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Abstract

The purpose of this paper is to investigate the finite-order transcendental entire solutions to specific types of non-linear
differential-difference equations. Moreover, our results generalize some of the previous results. Some examples are
provided to show that our results are best in certain sense.
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1 Introduction

Throughout the paper, we assume that the reader has prior knowledge of the fundamental results and standard
notations of Nevanlinna theory. The terms T (r, f), N(r, f) and m(r, f) represents the characteristic function, counting
and proximity functions of f . Whenever S(r, f) is defined, it has the property that S(r, f) = o(T (r, f)) as r → ∞,
possibly outside of any set E of finite logarithmic measure. We say that function h(z) is a small meromorphic with
respect to f(z) if and only if T (r, h) = o(S(r, f)). Specifically, Nevanlinna’s theory plays an extremely important role
to analyze the existence and solvability of non-linear differential, difference and differential-difference equations.

In 1964, Hayman [8] investigated the following non-linear differential equation

fn +Hd(f) = F (z), (1.1)

where d is the degree of the differential polynomial Hd and the result is:

Theorem 1.1. [8] If f and F (z) be non-constant meromorphic functions and n ≥ d+1 in (1.1). If N(r, f)+N
(
r, 1
F

)
=

S(r, f), then F = (f + ν)n, where ν is small meromorphic function of f .
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An extension of Tumura–Clunie theory is Theorem 1.1 it is based on a theorem suggested by Tumura[18]. How-
ever, the proof of which was completed by Clunie[5]. Consequently, many studies have been done on the non-linear
differential equation (1.1) by considering various forms of F (z). One can refer [10, 13, 12, 16] for more details about
non-linear differential equations.

In recent times, several authors have been interested in investigating the solution of the following type of equation

fn +Hd∗(z, f) = h1(z)e
v1(z) + h2(z)e

v2(z), (1.2)

where d is the degree of the differential polynomial Hd∗ and v1(z), v2(z), h1 and h2 are polynomials. There are a few
works that are relevant to the topics that can be seen in [9, 21, 13, 17, 7, 1]. For instance, Liu et al. [15] studied the
existence of meromorphic solution of (1.2) and the result is:

Theorem 1.2. [15] Let n ≥ 3 be an integer and d∗ ≤ n − 2 be the degree of differential polynomial Hd∗ . Consider

the polynomials v1, v2 of degree k(≥ 1) and h1, h2 be two small non-zero meromorphic functions of ez
k

. If
v
(k)
1

v
(k)
2

̸∈

{ n
n−1 ,

n−1
n ,−1, 1},

and any one of the these occur:

1. Hd∗ ̸≡ 0.

2. Hd∗ ≡ 0,
v
(k)
1

v
(k)
2

̸∈ { n
d∗
, d∗n }, then (1.2)

does not have the meromorphic transcendental solution f with N(r, f) = S(r, f).

L. W. Liao et al. [13] studied the differential equation of the form

fnf ′ +Hd∗(z, f) = ξ(z)ep(z), (1.3)

and obtained the result by taking ξ(z)( ̸= 0) as rational function and p(z) as non-constant polynomial.

Theorem 1.3. [13] Let f be a meromorphic solution of (1.3) with finite number of poles, then

Hd∗ ≡ 0, f(z) = s(z)e
p(z)
n+1

for d∗ ≤ n− 1 and the rational function s(z) satisfies sn [(n+ 1)s′ + p′s] = (n+ 1)ξ.

In 2012, Z. T. Wen et al. [19] classified certain non-linear difference equation of the form

fn + h(z)eH(z)f(z + c) = Q(z), (1.4)

examined the entire solution of finite order. Later, 2017 M. F. Chen et al.[2] studied the existence of finite-order entire
solutions of following non-linear difference equations

fn + q(z)∆cf(z) = p1e
α1z + p2e

α2z, n ≥ 2

and
fn + q(z)eQ(z)f(z + c) = p1e

λz + p2e
−λz, n ≥ 3

where q, Q are non-zero polynomials, c, λ, pi, αi(i = 1, 2) are non-zero constants.

In this paper we consider the following non-linear difference equation of the form:

fn + ξ(z)f(z + c)eG(z) = h1 (z) e
v1(z) + h2 (z) e

v2(z), (1.5)

where n be an integer, c ∈ C\{0}, h1(z), h2(z) be non-zero small functions of f and ξ(z), G(z) [G(z) is non constant],
v1(z) and v2(z) are non-zero polynomials, and the result is:

Theorem 1.4. If f is finite-order transcendental entire solution of (1.5) with n ≥ 3 and deg v1 ̸= deg v2, then the
following holds:
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1. Suppose deg v1 < deg v2 and ρ(f) = deg v1, then every solution of f satisfies ρ(f) < max{deg v1, deg v2} =

deg G and f = β2e
v1
n , where β2

n = p1.

