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Abstract

Errors-in-variables regression is the study of the association between covariates and responses where covariates are
observed with errors. In this paper, we consider the estimation of regression functions when the independent variable
is measured with error. We investigate the performances of an adaptive wavelet block thresholding estimator via the
minimax approach under the Lp risk with p ≥ 1 over Besov balls. We prove that it achieves the optimal rates of
convergence.
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1 Introduction and problem statement

Let (Z1, Y1), (Z2, Y2), ..., (Zn, Yn) denote n independent pairs of random variables and consider the problem of
estimating the regression function g(z) = E(Y |Z = z). Due to the measuring mechanism or the nature of environment,
the variable Z is measured with error and is not directly observable. Instead, Z is observed through X = Z + U ,
where U is a random noise. It is assumed that U has a known distribution and is independent of (X,Y ). We aim to
estimate g based on a given random sample (X1, Y1), (X2, Y2), ..., (Xn, Yn) from the distribution of (X,Y ).

The problem of estimating g for errors in variables model was originally investigated by several authors. For exam-
ple: Nadaraya-Watson kernel type estimators, constructed as the ratio of two deconvolution kernel type estimators,
see e.g. [1, 6, 7, 8, 11, 14]. One assumption usually done in all those works, is that the regularity of the regression
function f and the regularity of the density g of the design are equal. In particular, when the regression function
f and the density g admit kth-order derivatives, [7] give upper and lower bounds of the minimax risk for quadratic
pointwise risk and for Lp risk on compact sets for ordinary and super smooth errors U .

In this article, we propose an extension of the wavelet estimator in [3] based on bivariate thresholding method and
determine its convergence rate. We show that our estimator obtain the optimal rate of convergence under the mean
integrated squared error (MISE) over Besov balls.

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2.
Section 3 briefly describes the periodized wavelet basis on [0, 1] and the Besov balls. The estimators are presented in
Section 4. The results are set in Section 5. The proofs are gathered in Section 6.
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2 Wavelets, Besov balls and estimators

2.1 Some notations

Suppose that g belong to L2
per([0, 1]), the space of periodic functions of period one that are square-integrable on

[0, 1]:

L2
per([0, 1]) =

{
h : ∥h∥2 =

(∫ 1

0

h2(x)dx

)1/2

<∞
}
.

We assume that there exists a known constant C1 > 0 such that

∥f∥∞ = sup
x∈[0,1]

|f(x)| ≤ C1 <∞. (2.1)

Any function h ∈ L2
per([0, 1]) can be represented by its Fourier series

h(t) =
∑
k∈Z

𭟋(h)(k)e2iπkt; t ∈ [0, 1],

where the equality is intended in mean-square convergence sense, and 𭟋(h)(k) denotes the Fourier coefficient given by

𭟋(h)(k) =

∫ 1

0

h(x)e2iπkxdx; k ∈ Z.

We consider the ordinary smooth case on g: there exist three constants, cg > 0, Cg > 0 and δ > 1, such that, for
any k ∈ Z, the Fourier coefficient of g, i.e. 𭟋(g)(k), satisfies

cg
(1 + k2)δ/2

≤ |𭟋(g)(k)| ≤ Cg

(1 + k2)δ/2
. (2.2)

This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. It is a standard
hypothesis usually adopted in the field of nonparametric estimation for deconvolution problems. See e.g. [5], [12] and
[16].

