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Abstract

The mixed fuzzy relation programming with a nonlinear objective function and two operators of max-product and
max-min composition is studied in this paper. Its feasible domain structure is investigated and some simplification
procedures are presented to reduce the dimension of the original problem. We intend to modify the assimilation and
revolution operators of the imperialist competitive algorithm in order to prevent the generation of infeasible solutions.
The modified imperialist competitive algorithm (MICA) is compared with a real-value genetic algorithm to solve the
original problem. Several test problems are presented to compare its performance with respect to the performance of
the genetic algorithm. Their results show the superiority of the proposed algorithm over the genetic algorithm.
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1 Introduction

Since Fuzzy Relation Equations (FREs) were firstly proposed by Sanchez [25], many researchers have studied
FREs from theoretical and applied aspects [21, 22, 35, 23, 24, 19]. The theory aspects contain the solvability criteria,
the solution set structure, the minimal solutions, the maximum solution, the consistency, NP-hardness, and their
associated algorithms [23, 18, 11, 22, 20]. The applied aspects can be considered in various areas such as fuzzy
decision-making, fuzzy symptom diagnosis, textile engineering, image compression, and reconstruction, and fuzzy
optimization [21, 22, 35]. Recently, its applications can be seen in the wireless communication [29], supply chain [33],
and the data transmission modelling in BitTorrent-like Peer-to-Peer (P2P) file sharing systems [30, 31, 32].

One of the most interesting topics in FREs is the objective function optimization subject to a system of FREs.
The linear optimization problem provided to the max-min FRE system has firstly been investigated by Fang and Li [5]
motivated in the textile engineering. Some researchers tried to improve their approach by proposing a suitable upper
bound or some rules for simplifying the problem [26, 27, 28, 7]. Comprehensive overview on FREs and fuzzy relation
programming has been presented by Li and Fang in [14, 15]. In some applications which the human judgment plays
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a main role, we need to variables that should satisfy FRE or FRI constraints with two composition operators, simul-
taneously. Such systems are called Mixed Fuzzy Relation Equations (MFREs) or Mixed Fuzzy Relation Inequalities
(MFRIs), respectively. The problem of minimizing a linear objective function provided to MFRIs with two different
operators of Max−T1 and Max−T2 was studied in [1]. The structure of its feasible domain was determined. Sufficient
and necessary conditions were suggested for its solution existence. Some rules were given to reduce the size of the
problem. An algorithm was designed to solve the problem based on its structure and reduction procedures. However,
algorithms have been proposed to solve the nonlinear programming problems subject to FREs with special forms of
objective functions [34, 38, 39, 10]. Hence, designing novel algorithms for the resolution of nonlinear programming
problems with FREs, in a general case, has been developing very slowly. Lu and Fang [17] firstly focused on the
resolution of such nonlinear problems. Since the resolution of these problems is a NP-hard problem in a general
case, we cannot use the traditional nonlinear optimization methods. Hence, they designed a Genetic Algorithm (GA)
for finding its optimal solution with regard to the structure of its feasible domain. They selected the individuals of
the initial population from its feasible domain and kept them within the feasible domain during the mutation and
crossover operations. The nonlinear optimization problem with the max-average operator was studied by Khorram
and Hassanzadeh [12]. A modified GA was suggested to solve the problem. In the algorithm, they changed some of
its components to solve the problem. Moreover, Hassanzadeh et al.[9] investigated the problem with the max-product
operator. They proposed a GA to obtain a good approximate optimal solution for convex or non-convex feasible
domain and evaluated its performance by several test problems. Recently, Li et al. [13] studied a special type of
nonlinear optimization problem with a non-differential objective function provided to a set of constraints of MFREs
with the max-min and the max-product operators. Several properties of the problem were investigated and an algo-
rithm was designed based on the useful properties. A similar problem to the above problem with the max-min and
the max-average operators was considered and some of its properties were expressed [6]. Then, an algorithm was
designed by them to solve the problem. However, the objective functions of the problems in Refs. [13, 6] have a
special form and the algorithms in [13, 6] cannot be applied to solve the problems in a general case. Therefore, we are
motivated to design efficient evolutionary algorithms to solve the problems in a general case. In each iteration of the
evolutionary algorithms, some candidate solutions are generated based on the information of the candidate solutions
in the previous iteration. New generated candidate solutions may be infeasible because of the nature of some problems
such as non-convexity. In this case, some techniques are applied to overcome the infeasible candidate solutions such
as repairing infeasible candidate solutions, penalizing values related to infeasible candidate solutions, and eliminating
infeasible candidate solutions. One of the most powerful evolutionary algorithms for resolution of various optimization
problems was suggested by Atashpaz Gargari and Lucas [3] called Imperialist Competitive Algorithm (ICA). In this
paper, the nonlinear optimization problem with an arbitrary objective function subject to a system of MFREs with
the max-product and max-min operators is investigated. This problem is an extension of the proposed models by
Lu and Fang [17] and Hassanzadeh et al. [9]. We express some properties of the system of MFREs and present
some simplification procedures to reduce the size of the dimensions of the problem. A new algorithm is designed to
solve the problem. The algorithm is based on Modified Imperialist Competitive Algorithm (MICA). The original ICA
generates the initial empires and moves the colonies toward their imperialists (assimilation). Random changes occur
in the characteristics of each colony with a determinate probability (revolution). It then updates positions of the
imperialists and computes total power of an empire. In the next stage, the imperialistic competition begins and all
the empires try to take possession of the colonies of other empires and eliminate the powerless empires. After some
imperialist competitions, all the empires except the most powerful ones will collapse. In this case, the algorithm stops
[3]. The original form of this algorithm does not take the feasible domain into account to generate new candidate
solution. Therefore, some modifications have been applied on the original operators of the ICA to prevent infeasible
solutions from being generated. These modifications help the algorithm to search within the feasible domain so that
the execution time of the proposed algorithm decreases considerably. In fact, the innovation behind the proposed
method is to change the main operators of the algorithm such that this algorithm is compatible with the problems
described in this paper. We intend to change the assimilation and revolution operators of the ICA in order to prevent
the generation of infeasible solutions and propose a MICA. Some test problems are given to show its performance by
comparing it with the Real-Value GA (RVGA) proposed in [4]. The structure of paper is as follows. In the second
section, the nonlinear optimization problem subject to mixed fuzzy relation equations with two operators of max-min
and max-product composition is formulated and some simplification procedures are presented to reduce the dimension
of the original problem. The third section proposes a MICA to solve the problem. Section 4 presents some test
problems to illustrate its results and performance. Section 5 provides the conclusions.
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2 The problem of nonlinear objective function optimization subject to MFRE con-
straints

