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Abstract

In this paper, we introduce a further generalization of the cyclic contraction mappings. Our main results generalize
the recent related results proved by M. Jleli and B. Samet [8] and solve a best proximity point problem. In order to
show the applicability of our main results, an example is presented.
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1 Introduction

Let X be a metric space and F and G nonempty subsets of X. Put

F ◦ = {x ∈ F : d(x, y) = dist(F,G) for some y ∈ G},
G◦ = {x ∈ G : d(x, y) = dist(F,G) for some y ∈ F}.

If there is a pair (x0, y0) ∈ F × G for which d(x0, y0) = dist(F,G), that dist(F,G) is distance of F and G, then
the pair (x0, y0) is called a best proximity pair for F and G.

We say that the point x ∈ F ∪ G is a best proximity point of the pair (F,G) for T : F ∪ G → F ∪ G, if
d(x, Tx) = dist(F,G) and we denote the set of all best proximity points of (F,G) by PT (F,G), that is

PT (F,G) = {x ∈ F ∪G : d(x, Tx) = dist(F,G)}.

Best proximity point also evolves as a expansion of the concept of fixed point of mappings, because if F ∩G ̸= ∅ each
best proximity point is a fixed point of T .

A best proximity point theorem for contractive mappings has been detailed in Sadiq Basha [10, 11]. Anthony
Eldred et al. [3] have elicited a best proximity point theorem for relatively nonexpansive mappings, an alternative
treatment to which has been focused in Sankar Raj and Veeramani [12]. Anuradha and Veeramani [1] have discussed
best proximity point theorems for proximal pointwise contractions. Best proximity point theorems for various variants
of contractions have been explored Eldred and Veeramani [4], Haddadi et al. [5, 6], Karpagam and Agrawal [9], and [2].
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Theorem 1.1. ([4]) Let (F,G) be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach
space X. If T : F ∪G → F ∪G is a cyclic mapping such that

d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(F,G), ∀x ∈ F, y ∈ G

and either F or G is boundedly compact, then T has a unique best proximity point. Further, if x0 ∈ F and xn+1 = Txn,
then {x2n} converges to the best proximity point.

Consistent with [8], we denote by Θ0 the family of functions θ : (0,+∞) → (1,+∞) so that:
(θ1) θF is increasing;
(θ2) for each sequence {ρn} ⊆ (0,+∞), lim

n→+∞
θ(ρn) = 1 iff lim

n→+∞
ρn = 0;

(θ3) there are κ ∈ (0, 1) and λ ∈ (0,+∞) so that lim
ρ→0+

θ(ρ)−1
ρκ = λ.

Theorem 1.2. [8, Corollary 2.1] Let T be a self-mapping on a complete metric space (X, d) so that

x, ω ∈ X, d(Tx, Tω) ̸= 0 ⇒ θ(d(Tx, Tω)) ≤ θ(d(x, ω))α.

where θ ∈ Θ0 and α ∈ (0, 1). Then T has a unique fixed point.

Note that the Banach contraction principle is a particular case of Theorem 1.2.

Denote by ΘF the set of strictly increasing continuous functions θ : (0,+∞) → (1,+∞). Here, we have a wider
range of functions than those introduced in [8].

Remark 1.1. [7] It is clear that f(t) = et is not an element of Θ0, but it belongs to ΘF . Other examples are

f(t) = cosh t, f(t) = 2 cosh t
1+cosh t , f(t) = 1 + ln(1 + t), f(t) = 2+2 ln(1+t)

2+ln(1+t) , f(t) = ete
t

and f(t) = 2ete
t

1+etet
, for all t > 0.

Let Φ be the class of functions ϕ : (1,+∞) → (0,+∞) so that:
(ϕ1) ϕ is continuous;
(ϕ2) ϕ(t) = 0 iff t = 1;
(ϕ3) for each sequence {tn} ⊆ (1,+∞); lim

n→+∞
ϕ(tn) = 0 iff lim

n→+∞
tn = 1.

The following functions ϕ(t) = sinh(t−1), ϕ(t) = cosh(t−1)−1, ϕ(t) = tanh(t−1), ϕ(t) = arccosht, ϕ(t) = t−
√
t,

ϕ(t) =
√
t− 3

√
t are in Φ.

We denote by Ξ0 the family of functions θ : (0,+∞) → (1,+∞) so that:
(θ1) θF is increasing;
(θ2) for each sequence {ρn} ⊆ (0,+∞), lim

n→+∞
θ(ρn) = θ(ρ) iff lim

n→+∞
ρn = ρ;

(θ3) there are κ ∈ (0, 1) and λ ∈ (0,+∞] so that lim
ρ→0+

θ(ρ)−1
ρκ = λ;

(θ4) is continuous.

2 Main Results

In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best
proximity point problem in a complete metric space.