2.2 Meyer wavelets and Besov balls

In this part, for the purpose of this paper, we use the periodized Meyer wavelet bases on the unit interval. For
any x ∈ [0, 1], any integer i and any j ∈ {0, ..., 2i − 1}, let ϕij(x) = 2i/2ϕ(2ix − j) and ψij(x) = 2i/2ψ(2ix − j). We
assume that the father and mother Meyer type wavelets, ϕ(x) and ψ(x), are orthonormal and compactly supported
over [0, 1]. Also, we define

ϕperij =
∑
k∈Z

ϕij(x− k), ψper
ij =

∑
k∈Z

ψij(x− k)

their periodized versions. There exists an integer i0 such that the collection B = {ϕperi0j
, j = 1, ..., 2i0 − 1, ψper

ij , i >

i0, j = 1, ..., 2i − 1} is an orthonormal basis L2
per([0, 1]). In what follows, the superscript ”per” will be dropped to

lighten the notation. Therefore, for all g ∈ L2
per([0, 1]), the wavelet expansion of g is

g(x) =
∑
j∈Z

αi0jϕi0j(x) +
∑
i≥i0

∑
j∈Z

βijψij(x), (2.3)

where

αi0j =

∫
[0,1]

g(x)ϕ̄i0j(x)dx, βij =

∫
[0,1]

g(x)ψ̄i0j(x))dx

As is done in the wavelet literature, we investigate wavelet-based estimators asymptotic convergence rates over a
large range of Besov function classes Bs

pq , s > 0, 1 ≤ p, q ≤ ∞. The parameter s measures the number of derivatives,
where the existence of derivatives is required in an Lp-sense, whereas the parameter q provides a further finer gradation.
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The Besov spaces include, in particular, the well-known Sobolev and Hölder spaces of smooth functions Hm and
Cs and (Bm

22 and Bs
∞,∞ respectively), but in addition less traditional spaces, like the spaces of functions of bounded

variation, sandwiched between B1
1,1 and B1

1,∞. The latter functions are of statistical interest because they allow for
better models of spatial of inhomogeneity (e.g. [19] and [4]).

For a given r-regular mother wavelet ψ with r > s, define the sequence norm of the wavelet coefficients of a
regression function g ∈ Bs

pq by

|g|Bs
pq

= (
∑
j

|αi0j |p)1/p + {
∞∑

i=i0

[2iσ(
∑
j

|βij |p)1/p]q}1/q (2.4)

where σ = s + 1/2 − 1/p. [19] shows that the Besov function norm ∥g∥Bs
pq

is equivalent to the sequence norm |g|Bs
pq

of the wavelet coefficients of g . Therefore we will use the sequence norm to calculate the Besov norm ∥g∥Bs
pq

in the
sequel. We also consider a subset of Besov space Bs

pq such that sp > 1, p, q ∈ [1,∞]. The spaces of regression functions
that we consider in this paper are defined by

F s
p,q(M) = {g : g ∈ Bs

pq, ∥g∥Bs
pq

≤M, supp g ⊆ [0, 1]},

i.e., F s
p,q(M) is a subset of functions with fixed compact support and bounded in the norm of one of the Besov spaces

Bs
pq. Moreover, sp > 1 implies that F s

p,q(M) is a subset of the space of bounded continuous functions.

2.3 Block threshold estimator

The term-by-term hard thresholding procedure, estimates the function g(x) by

g̃H(x) =
∑
j∈Z

α̂i0jϕi0j(x) +
∑
i≥i0

∑
j∈Z

β̂ijI(|β̂ij | > κλ)ψij(x), (2.5)

where λ is a threshold and the empirical wavelet coefficients are defined by

α̂i0j =
1

n

n∑
ν=1

∑
l∈Ci

(2iπl)
𭟋(ϕi0j)l

𭟋(g)l
Yνe

−2iπlXν (2.6)

Ci = supp(𭟋(ϕi,0)) = supp(𭟋(ϕi,j)), and similarly,

β̂ij =
1

n

n∑
ν=1

GνI(Gν ≤ ηi) (2.7)

where

Gν =
∑
l∈Di

(2iπl)
𭟋(ψij)l

𭟋(g)l
Yνe

−2iπlXν

Di = supp(𭟋(ψi,0)) = supp(𭟋(ψi,j)), and the threshold ηi is defined by

ηi = θ2δi
√

n

lnn
. (2.8)

The above term-by-term thresholded estimator (2.5) which is considered in [3], don’t attain the optimal convergence
rates of n−2s/(2s+2δ+1), but do attain the rate (n−1 log2 n)

2s/(2s+2δ+1), which involves a logarithmic penalty. The reason
is that a coefficient is more likely to contain a signal if neighboring coefficients do also. Therefore, incorporating
information on neighboring coefficients will improve the estimation accuracy. But for a term-by-term thresholded
estimator, other coefficients have no influence on the treatment of a particular coefficient.