This section contains two subsections. In the first subsection, we formulate the problem of nonlinear objective
function optimization subject to MFRE constraints. In the second subsection, we express some useful properties of
its feasible domain. Using them, some simplification procedures are proposed to reduce the size of dimensions of the
problem.

2.1 Formulation of the problem

The problem of nonlinear objective function optimization subject to the system of MFRE constraints with two
operators of max-min and max-product compositions is formulated as follows:

Min(orMax) z = f(x), (2.1)

s.t. A ◦ x = b, (2.2)

B • x = d, (2.3)

x ∈ [0, 1]n, (2.4)

where the function f : Rn → R, A = [aij ]m×n, B = [bij ]p×n, b = [bi]m×1, and d = [di]p×1. The components
of the matrices denote fuzzy degrees in [0, 1]. Now, we want to find a vector x such that satisfies the constraints
and minimizes (or maximizes) the objective function f(x). Also, the notation of ◦ and • denote the max-min and
max-product composition operator, respectively. The constrains (2.2)-(2.4) are equivalent to the following system:

Max{ai1 ∧ x1, ai2 ∧ x2, . . . , ain ∧ xn} = bi, ∀i ∈ I, (2.5)

Max{bi1 × x1, bi2 × x2, ..., bin × xn} = di, ∀i ∈ K, (2.6)

xj ∈ [0, 1], ∀j ∈ J, (2.7)

where I = {1, 2, ...,m}, J = {1, 2, ..., n}, and K = {1, 2, ..., p}. Also, the notation of ∧ denotes the minimum operator.
We are now ready to investigate the structure of its feasible domain.