2. Suppose deg v1 < deg v2 and ρ(f) ≥ deg v2, then every solution of f satisfies ρ(f) = deg G ≥ max{deg v1, deg v2}.
Similarly we can get for deg v2 < deg v1, ρ(f) ≥ deg v1

Following are two examples that illustrate the sharpness of our result.

Example 1.5. Let f = ze
z
3 be a finite-order transcendental entire solution of the difference equation

f3 + zez
2

f(z + 1) = z3ez + (z2 + z)ez
2+ z+1

3 ,

Here n = 3, ξ(z) = z, G(z) = z2, c = 1(̸= 0), h1(z) = z2, h2(z) = z2 + z, v1(z) = 2z and v2(z) = z2 + z+1
3 . Then

clearly we can see that deg v1 = 1 < 2 = deg v2 and ρ(f) = deg v1 = 1, ρ(f) = 1 < max{1, 2} = 2 = deg G and
f = zez. Thus, the conclusion (i) of the Theorem (1.4) holds.

Example 1.6. Let f = ze−z
2

is a transcendental entire solution of finite order of the difference equation

f3 + zez
2+1f(z + 1) = (z2 + z)e−2z + z3e−3z2 ,

Here n = 3, ξ(z) = z, G(z) = z2 + 1, c = 1(̸= 0), h1(z) = z2 + z, h2(z) = z2, v1(z) = −2z and v2(z) = −3z2. Clearly

deg v1 = 1 < 2 = deg v2 and ρ(f) = 2 = deg G ≥ max{1, 2} and f = ze−z
2

. Thus, the conclusion (ii) of the Theorem
(1.4) holds.

Later in 2016, K. Liu[14] studied the transcendental finite-order entire solutions to the differential-difference equa-
tion

fn + h(z)eH(z)f (k)(z + c) = Q(z), (1.6)

where n ≥ 2, (k ≥ 1) is an integer, c ∈ C\{0} and h(z)( ̸= 0) , Q(z) are polynomials and H(z) is a polynomial of degree
≥ 1. Eventually, Chen et. al[2] and Xu et al. [20] replaced Q(z) in (1.4), (1.6) by p1e

ηz + p2e
−ηz and p1e

α1z + p2e
α2z,

where p1, p2, η, α1 and α2 are constants, obtained the results. Later, in 2020, W. Chen et al.[3] investigated the
following non-linear differential-difference equation

fn + afn−1f ′ + ξ(z)eH(z)f(z + c) = q(z)ep(z), (1.7)

where n ∈ I+, q, H, r, p are polynomials of degree ≥ 1, c ̸= 0 and a are constants, proved the following result.

Theorem 1.7. [3] Let n ∈ I, n ≥ 3 when a ̸= 0 and n ≥ 2 when a = 0. Let f be a entire non-vanishing transcendental
solution to (1.7) with finite order. Thus, each solution f yields any of the following

1. ρ(f) < deg p = deg H and f = Ce
−z
a , where C is constant.

2. ρ(f) = deg H ≥ deg p.

In the same paper, the author also proved the solutions of equation (1.7), where q(z)ep(z) replaced by p1e
λz+p2e

−λz,
λ, p1 and p2 are non-zero constants. In 2021, Nan Li et al. obtained the result to the equation (1.7) for the case n = 2
and a = 0 and also replaced q(z)ep(z) by p1e

α1z + p2e
α2z, where p1, p2, α1 and α2 are non-zero constants, and proved

the existence of entire solutions.

Theorem 1.8. [11] Let c, a ̸= 0 be constants, ξ, G , q , p be polynomials such that G, p are not constants and ξ, q ̸= 0.
Suppose that f is a transcendental entire solution with finite order of the equation

f2 + aff ′ + ξ(z)eG(z)f(z + c) = q(z)ep(z), (1.8)

satisfying λ(f) < ρ(f), then deg G = deg p, and one among the following relations holds:

1. ρ(f) < deg G = deg p, and f = Ce
−z
a

2. ρ(f) = deg G = deg p.
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It is also fascinating to explore the finite-order entire solutions of the following differential-difference equation

fn + ηfn−1f ′ + s(z)eG(z)f (k)(z + c) = h(z)ep(z), (1.9)

where n > 0 be an integer, η ̸= 0, c ∈ C \ {0} and h(z), s(z), G(z)(≥ 1) and p(z) are non-constant polynomials, and
the result is:

Theorem 1.9. Let f be a non-vanishing finite-order transcendental entire solution of (1.9), η ̸= 0 when n ≥ 3 and
η = 0 when n ≥ 2. Then each solution f satisfies any one of the following:

1. ρ(f) < deg p = deg G and f = Ce
−z
η .