A block thresholding estimator is to threshold empirical wavelet coefficients in groups rather than individually.
It is constructed as follows. At each resolution level i, the integers j are divided among consecutive, nonoverlapping
blocks of length l, say Γik = {j : (k− 1)l+ 1 ≤ j ≤ kl, −∞ < k <∞}. Within this block Γik, the average estimated

squared bias Âik = l−1
∑

j∈B(k) β̂
p
ij will be compared to the threshold. Here, B(k) refers to the set of indices j in
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block Γik. If the average squared bias is larger than the threshold, all coefficients in the block will be kept. Otherwise,
all coefficients will be discarded. For additional details, see [28].

Let p ≥ 2 and Aik = l−1
∑

j∈B(k) |βij |p and estimating this with Âik, the block thresholding wavelet estimator of

g(x) becomes

ĝ(x) =
∑
j∈Z

α̂i0jϕi0j(x) +

R∑
i=i0

∑
k

∑
j∈B(k)

β̂ijψij(x)I(Âik > cn−
p
2 ), (2.9)

where the smoothing parameter R corresponds to the highest detail resolution level, parameter l is the block length
and c is a threshold constant.

3 Asymptotic results

Our main theorem shows that the wavelet-based estimators, based on block thresholding of the empirical wavelet
coefficients, attain optimal and nearly optimal convergence rates over a large range of Besov function classes.

Theorem 3.1. If the above conditions hold and if ĝ(x) is as defined by (2.9), with the block length l = log n and
R = ⌊log2(nl−2)⌋, then there exists a positive constant C such that for all M > 0 and 1/p < s < r; q ∈ [1,∞]:
1. if p ∈ [2,∞],

sup
g∈F s

p,q(M)

E

∫
(ĝ(x)− g(x))p ≤ Cn−ps/(1+2s),

2. if p ∈ [1, 2),

sup
g∈F s

p,q(M)

E

∫
(ĝ(x)− g(x))p ≤ C(log2 n)

2−p
p(1+2s)n−ps/(1+2s),

3.1 Auxiliary results

In the following section we provide some asymptotic results that are of importance in proving the theorem. The
proof of Theorem 3.1 is a consequence of Propositions 3.3 and 3.4 of [3] and we describe them below. They show

that the estimators β̂jk defined by (2.7) satisfy a standard moment inequality and a specific concentration inequality.

Before presenting these inequalities, the following lemma determines an upper bound for |β̂ij − βij |.

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Then, for any i ∈ {i0 + 1, ..., R} and any

j ∈ {0, ..., 2i − 1}, the estimator β̂ij defined by (2.7) satisfies

|β̂ij − βij | ≤
∣∣∣∣ 1n

n∑
ν=1

(GνI(Gν ≤ ηi)− E (GνI(Gν ≤ ηi))) + E (G1I(G1 ≤ ηi))

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
ν=1

(GνI(Gν ≤ ηi)− E (GνI(Gν ≤ ηi)))

∣∣∣∣+ E
(∣∣G1

∣∣I(G1 ≤ ηi)
)
. (3.1)

Now, we can show that,

E
(∣∣G1

∣∣I(G1 ≤ ηi)
)
≤ E(G2

1)

ηi
≤ 1

θ2(δ+d)i

√
lnn

n
.