Theorem 2.1. Let F and G be closed disjoint subsets of complete metric space X and T : F ∪G → F ∪G be a cyclic
mapping so that for every x, ω ∈ F, or x, ω ∈ G,

d(Tx, Tω) ̸= 0 ⇒ θ(d(Tx, Tω)) ≤ θ(d(x, ω))α. (2.1)

and for every x ∈ F, ω ∈ G,

d(Tx, Tω) ̸= dist(F,G) ⇒ θ(d(Tx, Tω)) ≤ θ(d(x, ω))αθ(dist(F,G))1−α. (2.2)

where θ ∈ Ξ0 and α ∈ (0, 1). Then PT (F,G) ̸= ∅. Further, if x0 ∈ F and xn+1 = Txn, then {x2n} converges to the
best proximity point.
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Proof . Fix x ∈ F ∪G and define a sequence {xn} in F ∪G by xn = Tnx, n ∈ N0. We divide the proof into 4 steps:

Step 1. limn→+∞ d(xn, xn+1) = dist(F,G).

So, without restriction of the generality, we can suppose that d(Tnx, Tn+1x) > dist(F,G) for all n ∈ N. Now, from
(2.2), for all n ∈ N, we have Note

θ(dist(F,G)) ≤ θ(d(xn+1, xn+2)) = θ(d(Txn, Txn+1))

≤ θ(d(xn, xn+1))
αθ(dist(F,G))1−α

≤ θ(d(xn−1, xn))
α2

θ(dist(F,G))1−α2

...

≤ θ(d(x1, x2))
αn

θ(dist(F,G))1−αn

.

Hence {θ(d(xn, xn+1))} is monotonic decreasing and bounded below. Therefore limn→+∞ θ(d(xn, xn+1)) exists and
so limn→+∞ d(xn, xn+1). Let limn→+∞ d(xn, xn+1) = ρ ≥ dist(F,G). Assume that ρ > dist(F,G). By the right
continuity of θ,

θ(ρ) = lim
n→+∞

θ(d(xn+1, xn+2)) ≤ lim
n→+∞

θ(d(xn, xn+1))
αθ(dist(F,G))1−α < θ(ρ),

so ρ = dist(F,G).

Step 2. limn→+∞ d(xn+1, xn−1) = 0.

Now, from (2.1), for all n ∈ N, we have Note

1 ≤ θ(d(xn+1, xn−1)) = θ(d(Txn, Txn−2))

≤ θ(d(xn, xn−2))
α

≤ θ(d(xn−1, xn−3))
α2

...

≤ θ(d(x2, x0))
αn−1

. (2.3)

Hence {θ(d(xn+1, xn−1))} is monotonic decreasing and bounded below. Hence

lim
n→+∞

θ(d(xn+1, xn−1)) = 1.

and so
lim

n→+∞
d(xn+1, xn−1) = 0.

Step 3. {x2n} is Cauchy sequence.

From condition (θ3), there exist r ∈ (0, 1) and ℓ(0,+∞] such that

lim
n→+∞

θ(d(xn+1, xn−1))− 1

[d(xn+1, xn−1)]r
= ℓ.

Suppose that ℓ < +∞. In this case, let L = ℓ
2 > 0. From the definition of the limit, there exists n0 ∈ N such that

|θ(d(xn+1, xn−1))− 1

[d(xn+1, xn−1)]r
− ℓ| ≤ L, ∀ n ≥ n0.

This implies that
θ(d(xn+1, xn−1))− 1

[d(xn+1, xn−1)]r
≥ ℓ− L = L, ∀ n ≥ n0.
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Then

n[d(xn+1, xn−1)]
r ≤ 1

L
n[θ(d(xn+1, xn−1))− 1], ∀ n ≥ n0.

Using (2.3), we obtain

n[d(xn+1, xn−1)]
r ≤ 1

L
n[θ(d(T 2x0, x0))

αn−1

− 1], ∀ n ≥ n0.

Letting limn→+∞ in the above inequality, we obtain

lim
n→+∞

n[d(xn+1, xn−1)]
r = 0.

Thus, there exists n1 ∈ N such that

d(xn+1, xn−1) ≤
1

n1/r
, ∀ n ≥ n1.

Now, let m = 2k

d(xn, xn+m) ≤ d(xn, xn+2) + d(xn+2, xn+4) + ...+ d(xn+m−2, xn+m)

≤ 1

n1/r
+

1

(n+ 2)1/r
+ ...+

1

(n+m)1/r
.

≤
+∞∑
i=n

1

i1/r
, ∀ n ≥ n1.

From the convergence of the series
∑

i
1

i1/r
, we deduce that {x2n} is a Cauchy sequence.

Step 4. Existence of best proximity pair.

Because {x2n} is Cauchy, X is complete and F is closed, limn→+∞ x2n = x ∈ F . Now

dist(F,G) ≤ d(x, x2n−1) ≤ d(x, x2n) + d(x2n, x2n−1).

Thus, by step 1 we have d(x2n, x2n−1) → dist(F,G) and so d(x, x2n−1) converges to dist(F,G). Since

θ(dist(F,G)) ≤ θ(d(x2n, Tx)) ≤ θ(d(x2n−1, x))
αθ(dist(F,G))1−α,

therefore by upper semicontinuity of θ we have

θ(dist(F,G)) ≤ lim
n→+∞

θ(d(x2n, Tx)) ≤ lim
n→+∞

θ(d(x2n−1, x))
αθ(dist(F,G))1−α = θ(dist(F,G)).

