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Abstract

In this paper, we obtain approximate analytical solutions for the fractional predator-prey and the generalized fractional
Lorenz-Stenflo systems using the Sumudu decomposition method. The fractional derivative is described in the Caputo
sense. The results show that the method gives an easy-to-implement procedure and accurate approximate solutions.
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1 Introduction

Fractional calculus generalizes the concept of integer order derivatives and integrals to non-integer orders. Studies
have shown that fractional calculus models physical phenomena more accurately than classical calculus. The fractional
forms of various classical differential equations have been studied by various researchers in recent times (see, e.g., [2],
[3], [4], [8], [12], [15], [19], [23], [25]).

The Lotka-Volterra equation describes two interacting populations that are in a predator-prey relationship. The
predators (e.g., sharks, foxes) feed on the preys (e.g., fish, rabbits), which in turn feed on some food items. The
classical Lotka-Volterra equation is given by the system of differential equations [6].

dx

dt
= ax− bxy

dy

dt
= −dx+ cxy

(1.1)

where x(t) and y(t) are the populations of the preys and predators respectively; a, b, c and d are positive constants.
Bildik and Deniz in [7] used the Sumudu decomposition method to obtain approximate solution of (1.1). The fractional
form of (1.1) has also been studied by researchers. The homotopy perturbation method was employed to solve the
fractional predator-prey system in [10] while Ghanbari used numerical techniques to obtain the solution of the fractional
predator-prey model in [11].

The Lorenz equation, a three-dimensional nonlinear system was proposed by the famous meteorologist Edward
Lorenz in 1963. The Lorenz system has two nonlinear terms and is given by ([13], [27]).
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dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz

(1.2)

where x(t), y(t) and z(t) are proportional to the convective velocity, the temperature difference between descending
and ascending flows and the mean convective flow respectively; σ, r and b are real parameters. Several methods have
been employed in solving both the classical and fractional Lorenz system. The Adomian decomposition method and
the differential transformation method were respectively used in [13] and [24] to obtain solutions of (1.2). Alomari et
al. in [1] presented the homotopy analysis method to solve the fractional Lorenz system while Milici et al. obtained
the solution of the fractional Lorenz system using the power series method in [22]. Lennart Stenflo improved on the
Lorenz equation by deriving a four-dimensional system with four parameters known as the Lorenz-Stenflo system to
model atmospheric dynamics [26]. To model the dynamics of the atmosphere more accurately, Chen and Liang [9]
proposed a generalization of the Lorenz-Stenflo system with six parameters.

The Sumudu transform is an integral transform introduced by Watugala [28] to solve differential equations and
control engineering problems. In recent times, researchers have used the Sumudu transform to solve problems involving
ordinary, partial and fractional differential equations (see, e.g., [7], [16], [17], [18], [20], [21]).

In this paper, the Sumudu decomposition method (SDM), which is a combination of the Sumudu transform and
the Adomian decomposition method, is used to solve the fractional-order predator-prey, Lorenz, and Lorenz-Stenflo
systems. To the best of our knowledge, the Sumudu decomposition method has not been used to solve the fractional
predator-prey system. Also, the fractional-order version of the Lorenz-Stenflo system has not appeared in the literature.
The method used in this paper involves two steps: the Sumudu transform is first used to simplify the given systems of
equations, and then the Adomian decomposition method is applied to the nonlinear terms. Comparison of the Sumudu
decomposition method with other methods shows that it is easy to implement and gives a reliable approximate solution.

The paper is organized as follows: In section 2, we recall some important definitions and theorems. In section
3, we first construct the Sumudu decomposition method and then demonstrate how the method is used to solve the
systems of equations under consideration. Section 4 gives a concluding remark on the results obtained.

2 Preliminaries

In this section, we give a brief overview of the basic concepts of fractional calculus and the Sumudu transform.
These concepts will be needed subsequently in this paper.

Definition 2.1. [25] For α > 0, the Riemann-Liouville fractional integral of order α ≥ 0 is defined as

J αf(x) =


1

Γ(α)

∫ x

0
(x− ξ)α−1f(ξ) dξ, 0 < ξ < x,

f(x) α = 0.