2.2 The solution set of system (2.5)-(2.7)

As it is well-known, the solution set of system (2.5)-(2.7) is determined by the maximum solution and a finite
number of minimal solutions of system (2.5)-(2.7). The maximum solution of the sub-system (2.5) and (2.7), i.e.,
x = (x1, . . . , xn), is determined as follows [5]:

x = A@b = [
m
∧
i=1

(aij@bi)]j∈J , (2.8)

where

aij@bi =

{
1 aij ≤ bi,
bi aij > bi,

The maximum solution of sub-system (2.6) and (2.7), i.e., x = (x1, . . . , xn) is given by the following relation [16]:

x = B ⊛ d = [
p
∧
i=1

(bij ⊛ di)]j∈J , (2.9)

where

bij ⊛ di =

{
1 bij ≤ di,
di

bij
bij > di,

with regard to the relations (2.8) and (2.9), the maximum solution of system (2.5)-(2.7), simultaneously, i.e.,
∧
x =

(
∧
x1, . . . ,

∧
xn), is as follows:

∧
xj = xj ∧ xj , ∀j ∈ J. (2.10)
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We can easily verify the consistency of the system (2.5)-(2.7) by checking feasibility of vector
∧
x in the system (2.5)-

(2.7). If vector
∧
x satisfies the system (2.5)-(2.7), then the system is consistent and its feasible domain is nonempty.

Otherwise, its feasible domain is empty.

The solution set of the feasible domain of the problem (2.1)-(2.4) is determined by the maximum solution and a
finite number of minimal solutions. The computation of the maximum solution with regard to formulae (2.8)-(2.10)
is not difficult. However, the main difficulty is finding all the minimal solutions. We now present some simplification
procedures to reduce the size of the dimensions of the problem of (2.1)-(2.4).

Lemma 2.1. Consider the system (2.5)-(2.7). Suppose that there exist i ∈ I and j ∈ J such that aij < bi, then the
component aij can be converted to zero in the system.

Proof . If aij < bi, then in the ith equation, the relation of Min{aij , xj} is less than bi. Therefore, the ith equation
cannot be satisfied by the relation. Hence, we can set zero instead of aij . This topic has no effect on the system
(2.5)-(2.7). □

With regard to Lemma 2.1, if aij < bi, then we can easily remove the relation Min{aij , xj} and reduce the
dimensions of the system (2.5)-(2.7).

Lemma 2.2. Consider the system (2.5)-(2.7). Suppose that there exist i ∈ I and j ∈ J such that bij < di, then the
component bij can be converted to zero in the system.

Proof . If bij < di, then in the ith equation, the relation of bij .xj is less than di due to bij , xj , di ∈ [0, 1]. Therefore,
the ith equation cannot be satisfied by the relation. Hence, we can set zero instead of bij . This topic has no effect on
the system (2.5)-(2.7). □

With regard to Lemma 2.2, if bij < di, then we can easily delete the relation bij × xj and reduce the dimensions
of the system (2.5)-(2.7). Also, with attention to Lemmas 2.1 and 2.2, the system (2.5)-(2.7) is simplified and the
simplified problem (2.1)-(2.4) can be solved by MICA in the next section.

3 Modified imperialist competitive algorithm for resolution of the simplified problem
(2.1)-(2.4)

In this section, we modify the original ICA in order to prevent from the generation of infeasible candidate solutions
by changing some operators of the original imperialist competitive algorithm. Hence, we briefly explain the original
imperialist competitive algorithm in Subsection 3.1. We then design a modified imperialist competitive algorithm to
solve the simplified problem (2.1)-(2.4) in Subsection 3.2.

3.1 The Original Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm for optimization inspired by the imperial-
istic competition. In this algorithm, a population of individuals is called a country. The initial population in ICA is
created with a random generation of initial countries. These countries are divided to two groups called imperialists
and colonies based on their power. Each imperialist possesses some colonies and these colonies form an empire. When
the empires compete with each other, they try to acquire more colonies. In this competition, some empires fail and
lost their colonies and the powerful empires become much stronger. Hence, the weak empires collapse and all the
countries become colonies of an empire [3]. In the optimization problems, the power of an imperialist depends on the
objective function. In the maximization and minimization problems, it is proportional to the objective function value
and its inverse, respectively. According to this point, the colonies related to each imperialist are specified and the
position of the imperialists is updated. In the next step, the empires compete with each other to possess the colonies
of other empires. ICA consists of four main steps as initialization, assimilation, competition, and convergence. The
steps of imperialist competitive algorithm are presented below.

Algorithm 1. The Original Imperialist Competitive Algorithm [3].

Step 1. Generate Initial Empires: The position of the ith country in a Nvar-dimensional optimization problem
is as: Country(i).vector = [x1, x2, x3, ..., xNvar

], i = 1, 2, ..., Ncnt, where Ncnt is total number of the countries. The
cost of the ith country is as:

Country(i).cost=Fitness-function(country(i).vector)
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Nimp: The number of the most powerful countries to create empires,

Ncol: The number of remaining countries that will be the colonies of the empires.