2. ρ(f) = deg G ≥ deg p.

Following are two examples that illustrate the sharpness of our result.

Example 1.10. Let f = e−z be a finite-order transcendental entire solution of the differential-difference equation

f3 + f2f ′ + zf (2)(z + 1)ez
2+z+1 = zez

2

.

Example 1.11. Let f = ez
2

is a transcendental entire solution of finite order of the differential-difference equation

f3 + f2f ′ + zf ′(z + 1)e2z
2−2z−1 = (2z2 + 4z + 1)e3z

2

.

Thus, by above examples we can see that the conclusion (i) and (ii) holds.

2 Preliminaries

Lemma 2.1. [22] If fk(z), 1 ≤ k ≤ m, and gk(z), 1 ≤ k ≤ m, m ≥ 2 are entire functions that meet conditions listed
below

1.
m∑
k=1

fk(z)e
gk(z) ≡ 0,

2. The orders of fk are less than that of egl(z)−gn(z) for 1 ≤ k ≤ m, 1 ≤ k ≤ l < n ≤ m, then fk ≡ 0 for 1 ≤ k ≤ m.

Lemma 2.2 ([6] Clunie’s lemma). Let f be a non-constant finite order meromorphic solution of

fn(z)P (z, f) = Q(z, f)

where P (z, f) and Q(z, f) are difference polynomials in f with small meromorphic function as coefficients, and let
c ∈ C, δ < 1. If the total degree of Q(z, f) is a polynomial in f and its shifts are at most n, then

m (r, P (z, f)) = o

(
T (r+ | c |, f)

rδ

)
+ o (T (r, f))

for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3. [10] Assume that f(z) be a transcendental meromorphic function, p, q, r and s are small functions of f
with prs ̸≡ 0. If pf2 + qff ′ + r(f ′)2 = s, then

r(q2 − 4pr)
s′

s
+ q(q2 − 4pr)− r(q2 − 4pr)′ + (q2 − 4pr)r′ ≡ 0.

Lemma 2.4. [4] Let f be a non-constant meromorphic function and η1, η2 be two complex numbers such that η1 ̸= η2.
Let f(z) be a meromorphic function with finite order σ, then each ϵ > 0, then

m

(
r,
f(z + η1
f(z + η2)

)
= O

(
rσ−1+ϵ

)
.
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Lemma 2.5. [22] Let f be a non-zero meromorphic function. Then

m
(
r, f

′

f

)
= O(logr) as r → ∞

if f is finite order, and

m
(
r, f

′

f

)
= O(logr(T (r, f))) as r → ∞

possibly outside a set E of r with finite linear measure if f is of infinite order.

Lemma 2.6. [4] Let f(z) be a meromorphic function with order ρ(f) < ∞, and let η be a fixed non-zero complex
number, then for each ϵ > 0, we have T (r, f(z + c)) = T (r, f) +O(rρ−1+ϵ) +O(log r).

Lemma 2.7. [22] Let f be a meromorphic function in the complex plane that is not constant and k is a positive
integer. Then we have the following inequality

N
(
r, 1
f(k)

)
≤ N

(
r, 1f

)
+ kN(r, f) + S(r, f).

Proof of Theorem 1.4:

Suppose f be a transcendental entire solution of finite order to (1.5) and now, in order to prove the theorem, we
will look at the following cases:

Case 1. If ρ(f) < max{deg v1, deg v2}, then from (1.5) and lemma 2.4, it follows that

T (r, eG) = m(r, eG),

= m

(
r,
h1e

v1 + h2e
v2 − fn

ξf(z + c)

)
,

≤ m

(
r,

f

ξf(z + c)

)
+m

(
r,

1

f

)
+m (r, h1e

v1 + h2e
v2) + nm(r, f) + S(r, f),

= (n+ 1)T (r, f) + T (r, h1e
v1 + h2e

v2) + S(r, f).

i.e T (r, eG) ≤ T (r, h1e
v1 + h2e

v2) + S(r, f), which implies

deg G ≤ max{deg v1, deg; v2}. (2.1)

Meanwhile, we have from (1.5) and Lemma 2.4 that

T (r, h1e
v1 + h2e

v2) = m
(
r, fn + ξf(z + c)eG

)
+ S(r, f),

≤ nm(r, f) +m(r, eG) +m

(
r,
f(z + c)

f

)
+m

(
r,

1

f

)
+ S(r, f),

= (n+ 1)T (r, f) + T
(
r, eG

)
+ S(r, f),

≤ T
(
r, eG

)
+ S(r, f),

which implies
max{deg v1, deg v2} ≤ deg G. (2.2)

From (2.1) and (2.2), we have

deg G = max{deg v1, deg v2} and ρ(f) < deg G.