The inequality (3.1) holds for ϕi,j instead of ψi,j and, a fortiori, α̂i,j instead of β̂i,j and αi,j instead of βi,j . In

addition to the inequality (3.1), the estimators β̂i,j defined by (2.7) satisfy several specific probability inequalities.
Two of them will be at the heart of the proof of the main result.
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Proposition 3.3. Let p ≥ 2. Suppose that the assumptions of Theorem 3.1 are satisfied, then there exists a constant
C > 0 such that, for any j ≥ j0, and n large enough, the estimator β̂jk, defined by (2.7) satisfies the following:

E
(
|β̂jk − βjk|2p

)
≤ Cn−p (3.2)

The expression in (3.2) holds for α̂jk as well, replacing β̂jk by α̂jk and βjk by αjk.

Proposition 3.4. Let p ≥ 2. Under the assumptions of Theorem 3.1, there exists a constant c > 0 such that, for any
j ≥ j0, and large enough n, the estimators β̂jk defined by (2.7) satisfy the following concentration inequality:

P


∑

(i)

|β̂jk − βjk|p
1/p

≥ cn−p/2

 ≤ Cn−p, (3.3)

for some constant C > 0.

4 Proof

In this section, C represents a constant which may differ from one term to another. We suppose that n is large
enough.

Proof of the Theorem 3.1: For the sake of simplicity, we set θ̂ij = β̂ij −βij . Applying the Minkowski inequality
and an elementary inequality of convexity, we have E

(
∥ĝ − g∥pp

)
≤ 4p−1 (T1 + T2 + T3 + T4), where

T1 = E∥(α̂i0j − αi0j)ϕi0j(x)∥pp,

T2 = E∥
R∑

i=i0

∑
k

∑
j∈B(k)

βijψij(x)I(Âik < cn−
p
2 )∥pp,

T3 = E∥
R∑

i=i0

∑
k

∑
j∈B(k)

θ̂ijψij(x)I(Âik ≥ cn−
p
2 )∥pp,

T4 = E∥
∞∑

i=R+1

2j−1∑
j=0

βij∥pp.

In order to prove the above theorem, it suffices to bound each term T1, T2, T3 and T4 separately.

Lemma 4.1. Assume u ∈ Rn and ∥u∥p = (
∑

i |ui|p)1/p, for 0 < p1 ≤ p2 ≤ ∞. Then the following inequalities hold:

∥u∥p2 ≤ ∥u∥p1 ≤ n
1
p1

− 1
p2 ∥u∥p2 .

Lemma 4.2. Using the Lp Minkowski inequality yields

1) I(Âik < cn−p/2)I(Aik ≥ cn−p/2) ≤ I
(
|Âik −Aik| ≥ 2cn−p/2

)
≤ I

(l−1
∑

j∈B(k)

|θ̂ij |p) ≥ 2cn−p/2


2) I(Âik ≥ cn−p/2)I(Aik < cn−p/2) ≤ I

(l−1
∑

j∈B(k)

|θ̂ij |p) ≥ 2cn−p/2


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The upper bound for T1: Using a Lp norm result on wavelet series (see [[9], Proposition 8.3]), the Cauchy-Schwarz
inequality and Proposition 3.3, we obtain

T1 = E∥(α̂i0j − αi0j)ϕi0j(x)∥pp ≤ C2i0(
p
2−1)

2i0−1∑
j=0

E (α̂i0j − αi0j)
p

≤ C2i0(
p
2−1)

2i0−1∑
j=0

(
E (α̂i0j − αi0j)

2p
) 1

2

≤ C2i0(
p
2−1)2i0n−

p
2 = C(2i0n−1)

p
2 ,

Based on our choice of i0 = 0, we have T1 = O(n−p/2).

The upper bound for T4: First, let’s consider ν < p. From Lemma 4.1 and (2.4), we have ∥βi.∥p ≤ ∥βi.∥ν ≤
M2−iσ. Thus

∑
j |βij |p ≤Mp2−ipσ. Since sν > 1 and σ > 1/2, we have

T4 ≤ C

( ∞∑
i=R+1

2−iσ

)p

≤ C2−Rσp.