The initial number of colonies of an empire is directly proportional to its power and it is specified by ”Roulette
Wheel”. Ncol vectors are generated from feasible vectors as initial countries.

Step 2. Assimilation: The colonies move toward their imperialists. Their positions in the nth empire are updated
as:

New country(i).vectorn = country(i).vectorn+

(rand ∗ α+ (Imperialist.vectorn + country(i).vectorn))

where country(i).vectorn: The position of the ith colony in the nth imperialist,

rand: A random vector which its components belong to [−1, 1], and α = 0.1,

Imperialistn: The position of the nth imperialist.

Step 3. Revolution: This stage denotes the random changes in the characteristics of each country with proba-
bility Pr.

Step 4. Position exchange between a colony and imperialist: In the previous steps, a colony may obtain
a better position than the imperialist. Then their positions should be exchanged.

Step 5. Computing total power of an empire: The total power of the nth empire (TCn) is computed based
on the power of the imperialist and its colonies as follows:

TCn = Cost(imperialist) + ξ ×mean{Cost((colonies of empire))}

where ξ is a real number less than 1.

Step 6. Imperialistic Competition: In this step, all the empires compete with each other to possess the
colonies of other empires. In this competition, some the weakest colonies are possessed by more powerful empires. In
this paper, the competition is implemented by ”Roulette Wheel” based on total powers of imperialist.

Step 7. Eliminating the weak empires: In the imperialistic competition, the weak empires will collapse. In
this paper, the collapse mechanism occurs for an empire when it loses all of its colonies.

Step 8. Convergence: In this step, the most powerful empire only remains. The other empires will collapse
and all of the countries under their possession are converted to colonies of the empire. Hence, the positions of all the
colonies become the same. In this case, the algorithm stops.

The stages of the OICA have been illustrated in Figure 1 [3, 2, 37, 36]. Therefore, we summarize the steps of the
OICA in Figure 2 as a flowchart. However, there are some drawbacks in the OICA to solve optimization problems
with the non-convex constraints. In these problems, if the colonies move toward their relevant imperialists, some
infeasible solutions may occur. To overcome this difficulty, we modify the OICA such that it prevents the generation
of infeasible solutions. To do this, we change the Assimilation and the Revolution operators, properly. The main idea
has been mentioned in Subsection 3.2.

3.2 Modified Imperialist Competitive Algorithm (MICA) for resolution of the simplified problem (2.1)-
(2.4)

In this subsection, we intend to modify the OICA for prevention of generation of infeasible solutions in the
optimization problems with the non-convex constrains. To do this, we change Assimilation and Revolution operators
as follows:

Revolution: In the Revolution steps, a random vector is added to each colony with probability Prevolution. We
repeat Revolution steps of the OICA to generate a new colony until it becomes a feasible solution. The pseudo-code
of these steps are as follows:

Revolution(Empire)

For each colony of the empire do
Pick a random value r uniformly from [0,1]
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If (r ≤ Prevolution) then
While (until new colony is not feasible) do

New country(i).vector = randvector + country(i).vector
EndWhile

EndIf
EndFor

EndRevolution

Assimilation: In the non-convex optimization problems, if the colonies move toward their relevant imperialists
like the OICA, some infeasible solutions may occur. Therefore, we repeat Assimilation steps of the OICA to prevent
the generation of infeasible solutions until a feasible solution is generated. The pseudo-code of these steps are as follows:

Assimilation(Empire)
For each colony of the empire do

While(until new colony is not feasible) do
New country(i).vector=country(i).vector+(rand ∗ α+ (Imperialist.vector+country(i).vector))

EndWhile
EndFor

EndAssimilation

Figure 3 illustrates the main idea of the Assimilation steps of the MICA.

Figure 1: Steps of the Original Imperialist Competitive Algorithm.
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Figure 2: Flowchart of the Original Imperialist Competitive Algorithm.

Figure 3: Modified Assimilation.

Figure 4 illustrates the main idea of Revolution steps of the MICA.
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Figure 4: Modified Revolution.

Now, we present some numerical examples and solve them by the proposed RVGA in [4] and MICA to show their
performances. Their results are also compared to each other. First of all, it is necessary to remind that the parameters
of the RVGA are as follows:

Parameters Value
Representation Real-valued vectors
Population size 20
Initialization Random

Parent selection method Roulette wheel
Recombination N-points crossover

Recombination probability 100%
Mutation Random change

Mutation probability 80%
Survival selection Replace worst

Number of offspring 2
Termination condition Number of iterations

Table 1: The parameters of RVGA

The test problems are taken from Ref. [8]. Also, the software used to solve these examples is MATLAB, in the
next section .

