Hy =0, (2.36)
where
= (A - A)sf®(z +0),
Hy = Af" + (@A —=n) "7 ' —a(n = 1) f*72(f) —af" ' f"
and
A :% +p,
’ (k+1) /
Ay =—+ W +G.

Since p(f) < deg p, by lemma 2.1 we get Hy = Hy = 0. From H; = 0, it follows that
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©petD ’ /

5+ o) +G =% +p,

>

on integrating above expression, we get
se@ fF) = C1he?, Cy #0.

Substituting (2.37)) in (2.35), we get
frnfm = (1 C)heP

If C; =1, then from (2.38]), we have f™ + nf"_lf/ = 0. Then easily we get
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(2.37)

(2.38)

where C(# 0) is a constant. Thus, conclusion (1) is true. If Cy # 1, then it follows from (2.38) and lemma [2.5] that

T(r,eP) = m(r,e?),

o (r f +nf”‘1f'>
T @A-Cphh )7
<m(r, f* +nf* 1 f) + S(r, f),

<nm(r, f)+ S(r, f),
<nT(r,f)+S(r, f),

which implies deg p < p(f). Which is contradiction to p(f) < deg p. Therefore C; # 0.

Case 2. If p(f) > deg p. By lemma to and ([2.35)), it follows that
T(r,e%) = m(r,e%),

=m (7“ hep_(fn+77fn_1f/)>

Ve

IN

C

m ( fl(,c)> () +mr, "+ 0" 4 S f),
S

<7 (rf0) - N ( f<1k>> +T(r. ")+ nm(r. ) + S(r. f).

£ 1

ST <T’ f(Z+C)> +T(T,f(Z+C)) -N (r’f(Z—FC)) —kﬁ(r,f(z—i—c))+T(r,ep)+nT(r,f)S(r,f),

(k) (k)

(n+1)T(r, f) + T(r,e?) + N(r, fF) + S(r, f),
(n+1)T(r, f) + S(r, f),

VARV

which implies deg G < p(f).

§(n+1)T(r,f)+T(r,ep)+m<r, f(Z+C)> +N<T3W> N(T’f(zc> +S(7',f),

(2.39)

We will show now deg G = p(f). Otherwise deg G < p(f), let us denote U;(z) = heP, Ux(z) = se¥, clearly

T(r,Uy) =S(r, f), T(r,Uz) = S(r, f). And substituting Uy, Us in , we get
;o (Fns) = 0 ag®.

Since m > 3, it follows from lemma [2.2] that

m(r, f+nf )=S0 f), mlr, f(f+nf)) =S f).

(2.40)

(2.41)
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Since f is an entire function, as a result, it’s simple to infer,

T(r, f) = m(r.f) < m ( fjnf) e, (f + 08 )f)

ST(r.f+0f)+8(r.f) =m(r.f +nf)+S(r.f) = 5(r.]),
which is absurd. As a result, we have deg p < deg G = p(f).

Case 3. If p(f) = deg p, in the same way as the proof in case 2, we can conclude that deg G < p(f) = deg p.
We will now show that deg G = p(f). Suppose deg G < p(f) and let D(z) = s, then T(r, D) = S(r, f). Therefore

(2.35) becomes
Frnfm T f 4 DER) = her. (242)

On differentiating and eliminating e?, we get
72 (AP + A=) ff == 1)) =nff") = w(p), (2.43)

where U(f) =D fc(kH) +D fc(k) — AD fc(k) is a differential-difference polynomial in f, where the coefficients are small
functions of f and degree at most 1. We will examine whether W equivalent to zero or not. If ¥ = 0, then we have

(k+1) h’ , 8/ ,
which implies
se@ fF) = Cyhe?, (2.45)

where Cy(# 0) constant. Substituting (2.45) in (2.42)), we get fm~! (f +nf’) = (C%;, - 1) Df® | whether or not

Cs =1, we get f+ nf/ = 0, which impish f = Ce™ 7, here p(f) = 1. Since deg G < p(f) = 1, thus G is constant,
which is contradiction.