For convenience, we write f(z + c) = fc, G(z) = G, similarly for h1, h2, v1 and v2, then (1.5) take the form

fn + ξfce
G = h1e

v1 + h2e
v2 , (2.3)



398 Rao, Shilpa, Nargund

By differentiating (2.3),we get

nfn−1f ′ +Aξfce
G = h1A1e

v1 + h2A2e
v2 , (2.4)

where A = ξ′

ξ +
f ′
c

fc
+G′, A1 =

h′
1

h1
+ v′1 and A2 =

h′
2

h2
+ v′2 are small functions of f . Eliminating ev1 and ev2 from (2.3)

and (2.4), we get
A1f

n − nfn−1f ′ + (A1 −A)ξfce
G = h2(A1 −A2)e

v2 , (2.5)

A2f
n − nfn−1f ′ + (A2 −A)ξfce

G = −h1(A1 −A2)e
v1 , (2.6)

since deg v1 ̸= deg v2, clearly A1 − A2 ̸= 0. We have deg v1 < deg v2 and deg v1 = ρ(f), differentiating (2.5) and
eliminating ev2 , we get

B3e
G +B4 = 0, (2.7)

where

B3 =

[
A4 −

(
(A1 −A)′

A1 −A
+
ξ′

r
+
f ′c
fc

+G′
)]

(A1 −A) ξfc

B4 = fn−2
[
(A1A4 −A′

1) f
2 − n (A1 +A4) ff

′ + n(n− 1)(f ′)2 + nff
′′
]

and

A4 =

(
h′2
h2

+ v′2 +
(A1 −A)′

A1 −A

)
.

Since ρ(f) < deg G, by (2.7) and lemma 2.1, we get B3 ≡ B4 ≡ 0. From B3 ≡ 0, we must have either A1 −A ≡ 0

or
[
A4 −

(
(A1−A)′

A1−A + ξ′

ξ +
f ′
c

fc
+G′

)]
≡ 0.

Subcase 1.1. Suppose A1 −A ≡ 0, then we have ξ′

ξ +
f ′
c

fc
+G′ =

h′
1

h1
+ v′1, on integrating, we get

ξfce
G = c3h1e

v1 , c3 ̸= 0. (2.8)

If c3 = 1, then substituting (2.8) in (2.3), we get fn = h2e
v2 . Since ρ(f) < degv2, which is absurd. If c3 ̸= 1, then

substituting (2.8) in (2.3), we get

fn +

(
1− 1

c3

)
ξfce

G = h2e
v2 . (2.9)

On differentiating (2.9) and eliminating ev2 , we get

A2f
n − nfn−1f ′ +

(
1− 1

c3

)
(A2 −A) ξfce

G = 0. (2.10)

Equation (2.10) can be written as: B5e
G+B6 = 0, where B5 =

(
1− 1

c3

)
(A2 −A) ξfc and B6 = fn−1 (A2f − nf ′).

Similar to subcase 1.1, we get B5 ≡ B6 ≡ 0, from B5 = 0, we must have A2 − A = 0. Since c3 ̸= 1 and ξfc ̸= 0,
A1 = A2. Hence, it is contradictory to A1 −A2 ̸= 0.

Subcase 1.2. Suppose A4 −
(

(A1−A)′

A1−A + ξ′

r +
f ′
c

fc
+G′

)
= 0, then integrating, we get

(A1 −A)ξfce
G = c4(A1 −A2)h2e

v2 , c4 ̸= 0. (2.11)

We claim that c4 = 1, otherwise from (2.11), we have

f(z) = H(z)eu(z), where ρ(f) = deg(u), (2.12)

and H(z) = c4

[
h2(z−c)(A1(z−c)−A2(z−c))
ξ(z−c)(A1(z−c)−A(z−c))

]
eu(z), u(z) = v2(z − c) − G(z − c). Substituting (2.11) and (2.12) in (2.5),

we get Hn−1 (A1H − n (h′ +Hu′)) enu(z) = (1 − c4)h2 (A1 −A2) e
v2 . Since c4 ̸= 1, we have deg u = deg v2, which is

contradiction. Therefore c4 = 1, putting (2.11) in (2.5), we get fn−1 (A1f − nf ′) = 0 ⇒ A1f−nf ′ = 0, on integrating,
we get

fn = c5h1e
v1 , c5 ̸= 0. (2.13)
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We claim c5 = 1. Otherwise, substituting (2.13) in (2.3) and on simple calculation, we get

(c5 − 1)h1e
v1 = h2e

v2 − ξfce
G. (2.14)

Since deg v2 = deg G > deg v1 and by lemma 2.1, we get (c5 − 1)h1 = 0, since h1 ̸= 0, therefore we must have
c5 = 1. Similarly, we can prove another case as well.