4 Test problems

Example 4.1. Consider problem (2.1)-(2.4) as minimization where

f(x1, x2, x3) = 3000x1 + 1000x3
1 + 2000x2 + 666.667x3

2, (4.1)

A =

0.34 0.28 0.64
0.5 0.88 0.18
0.71 0.21 0.3

 , b = (0.28, 0.3, 0.21)T , (4.2)

B =

0.15 0.4 0.26
0.32 0.6 0.73
0.16 0.5 0.42

 , d = (0.12, 0.18, 0.15)T , (4.3)

x ∈ [0, 1]3. (4.4)

We firstly display the feasible solution set by Figure 5. Then, the RVGA is run for Example 4.1. Its results are
presented for 50, 100, 150, 200, 250, and 300 iterations in Table 2. Also, we run MICA for this example. Its results are
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given in Table 3 for 50, 100, 150, 200, 250, and 300 iterations, respectively. We can now compare the obtained results
from RVGA and MICA for test problem 1. This work has been done in Figure 6. Figure 6 shows that the performance
of MICA is better and more efficient with respect to the performance of the proposed RVGA in [4].

Figure 5: The green region displays the feasible solution set for test problem 1

Iterations x1 x2 x3 f(x)
50 0.03 0.30 0.19 708.02
100 0.02 0.30 0.16 678.01
150 0.02 0.03 0.21 678.01
200 0.01 0.03 0.16 648.00
250 0.01 0.30 0.12 648.00
300 0 0.30 0.20 618.00

Table 2: The performance of proposed RVGA with different iterations for test problem 1.

Iterations x1 x2 x3 f(x)
50 0.02 0.30 0.12 678.01
100 0.01 0.30 0.19 648.00
150 0 0.30 0.02 618.00
200 0.01 0.30 0.11 648.00
250 0 0.30 0.12 618.00
300 0 0.30 0.17 618.00

Table 3: The performance of proposed MICA with different iterations for test problem 1.
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Figure 6: Performance comparison of proposed RVGA and MICA on test problem 1

Example 4.2. Consider problem (2.1)-(2.4) as minimization where

f(x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4, (4.5)

A =

0.5176 0.2278 0.8993 0.9858
0.1370 0.4585 0.6334 0.2790
0.4093 0.7399 0.0313 0.3039

 , b = (0.7208, 0.6334, 0.4725)T , (4.6)

B = ∅, and d = ∅, (4.7)

x ∈ [0, 1]4. (4.8)

According to Lemma 2.1, the simplification procedure is implemented on Example 4.1 as follows: Since a11, a12 < b1,
the components of a11 and a12 can be converted to zero. Also, components a21, a22, and a24 are less than b2. So, the
components of a21, a22, and a24 can be converted to zero. Similarly, components a31, a33, and a34 are less than b3.
Hence, the components of a31, a33, and a34 can be converted to zero. On the other hand, the maximum solution of
the feasible domain is as: x̂ = x̄ = (1, 0.4725, 0.7208, 0.7208). Therefore, the simplified problem is as follows:

Min f(x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4,

s.t. Max{0.8993
∧

x3, 0.9858
∧

x4} = 0.7208,

Max{0.6334
∧

x3} = 0.6334,

Max{0.7399
∧

x2} = 0.4725,

x1 ∈ [0, 1], x2 ∈ [0, 0.4725], x3 ∈ [0, 0.7208], x4 ∈ [0, 0.7208].

Then, the RVGA is run for Example 4.2. Its results are presented for 50, 100, 150, 200, 250, and 300 iterations in
Table 4. Also, we run the MICA for this example. Its results are given in Table 5 for 50, 100, 150, 200, 250, and 300
iterations, respectively. We can now compare the obtained results from RVGA and MICA for test problem 2. This
work has been done in Figure 7. The problem is a minimization problem. Figure 7 shows that the performance of
MICA is better and more efficient with respect to the performance of the proposed RVGA in [4].