If ¥ £ 0, preceding similar to the case 3 of Theorem 1.4 [3], we can obtain a contradiction, the proof is skipped
in this case.

If n = 0, we can obtain the conclusion of Theorem 4 by having a similar conversation as above, we skip the proof
here.

References

[1] F. Behboudi, A. Razani and M. Oveisiha, Existence of a mountain pass solution for a nonlocal fractional (p;
q)-Laplacian problem, Boundary Value Prob. 2020 (2020), 14 pages.

[2] M.F. Chen and Z.S. Gao and J.L. Zhang, Entire solutions of certain type of non-linear difference equations,
Comput. Meth. Funct. Theory 19 (2019), no. 1, 17-36.

[3] W. Chen, P. Hu and Q. Wang, Entire solutions of two certain types of non-linear differential-difference equations,
Comput. Methods Funct. Theory. 21 (2021), 199-218.

[4] Y.M. Chiangand and S.J. Feng, On the Nevanlinna characteristic of f(z +n) and difference equations in the
complez plane, Ramanujan J. 16 (2008), 105-129.

<

J. Clunie, On integral and meromorphic functions, J. Lond. Math. Soc. 37 (1962), 17-27.

=

R.G. Halburd and R.J. Korhonen, Difference analogue of the Lemma on the Logarithmic Derivative with applica-
tions to difference equations, J. Math. Anal. Appl. 314 (2006), 477-4877.

[7] S. Heidari and A. Razani, Infinitely many solutions for (p(z), q(z))-Laplacian-like systems, Commun. Korean
Math. Soc. 36 (2021), no. 1, 51-62.

[8] W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[9] B.Q. Li, On certain non-linear differential equations in complez domains, Arch. Math. 91 (2008), 344-353.
[10] P. Li, Entire solutions of certain type of differential equations II, J. Math. Anal. Appl. 375 (2011), 310-319.



Existence of solutions to a certain type of non-linear difference-differential equations 405

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

N. Li, J. Geng and L. Yang, Some results on transcendental entire solutions to certain nonlinear differential-
difference equations, AIMS Math. 6 (2021), no. 8, 8107-8126.

L. Liao, Non-linear differential equations and Hayman’s theorem on differential polynomials, Complex Var. Elliptic
Equ. 60(2015), no. 6, 748-756.

L.W. Liao, C.C. Yang and J.J. Zhang, On meromorphic solutions of certain type of non-linear differential equa-
tions, Ann. Acad. Sci. Fenn. Math. 38 (2013), 581-593.

K. Liu, Ezponential polynomials as solutions of differential-difference equations of certain types, Mediterr. J.
Math. 13 (2016), no. 5, 3015-3027.

H. Liu and Z. Mao, On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential
Equations, Comput. Meth. Funct. Theory 19 (2019), 383-389.

X.Q. Lu, L.W. Liao and J. Wang, On meromorphic solutions of a certain type of non-linear differential equations,
Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 12, 1597-1608.

M.A. Ragusa and A. Razani and F. Safari, Ezistence of positive radial solutions for a problem involving weighted
Heisenberg p (X)-Laplacian operator, AIMS Math. 8 (2022), no. 1, 404-422.

Y. Tumura, On the extensions of Borel’s theorem and Saxer-Csillag’s theorem, Proc. Phys. Math. Soc. Jpn. 19
(1937), 29-35.

Z.T. Wen, J. Heittokangas and I. Laine, Ezponential polynomials as solutions of certain non-linear difference
equations, Acta Math. Sci. Ser. 28 (2012), no. 7, 1295-1306.

J. Xu and J. Rong, Fxponential polynomials and nonlinear differential-difference equations, J. Funct. Spaces 2020
(2020).

C.C. Yang, On the entire solutions of certain class of non-linear differential equations, J. Math. Anal. Appl. 33
(1971), 644-649.

C.C. Yang and H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, Kluwer
Academic Publishers Group, Dordrecht, 2003.



	Introduction
	Preliminaries