On the basis of our choice R with 2R ≃ n(log2 n)
−2 and pσ > ps/(1 + 2s), we obtain T4 = O(n−ps/(1+2s)).

For ν ≥ p which p ≥ 2, from Lemma 4.1, we have ∥βi.∥p ≤ (C2i)
1
p−

1
ν ∥βi.∥ν ≤M2−is. However, we can show that

T4 ≤ C

 ∞∑
i=R+1

2i−1∑
j=0

|βij |p
 1

p


p

≤ C

( ∞∑
i=R+1

2−is

)p

≤ C2−Rsp.

Again, on the basis of our choice R with 2R ≃ n(log2 n)
−2, we obtain T4 = O(n−ps/(1+2s)).

The upper bound for T2: Applying the Minkowski inequality and an elementary inequality of convexity, we
have T2 ≤ 2p−1(T21 + T22), where

T21 = E
(
∥
∑R

i=i0

∑
k

∑
j∈B(k) βijψij(x)I(Âik < cn−p/2)I(Aik < cn−p/2)∥pp

)
,

T22 = E
(
∥
∑R

i=i0

∑
k

∑
j∈B(k) βijψij(x)I(Âik < cn−p/2)I(Aik ≥ cn−p/2)∥pp

)
.

The upper bound for T21: For the first term T21, we have T21 ≤ 2p−1(T211 + T212), where

T211 = E

∥∥ is∑
i=i0

∑
k

∑
j∈B(k)

βijψij(x)I(Âik < cn−p/2)I(Aik < cn−p/2)
∥∥p
p

 ,

≤ C
∥∥ is∑

i=i0

∑
k

∑
j∈B(k)

βijψij(x)I(Aik < cn−p/2)
∥∥p
p

≤ C

is∑
i=i0

2i(p/2−1)

[∑
k

∑
j∈B(k)

|βij |pI(Aik < cn−p/2)

1/p ]p
.

Now, from the definition of Aik, we have
∑

j∈B(k) |βij |p = lAik. Since there are at most l−12i terms in
∑

k for
each i, we have

T211 ≤ C

is∑
i=i0

(
2i(p/2−1)2in−p/2

)
≤ C

(
2isn−1

)p/2
.
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The upper bound for T212: If ν ≥ 2, based on Lemma 4.1, for any g ∈ Bs
ν,q, we have

T212 = E

∥
R∑

i=is+1

∑
k

∑
j∈B(k)

βijψij(x)I(Âik < cn−p/2)I(Aik < cn−p/2)∥pp

 ,

≤ C

R∑
i=is+1

∑
j

|βij |p ≤ C

R∑
i=is+1

2−ips ≤ C2−isps.

As to term T212, for ν < 2, nothing that 2cn−p/2A−1
ik > 1, we have

T212 = E

∥
R∑

i=is+1

∑
k

∑
j∈B(k)

βijψij(x)I(Âik < cn−p/2)I(Aik < cn−p/2)∥pp

 ,

≤ C

R∑
i=is+1

∑
k

lAik2
i(p/2−1)∥ψ∥

(
2cn−p/2A−1

ik

)1− ν
p

≤ Cln−1+ ν
2

R∑
i=is+1

2i(p/2−1)
∑
k

A
ν
p

ik

≤ Cl1−
ν
p n−

p
2+

ν
2

R∑
i=is+1

2i(p/2−1)2−iσν

≤ Cl1−
ν
p n−

p
2+

ν
2 2−isσν2is(p/2−1).