Case 2. If ρ(f) > max{deg v1, deg v2}, it follows from lemma 2.4 and 2.3

T
(
r, eG

)
= T

(
r, eG

)
+ S(r, f),

= m

(
r,
h1e

v1 + h2e
v2 − fn

ξfc

)
+ S(r, f),

≤ m (r, ev1) +m (r, ev2) + (n+ 1)m(r, f) + S(r, f).

i.e, T
(
r, eG

)
≤ (n+ 1)T (r, f) + S(r, f), which implies that

deg (G) ⩽ ρ(f).

We now prove deg G = ρ(f). Otherwise, if deg(G) < ρ(f), denoting R(z) = ξeG and P (z) = h1e
v1 + h2e

v2 , then
T (r, P ) = S(r, f) and T (r,R) = S(r, f), substituting R(z) and P (z) in (2.3), we get fn = P − Rfc and using lemma
2.2 we get m(r, f) = S(r, f) and N(r, f) = S(r, f), therefore T (r, f) = S(r, f), which is absurd.

∴ deg G = ρ(f) > max{deg v1, deg v2}.

Case 3: If ρ(f) = max{deg v1, deg v2}, it follows from lemma 2.4 and (2.3)that

T
(
r, eG

)
= m

(
r, eG

)
+ S(r, f),

= m

(
r,
h1e

v1 + h2e
v2 − fn

ξfc

)
+ S(r, f),

≤ T (r, ev1) + T (r, ev2) + (n+ 1)T (r, f) + S(r, f).

i.e, T
(
r, eG

)
≤ 2ρ(f) + S(r, f), which implies that

deg G ≤ ρ(f).

We now prove deg G = ρ(f). Otherwise, if deg G < ρ(f), and denoting L(z) = ξeG, then T (r, L) = S(r, f) and
(2.3) becomes

fn + Lfc = h1e
v1 + h2e

v2 . (2.15)

differentiating (2.15) and eliminate ev1 and ev2 by using (2.15), we get

A1f
n − nfn−1f ′ +R1(z, f) = h2A3e

v2 , (2.16)

A2f
n − nfn−1f ′ +G2(z, f) = −h1A3e

v1 , (2.17)

where G1(z, f) = A1Lfc − (Lfc)
′, G2(z, f) = A2Lfc − (Lfc)

′ and A3 = A1 − A2. On differentiating (2.16) and
eliminating ev2 , we get

fn−2ϕ(z) = G2(z, f), (2.18)

where G2(z, f) = G′
1 −A4G1 and ϕ(z) = (A4A1 −A′

1) f
2 − n(A4 +A1)ff

′ + n(n− 1)(f ′)2 + nff
′′
. Suppose G2 = 0,

then we have G′
1 −A4G1 = 0.

If G1 = 0, on integrating we get Lfc = c6h1e
v1 (c6 ̸= 0), from this f(z) = H1(z)e

v1(z−c), where H1(z) =
c6

L(z−c)h1(z−c)e
v1(z−c) and deg v1 = ρ(f). Since deg v2 = ρ(f) > deg v1, it is a contradiction. Therefore, G1(z, f) ̸= 0,

then we have G′
1−A4G1 = 0, on integrating G1 = c7A3h2e

v2 , c7 ̸= 0, substituting in (2.16), we get fn−1 (A1f − nf ′) =(
1
c7

− 1
)
G1(z, f). Since n ≥ 3, whether or not c7 = 1, we get from lemma 2.2 that A1f − nf ′ = 0, on integrating we

get fn = c8h1e
v1 , c8 ̸= 0 and ρ(f) = deg v1, again which is contradiction. Therefore, G2(z, f) ̸= 0 and it follows that

ϕ(z) ̸= 0. Consider

ϕ(z) = m1f
2 +m2ff

′ +m3(f
′)2 +m4ff

′′
(2.19)
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where m1 = A4A1 −A′
1,m2 = −n(A4 +A1),m3 = n(n− 1),m4 = n and m1,m2 be a meromorphic functions that are

non-zero with T (r,mi) = S(r, f), i = 1, 2. We now turn to the following cases:

Subcase 3.1. If f has finite number of zeros, then it possible to assume f is of the form f(z) = R1(z)e
R2(z),

where R1 and R2 are polynomials, R1 ̸= 0 and deg R2 = deg v2, deg R2 > deg G. Substituting f(z) in (2.16), we get[
A1R1 − nRn−1