Iterations x1 x2 x3 x4 f(x)
50 0.0389 0.4725 0.7208 0.3221 24.4359
100 0.0318 0.4725 0.7208 0.5075 24.2487
150 0.0637 0.4725 0.7208 0.5172 24.4439
200 0.0189 0.4725 0.7208 0.4602 24.1054
250 0.0303 0.4725 0.7208 0.4297 24.1731
300 0.0155 0.4725 0.7208 0.3976 24.0898

Table 4: The performance of proposed RVGA with different iterations for test problem 2.
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Iterations x1 x2 x3 x4 f(x)
50 0.0172 0.4725 0.7208 0.4194 24.0864
100 0.0167 0.4725 0.7208 0.4505 24.0852
150 0.0194 0.4725 0.7208 0.4355 24.0981
200 0.0069 0.4725 0.7208 0.3825 24.0441
250 0.0113 0.4725 0.7208 0.4632 24.0634
300 0.0062 0.4725 0.7208 0.4018 24.0200

Table 5: The performance of proposed MICA with different iterations for test problem 2.

Figure 7: Performance comparison of proposed RVGA and MICA on test problem 2

Example 4.3. Consider problem (2.1)-(2.4) as minimization where

f(x1, x2, x3, x4, x5) = 5x−0.2
1 x−0.3

2 x2
3x

−1
4 x2

5 + 2x−0.2
1 x−1.5

2 x2
3x

−2
4 x5, (4.9)

A =


0.9 0.8 0.6 0.3 0.9
0.8 0.7 0.8 1 0.8
0.6 0.9 0.8 0.9 0.5
0.4 0.2 0.5 0.6 0.2
0.3 0.3 0.5 0.2 0.1
0.4 0.1 0.2 0.3 0.5

 , b = (0.8, 0.8, 0.5, 0.5, 0.4)T , (4.10)

B = ∅, d = ∅, (4.11)

x ∈ [0, 1]n. (4.12)

Then, the RVGA is run for Example 4.3. Its results are presented for 50, 100, 150, 200, 250, and 300 iterations in
Table 6. Also, we run the MICA for this example. Its results are given in Table 7 for 50, 100, 150, 200, 250, and 300
iterations, respectively. We can now compare the obtained results from RVGA and MICA for test problem 3. This
work has been done in Figure 8. The problem is a minimization problem. Figure 8 shows that the performance of
MICA is better and more efficient with respect to the performance of the proposed RVGA in [4].

Iterations x1 x2 x3 x4 x5 f(x)
10 0.53 0.80 0.88 0.42 0.09 2.2611
20 0.80 0.53 0.94 0.22 0.02 2.4870
30 0.80 0.36 0.84 0.29 0.0200 1.9703
40 0.80 0.78 0.86 0.33 0.02 0.6648
50 0.80 0.65 0.85 0.47 0.04 0.8879
60 0.71 0.80 0.86 0.46 0 0

Table 6: The performance of proposed RVGA with different iterations for test problem 3.
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Iterations x1 x2 x3 x4 x5 f(x)
10 0.8000 0.4800 0.8600 0.3500 0.0400 2.0695
20 0.8000 0.3700 0.8400 0.4700 0.0300 1.2077
30 0.8000 0.2300 0.8500 0.4000 0.0100 1.0029
40 0.8000 0.7600 0.9900 0.4500 0 0

Table 7: The performance of proposed MICA with different iterations for test problem 3.

Figure 8: Performance comparison of proposed RVGA and MICA for test problem 3

5 Conclusions and future researches

The nonlinear programming problem subject to a mixed fuzzy relation equation system with two operators of
max-product and max-min composition can be applied for real world applications such as wireless communication and
BitTorrent-like Peer-to-Peer file sharing system. Some procedures were given to simplify the problem. A real-value
genetic algorithm had been designed for its resolution in [4] where the N-points crossover and mutation operators
were defined for the algorithm. The repair operator had been applied to prevent from generation of its infeasible
solutions in the algorithm. In this paper, a modified imperialist competitive algorithm was proposed to solve the
nonlinear problems. The algorithm modifies the assimilation and revolution operators in the original ICA to prevent
the generation of infeasible solutions. The proposed MICA is compared with RVGA in [4] and some test problems are
presented to compare them. The results show that the proposed MICA is more efficient with respect to the RVGA.
In recent years, machine learning algorithms and deep neural networks have shown great capability in solving a wide
range of problems including optimization problems. Investigating the capability of these methods to solve the problems
described in this paper will be considered as a future research work. Also, we will focus on hybrid algorithms based
on machine learning algorithms and meta heuristic algorithms to have an efficient algorithm.
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