Putting the upper bounds of T211 and T212 together, we conclude that

T21 ≤ C
(
2isn−p/2 + 2−isps

)
. (4.1)

The upper bound for T22: From Lemma 4.2 and Proposition 3.4, we have

T22 = E

∥
R∑

i=i0

∑
k

∑
j∈B(k)

βijψij(x)I(Âik < cn−p/2)I(Aik ≥ cn−p/2)∥pp


≤ CE

∥(
R∑

i=i0

∑
k

∑
j∈B(k)

|βij |2I(Âik < cn−p/2)I(Aik ≥ cn−p/2)|ψij(x)|2)
1
2 ∥pp


≤ C

∥(
R∑

i=i0

∑
k

∑
j∈B(k)

|βij |2
[
E(I(Âik < cn−p/2)I(Aik ≥ cn−p/2))

] 2
p |ψij(x)|2)

1
2 ∥pp


≤ C

∥(
R∑

i=i0

∑
k

∑
j∈B(k)

|βij |2
[
P (l−1

∑
j∈B(k)

|θ̂ij |p ≥ C2n−p/2)
] 2

p |ψij(x)|2)
1
2 ∥pp


≤ Cn−

p
2

∥(
∞∑
i=0

∑
k

∑
j∈B(k)

|βij |2|ψij(x)|2)
1
2 ∥pp

 ≤ C∥g∥ppn−
p
2 ≤ Cn−

p
2 (4.2)

Now, by using the results in Eq.(4.1) and (4.2), we have

T2 ≤ C
(
2isps + n−p/2

)
.

Now, if is satisfies 2is ≃ n1/(1+2s), then T2 ≤ Cn−ps/(1+2s).
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The upper bound for T3: By the Minkowski inequality and an elementary inequality of convexity, we have
T3 ≤ 2p−1 (T31 + T32), where

T31 =E∥
R∑

i=i0

∑
k

∑
j∈B(k)

θ̂ijψij(x)I(Âik ≥ cn−
p
2 )I(Aik < cn−

p
2 )∥pp,

T32 =E∥
R∑

i=i0

∑
k

∑
j∈B(k)

θ̂ijψij(x)I(Âik ≥ cn−
p
2 )I(Aik ≥ cn−

p
2 )∥pp.

Applying the same argument as in T2, to find an upper bound for T31 and T32.

The upper bound for T31: Using Lemma 4.2, the Cauchy-Schwarz inequality, and the propositions 3.3 and 3.4,
we obtain

E
(
|θ̂ij |pI(Âik ≥ cn−

p
2 )I(Aik < cn−

p
2 )
)
≤ E

|θ̂ij |pI(l−1
∑

j∈B(k)

|θ̂ij |p ≥ C2n−p/2)


≤
[
E(|θ̂ij |)2p)

] 1
2

P (l−1
∑

j∈B(k)

|θ̂ij |p ≥ C2n−p/2)

 1
2

≤ Cn−p. (4.3)

From (4.3), and the fact that
∥∥ψij

∥∥p
p
= 2i(p/2−1)

∥∥ψ∥∥, we have

T31 ≤ CE

∥∥∥∥
 R∑

i=i0

∑
k

∑
j∈B(k)

|θ̂ij |2I(Âik ≥ cn− p
2 )I(Aik < cn−

p
2 ))|ψij(x)|2

 1
2 ∥∥∥∥p

p


≤ C

∥∥∥∥
 R∑

i=i0

∑
k

∑
j∈B(k)

[
E(|θ̂ij |pI(Âik ≥ cn−

p
2 )I(Aik < cn−

p
2 ))
] 2

p |ψij(x)|2
 1

2 ∥∥∥∥p
p

≤ Cn−p

∥∥∥∥
 R∑

i=i0

2i−1∑
j=0

|ψij(x)|2
 1

2 ∥∥∥∥p
p

≤ Cn−p
R∑

i=i0

2i−1∑
j=0

∥∥ψij(x)
∥∥p
p
≤ Cn−p2R(p/2−1) ≤ Cn−p/2

where the last inequality arises from this fact 2R ≤ n.