1 (R′
1 +R1R

′
2)
]
enR2(z) + [A1LR1(z + c)− L′R1 − L(R′

1 +R2R1(z + c))] eR2(z+c) = h2A3e
v2 . (2.20)

If A1R1 − nRn−1
1 (R′

1 +R1R
′
2) e

nR2(z) = 0, then on integrating we get

c8h1e
v1 = Rn1 e

R2 , c8 ̸= 0

and since deg v1 < deg R2, it follows from lemma 2.1 that h1 = 0, which is absurd. Therefore

A1R1 − nRn−1
1 (R′

1 +R1R
′
2) e

nR2(z) ̸= 0

and suppose

R2(z) = anz
n + an−1z

n−1 + · · · · · ·+ a0

v2(z) = bnz
n + bn−1z

n−1 + · · · · · ·+ b0

} where ai, bi 0 ≤ i ≤ n
are constants and
anbn ̸= 0[

Rn−1
1 (A1R1 − n(R′

1 +R1R
′
2))
]
e(nan−bn)z

k

+ · · · · · ·+ (na0 − b0)+

[A1LR1(z + c)− L′R1 − L(R′
1 +R2R1(z + c))] e(ak−bk)z

k

+ · · · · · ·+ (a0 − b0) = h2A3.

From (2.1), we get contradiction.

Subcase 3.2. Suppose f has infinitely many zeors, then proceeding similar to case 3.2 of [3], we get simple zeros
of f are infinite. On differentiating (2.19), we get

ϕ′ = m′
1f

2 + (2m1 +m′
2)ff

′ +m2(f
′)2 +m2ff

′′
+ (2m3 +m4)f

′f
′′
+m4ff

′′′
. (2.21)

From (2.19) and (2.21), we obtain

f ′
[
(m2ϕ−m3ϕ

′)f ′ + (2m3 +m4)ϕf
′′
]
= f [(m1ϕ

′ −m′
1ϕ)f+

(m2ϕ
′ − (2m1 +m′

2))f
′ + (m4ϕ

′ −m2ϕ)f
′′
−m4ϕf

′′′
]
.

(2.22)

If f has simple zero at z0 and not the zero and pole of the coefficients of (2.22). Putting z0 in (2.22), we observe
that z0 is zero of (m2ϕ−m3ϕ

′)f ′ + (2m3 +m4)ϕf
′′
. Let

γ(z) :=
(m2ϕ−m3ϕ

′)f ′ + (2m3 +m4)ϕf
′′

f
. (2.23)

Clearly T (r, γ) = O(log r) and we can conclude by lemma 2.5 that γ is rational function. It follows from (2.23)

f
′′
=

[
−m2

n(2n− 1)
− n− 1

2n− 1

ϕ′

ϕ

]
f +

γf

n(2n− 1)ϕ
. (2.24)

Substituting (2.24) in (2.19), we obtain

ϕ(z) = u1f
2 + u2ff

′ + u3(f
′)2, (2.25)

where u1 = m1 +
γ

(2n−1)ϕ , u2 = m2(n− 1)
[(

2
2n−1

)
− n

2n−1
ϕ′

ϕ

]
and u3 = n(n− 1),

uj , j = 1, 2 are rational functions, and
T (r, ui) = S(r, f) i = 1, 2. (2.26)

By the similar argument of [3][from the equation (3.19) to (3.20)], we get

u3(u
2
2 − 4u1u3)

ϕ′

ϕ
+ u2u

2
2 − 4u1u3 + u′3u

2
2 − 4u1u3 = u3u

2
2 − 4u1u3. (2.27)
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Denoting u22 − 4u1u3 = ψ, now we will discuss the following cases

Subcase 3.2.1. If ψ ̸= 0, then we get u2

u3
= ψ′

ψ − ϕ′

ϕ − u′
3

u3
, on substituting all the parameters and integrating, we

get

ev1+v2 =
k

h1h2A3
ψ

−(2n−1)
2 ϕn−1 ∈ S(r, f),

possible only when v1 = −v2, which is contradiction, since deg v1 < deg v2.

Subcase 3.2.2. If ψ = 0, then (2.25) becomes

ϕ = u3

(
f ′ +

u2
2u3

f

)2

. (2.28)

Let Ψ = f ′ + u2

2u3
f , Ψ ̸= 0 and T (r, ϕ) = S(r, f), we have

T (r,Ψ) = S(r, f) and f ′ = Ψ− u2
2u3

f. (2.29)

Putting (2.29) in (2.16) and (2.17), we get(
A1 +

u2
2u3

n

)
fn − nΨfn−1 +G1(z, f) = h2A3e

v2 ,(
A2 +

u2
2u3

n

)
fn − nΨfn−1 +G2(z, f) = −h1A3e

v1 .