Hence
θ(d(x, Tx)) = lim

n→+∞
θ(d(x2n, Tx)) = θ(dist(F,G))

and so d(x, Tx) = dist(F,G). □

It is notable that if in Theorem 2.1 we have F ∩G ̸= ∅, then (2.1) and (2.2) coincide and so we conclude Theorem
1.2. In the following we provide a strong convergence theorem for a generalization of cyclic contraction for the best
proximity point problem in the uniformly convex Banach space.

Theorem 2.2. Let F and G be two nonempty closed and convex disjoint subsets of a uniformly convex Banach space
X. Suppose the mapping T : F ∪ G → F ∪ G satisfied in (2.1) and (2.2). Then there is a unique p ∈ F such that
∥p− Tp∥ = dist(F,G). Also, if p0 ∈ F and pn+1 = Tpn, then {p2n} converges to the best proximity point.

Proof . By Theorem 2.1 PT (F,G) ̸= ∅. Suppose p, q ∈ PT (F,G) such that p ̸= q. Hence ∥p− Tp∥ = dist(F,G) and
∥q − Tq∥ = dist(F,G) where necessarily uniformly convexity of X, T 2p = p and T 2q = q. Since p ̸= q, by (2.2) we
have θ(dist(F,G)) < θ(∥Tp− q∥) and θ(dist(F,G)) < θ(∥p− Tq∥). Therefore

θ(∥p− Tq∥) = θ(∥T 2p− Tq∥) < θ(∥Tp− q|)

and
θ(∥Tp− q∥) = θ(∥Tp− T 2q∥) < θ(∥p− Tq∥)

that it is a contradiction and so p = q. □
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Example 2.1. Let F and G be subsets of R2 defined by

F = {(x, 0) : x ≥ 1}, G = {(0, y) : y ≥ 1}.

Suppose T (x, y) = (
√
y,
√
x) and

θ(ς) =


√
ς ς < dist(F,G)√

dist(F,G)ς ς ≥ dist(F,G).

Then T is a cyclic mapping on F ∪G that satisfied in (2.1) and (2.2). Also we have ∥(0, 1)− T ((1, 0))∥ = dist(F,G).

Proof . Here dist(F,G) =
√
2. For (x, 0), (y, 0) ∈ F we have

θ(∥T (x, 0)− T (y, 0)∥) = θ(∥(0,
√
x)− (0,

√
y)∥ =

√
∥(0,

√
x−√

y)∥ =
√

|
√
x−√

y|

≤
√
|x− y| = θ(|x− y|)

= θ(∥(x, 0)− (y, 0)∥).

Hence we have (2.1). Also, for (x, 0) ∈ F and (0, y) ∈ G we have

θ(∥T (x, 0)− T (0, y)∥) = θ(∥(0,
√
x)− (

√
y, 0))∥ =

√
dist(F,G)∥(√y,

√
x)∥ =

√
dist(F,G)

√
y + x

≤
√
x+ y ≤

√√
2
√

x2 + y2

≤
√
dist(F,G)∥(x, 0)− (0, y)∥

= θ(∥(x, 0)− (0, y)∥).

Therefore we have (2.2). Also we have ∥(0, 1)−T ((0, 1))∥ = ∥(0, 1)− (1, 0)∥ =
√
2 = dist(F,G) that it is calculated

in n = 21 iteration from Table 1 and Figure 1. □

Table 1: Rate of convergence of the Picard iteration of Example 2.1

x2n ∈ F x2n+1 ∈ G
0 (3.000000,0) 1 (0,1.732051)
2 (1.316074,0) 3 (0,1.147203)
4 (1.071075,0) 5 (0,1.034928)
6 (1.017314,0) 7 (0,1.008620)
8 (1.004301,0) 9 (0,1.002148)
10 (1.001073,0) 11 (0,1.000537)
12 (1.000268,0) 13 (0,1.000134)
14 (1.000067,0) 15 (0,1.000034)
16 (1.000017,0) 17 (0,1.000008)
18 (1.000004,0) 19 (0,1.000002)
20 (1.000001,0) 21 (0,1.000001)
22 (1,0) 23 (0,1)

If in the Theorem 2.2 put θ(t) = et then we have the following corollary.

Corollary 2.3. Let (F,G) be a nonempty closed convex pair of disjoint subsets of a uniformly convex Banach space
X. If T : F ∪G → F ∪G is a cyclic mapping such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ F, nor x, y ∈ G,

d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(F,G), ∀x ∈ F, y ∈ G.

Then T has a unique best proximity point. Further, if x0 ∈ F and xn+1 = Txn, then {x2n} converges to the best
proximity point.

Remark 2.1. In Corollary 2.3 boundedly compact F or G is omitted with respect to Theorem 1.1.
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Figure 1: Rate of convergence of the Picard iteration of Example 2.1
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