The upper bound for T32: By the Minkowski inequality and an elementary inequality of convexity, we have
T32 ≤ 2p−1 (T321 + T322), where

T321 = E

∥∥∥∥∑is
i=i0

∑
k

∑
j∈B(k) θ̂ijψij(x)I(Âik ≥ cn−

p
2 )I(Aik ≥ cn−

p
2 )

∥∥∥∥p
p

T322 = E

∥∥∥∥∑R
i=is+1

∑
k

∑
j∈B(k) θ̂ijψij(x)I(Âik ≥ cn−

p
2 )I(Aik ≥ cn−

p
2 )

∥∥∥∥p
p

.

The upper bound for T321: Using a Lp norm result on wavelet series (see ([9], Proposition 8.3)), Proposition
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3.3 and the Cauchy-Schwarz inequality, we obtain

T321 ≤ CE

∥∥∥∥
 is∑

i=i0

∑
k

∑
j∈B(k)

|θ̂ij |2|ψij(x)|2
 1

2 ∥∥∥∥p
p


≤ C

∥∥∥∥
 is∑

i=i0

∑
k

∑
j∈B(k)

[
E(|θ̂ij |p)

] 2
p |ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ Cn−
p
2

is∑
i=i0

∑
k

∑
j∈B(k)

∥∥ψij(x)
∥∥p
p

≤ Cn−
p
2

∥∥ψ∥∥p
p

is∑
i=i0

2i2i(p/2−1) ≤ C
(
2isn−1

) p
2 . (4.4)

The upper bound for T322: First, we find the upper bound for ν ≥ 2. Nothing Aikc
−1n

p
2 ≥ 1 and from

proposition 3.3, we have

T322 ≤ CE

∥∥∥∥
 R∑

i=is+1

∑
k

∑
j∈B(k)

|θ̂ij |2I(Aik ≥ cn−
p
2 ))|ψij(x)|2

 1
2 ∥∥∥∥p

p


≤ C

∥∥∥∥
 R∑

i=is+1

∑
k

∑
j∈B(k)

[
E(|θ̂ij |p)

] 2
p I(Aik ≥ cn−

p
2 ))|ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ Cn−
p
2

∥∥∥∥
 R∑

i=is+1

∑
k

∑
j∈B(k)

Aikn
p
2 |ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ C

R∑
i=is+1

∑
j

|βij |p ≤ C

R∑
i=is+1

2−ips ≤ C2−isps. (4.5)

It follows from (4.4), (4.5) and the definition of 2is ≃ n1/1+2s that T32 = O
(
n−ps/1+2s

)
. Also for ν < 2, we have

T322 ≤ CE

∥∥∥∥
 R∑

i=is+1

∑
k

∑
j∈B(k)

|θ̂ij |2I(Aik ≥ cn−
p
2 ))|ψij(x)|2

 1
2 ∥∥∥∥p

p


≤ C

∥∥∥∥
 R∑

i=is+1

∑
k

∑
j∈B(k)

[
E(|θ̂ij |p)

] 2
p I(Aik ≥ cn−

p
2 ))|ψij(x)|2

 1
2 ∥∥∥∥p

p

≤ C

R∑
i=is+1

∑
k

ln−
p
2

(
Aikn

p
2

)ν/p
∥ψij(x)∥pp

≤ Cl1−
ν
p n−

p
2+

ν
2 ∥ψ∥

R∑
i=is+1

2i(p/2−1)
∑
k

 ∑
j∈B(k)

|βij |p
ν/p

≤ Cl1−
ν
p n−

p
2+

ν
2 2is(p/2−1)

R∑
i=is+1

∑
j

|βij |ν

≤ Cl1−
ν
p n−

p
2+

ν
2 2is(p/2−1)2−isσν . (4.6)
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Now, if 2is ≃ (logn)
(2−ν)

ν(1+2s)n1/1+2s and from (4.4), (4.6), then

T32 ≤ C(log2 n)
(2−ν)+ν2(σ−2s/p)

ν(1+2s) n−ps/(1+2s).

Finally, by Combining these four bounds together, we complete the proof of Theorem 3.1.
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