(2.30)

If A1 +
u2

2u3
n ≡ 0 and A2 +

u2

2u3
n ≡ 0, then we get A3 = 0 which is absurd. Consequently, we claim(

A1 +
u2
2u3

n

)(
A2 +

u2
2u3

n

)
≡ 0.

Otherwise, since A3 ̸= 0 and h2 ̸= 0, from (2.30), we have

N

(
r,

1

Gl

)
+N(r, f) = N

(
r,

1

A3

)
+N(r, f) = S(r, f), l = 1, 2.

From Theorem 1.1, equation (2.26) and (2.29) there exist two small functions ν1, ν2 of f such that

H1 =

(
A1 +

u2
2u3

n

)
(f − ν1)

n = h2A3e
v2 , (2.31)

and

H2 =

(
A2 +

u2
2u3

n

)
(f − ν2)

n = −h1A3e
v1 . (2.32)

Based on Nevanlinna’s second fundamental theorem concerning to small functions that ν1 = ν2, then from (2.31)
and (2.32), we get

ev1−v2 = −

(
A2 +

nu2

2u3

)
(
A1 +

nu2

2u3

) ∈ S(r, f),

possible only when v1 = v2, which is contradiction to deg v1 < deg v2. Therefore,

ρ(f) = deg G = max{deg v1, deg v2}.

Proof of Theorem 1.9: Assuming η ̸= 0. Suppose that f be a transcendental entire solution of finite order to (1.9)
and now, in order to prove the theorem, we will look at the following cases:
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Case 1. If ρ(f) < deg p, then from (1.9) and lemma (2.4) to (2.7), it follows that

T (r, eG) = m(r, eG),

= m

(
r,
hep − (fn + ηfn−1f ′)

s(z)f (k)(z + c)

)
,

≤ m (r, hep) +m
(
r, fn + ηfn−1f ′

)
+m

(
r,

1

sf (k)(z + c)

)
+O(1),

≤ T (r, ep) + nT (r, f) + T
(
r, f (k)(z + c)

)
−N

(
r,

1

f (k)(z + c)

)
+ S(r, f),

≤ T (r, ep) + nT (r, f) + T

(
r,
f (k)(z + c)

f(z + c)

)
+ T (r, f(z + c))−N

(
r,

1

f(z + c)

)
− kN (r, f(z + c)) + S(r, f),

≤ T (r, ep) + (n+ 1)T (r, f) +m

(
r,
f (k)(z + c)

f(z + c)

)
+N

(
r,
f (k)(z + c)

f(z + c)

)
−N

(
r,

1

f(z + c)

)
+ S(r, f),

≤ T (r, ep) + (n+ 1)T (r, f) +N
(
r, f (k)(z + c)

)
+ S(r, f),

≤ T (r, ep) + (n+ 1)T (r, f) + S(r, f),

i.e T (r, eG) ≤ T (r, ep) + S(r, f), which implies
deg G ≤ deg p. (2.33)

Meanwhile, we have from (1.9) and Lemma 2.4 that

T (r, ep) = m(r, ep),

= m

(
r,
fn + ηfn−1f ′ + seGf (k)(z + c)

h

)
,

≤ m

(
r,
sf (k)(z + c)

f

)
+m(r, f) +m(r, eG) +m(r, fn + ηfn−1f ′) + S(r, f),

≤ T (r, eG) + (n+ 1)T (r, f) + S(r, f),

≤ T (r, eG) + S(r, f),

which implies
deg p ≤ deg G. (2.34)

From (2.33) and (2.34), we have
deg G = deg p and ρ(f) < deg G.

For convenient, we write (1.9) as follows

fn + ηfn−1f ′ + s(z)f (k)c eG = hep. (2.35)

Differentiating (2.35) and eliminating ep, we get

H1e
G +H2 = 0, (2.36)

where

H1 = (A−A1)sf
(k)(z + c),

H2 = Afn + (aA− n)fn−1f ′ − a(n− 1)fn−2(f ′)2 − afn−1f
′′
.

and

A =
h

′

h
+ p

′
,

A1 =
s
′

s
+
f
(k+1)
c

f
(k)
c

+G
′
.

Since ρ(f) < deg p, by lemma 2.1, we get H1 ≡ H2 ≡ 0. From H1 ≡ 0, it follows that
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s
′

s +
f(k+1)
c

f
(k)
c

+G
′
= h

′

h + p
′
,

on integrating above expression, we get
seGf (k)c = C1he

p, C1 ̸= 0. (2.37)

Substituting (2.37) in (2.35), we get

fn + ηfn−1f
′
= (1− C1)he

p. (2.38)

If C1 = 1, then from (2.38), we have fn + ηfn−1f
′
= 0. Then easily we get

f = Ce
−z
η ,

where C( ̸= 0) is a constant. Thus, conclusion (1) is true. If C1 ̸= 1, then it follows from (2.38) and lemma 2.5 that

T (r, ep) = m(r, ep),

= m

(
r,
fn + ηfn−1f

′

(1− C1)h

)
,

≤ m(r, fn + ηfn−1f
′
) + S(r, f),

≤ nm(r, f) + S(r, f),

≤ nT (r, f) + S(r, f),

which implies deg p ≤ ρ(f). Which is contradiction to ρ(f) < deg p. Therefore C1 ̸= 0.

Case 2. If ρ(f) > deg p. By lemma 2.4 to 2.7 and (2.35), it follows that

T (r, eG) = m(r, eG),

= m

(
r,
hep − (fn + ηfn−1f

′
)

sf
(k)
c

)
,

≤ m

(
r,

1

sf
(k)
c

)
+m(r, ep) +m(r, fn + ηfn−1f

′
+ S(r, f),

≤ T
(
r, f (k)c

)
−N

(
r,

1

f
(k)
c

)
+ T (r, ep) + nm(r, f) + S(r, f),

≤ T

(
r,

f
(k)
c

f(z + c)

)
+ T (r, f(z + c))−N

(
r,

1

f(z + c)

)
− kN (r, f(z + c)) + T (r, ep) + nT (r, f)S(r, f),

≤ (n+ 1)T (r, f) + T (r, ep) +m

(
r,

f
(k)
c

f(z + c)

)
+N

(
r,

f
(k)
c

f(z + c)

)
−N

(
r,

1

f(z + c)

)
+ S(r, f),

≤ (n+ 1)T (r, f) + T (r, ep) +N(r, f (k)c ) + S(r, f),

≤ (n+ 1)T (r, f) + S(r, f),

which implies deg G ≤ ρ(f). (2.39)

We will show now deg G = ρ(f). Otherwise deg G < ρ(f), let us denote U1(z) = hep, U2(z) = seG, clearly
T (r, U1) = S(r, f), T (r, U2) = S(r, f). And substituting U1, U2 in (2.35), we get

fn−1
(
f + ηf

′
)
= U1 + U2f

(k)
c . (2.40)

Since n ≥ 3, it follows from lemma 2.2 that

m(r, f + ηf
′
) = S(r, f), m(r, f(f + ηf

′
)) = S(r, f). (2.41)
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Since f is an entire function, as a result, it’s simple to infer,

T (r, f) = m(r, f) ≤ m

(
r,

1

f + ηf ′

)
+m(r, (f + ηf

′
)f)

≤ T (r, f + ηf
′
) + S(r, f) = m(r, f + ηf

′
) + S(r, f) = S(r, f),

which is absurd. As a result, we have deg p < deg G = ρ(f).

Case 3. If ρ(f) = deg p, in the same way as the proof in case 2, we can conclude that deg G ≤ ρ(f) = deg p.
We will now show that deg G = ρ(f). Suppose deg G < ρ(f) and let D(z) = seG, then T (r,D) = S(r, f). Therefore
(2.35) becomes

fn + ηfn−1f
′
+Df (k)c = hep. (2.42)

On differentiating (2.42) and eliminating ep, we get

fn−2
(
Af2 + (ηA− n)ff

′
− η(n− 1)(f

′
)2 − ηff

′′
)
= Ψ(f), (2.43)

where Ψ(f) = Df
(k+1)
c +D

′
f
(k)
c −ADf

(k)
c is a differential-difference polynomial in f , where the coefficients are small

functions of f and degree at most 1. We will examine whether Ψ equivalent to zero or not. If Ψ ≡ 0, then we have

f
(k+1)
c

f
(k)
c

=
h

′

h
+ p

′
− s

′

s
−G

′
, (2.44)

which implies
seGf (k)c = C2he

p, (2.45)

where C2( ̸= 0) constant. Substituting (2.45) in (2.42), we get fn−1
(
f + ηf

′
)

=
(

1
C3

− 1
)
Df

(k)
c , whether or not

C3 = 1, we get f + ηf
′
= 0, which impish f = Ce−

z
η , here ρ(f) = 1. Since deg G < ρ(f) = 1, thus G is constant,

which is contradiction.

If Ψ ̸≡ 0, preceding similar to the case 3 of Theorem 1.4 [3], we can obtain a contradiction, the proof is skipped
in this case.

If η = 0, we can obtain the conclusion of Theorem 4 by having a similar conversation as above, we skip the proof
here.
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