(2.1)

Definition 2.2. [25] For α > 0, the Riemann-Liouville fractional derivative of order α is defined as follows (m ≥ 1):

Dαf(x) =DmJm−αf(x)

=


1

Γ(m−α)
dm

dxm

∫ x

0
(x− ξ)m−α−1f(ξ) dξ, m− 1 < α < m,

dm

dxm f(x) α = m.

(2.2)

Definition 2.3. [8] For α > 0, the Caputo fractional derivative of order α is defined as follows (m ≥ 1):

cDαf(x) =Jm−αDmf(x)

=


1

Γ(m−α)

∫ x

0
(x− ξ)m−α−1f (m)(ξ) dξ, m− 1 < α < m,

dm

dxm f(x) α = m.

(2.3)
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Definition 2.4. [28] The Sumudu transform is defined over the set of functions as

A = {f(t)|∃M, τ1, τ2 > 0, |f(t)| < Me
|t|
τ1 , if t ∈ (−1)j × [0,∞)}. (2.4)

by the formula

F (u) = S[f(t)] =
∫ ∞

0

f(ut)e−tdt, u ∈ (−τ1, τ2). (2.5)

The Sumudu transform of some functions are given by ([5], [28]):

1. S[1] = 1

2. S[t] = u

3. S[tn−1] = un−1Γ(n), n ∈ R+.

Theorem 2.5. [7]: If F (u) is the Sumudu transform of the function f(t), then the Sumudu transform of the nth
derivative of f(t) is given by

S[f (n)(t)] = u−n

[
F (u)−

n−1∑
k=0

ukf (k)(0)

]
(2.6)

Theorem 2.6. [14]: If F (u) is the Sumudu transform of the function f(t), then the Sumudu transform of the Caputo
derivative of f(t) of order α is given by

S[cDαf(t)] = u−α

[
F (u)−

n−1∑
k=0

ukf (k)(0)

]
, n− 1 < α < n. (2.7)

3 Sumudu Decomposition Method

In this section, we construct the Sumudu decomposition method for solving systems of nonlinear fractional dif-
ferential equations. The method is then employed to solve the fractional predator-prey, Lorenz and Lorenz-Stenflo
systems.

We consider the general system of nonlinear fractional differential equations of the form:

cDαixi(t) = gi(t, x1(t), x2(t), ..., xm(t)), x
(k)
i (0) = ξik. (3.1)

1 ≤ i ≤ m, αi > 0, ξik are real constants, where cDαixi(t) is the Caputo derivative of xi(t) of order αi.

Taking Sumudu transform of both sides of (3.1) yields

S [cDα
i xi(t)] = S [gi(t, x1(t), x2(t), ..., xm(t))] . (3.2)

Applying Theorem 2.6, equation (3.2) becomes

S [xi(t)] =

m−1∑
k=0

u−αi+kx
(k)
i (0) + uαiS [Gi] , (3.3)

where Gi = gi(t, x1(t), x2(t), ..., xm(t)). Taking Sumudu inverse transform of both sides of (3.3) results in:

xi(t) =

m−1∑
k=0

ξik + S−1 [uαiS [Gi]] = ηik + S−1 [uαiS [Li +Ni]] . (3.4)

where
∑m−1

k=0 ξik = ηik and Gi has been decomposed into two parts Li and Ni (1 ≤ i ≤ m) being the linear and
nonlinear terms respectively.
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We assume that the unknown linear function xi(t) can be represented by the infinite series [29]

xi(t) =

∞∑
n=0

xin(t), 1 ≤ i ≤ m. (3.5)

and the nonlinear term can be decomposed as infinite series of Adomian polynomials An.

i.e, Ni =

∞∑
n=0

Ain, 1 ≤ i ≤ m. (3.6)

where Ain =
1

n!

dn

dλn

[
Ni

( ∞∑
n=0

λnx1n, ...,

∞∑
n=0

λnxmn

)]
λ=0

. (3.7)

Substituting (3.5) and (3.6) into (3.4) with Li(x1n, x2n, ...xmn) = Li(x̄n), we have

∞∑
n=0

xin(t) = ηik + S−1

[
uαiS

[
Li(x̄n) +

∞∑
n=0

Ain

]]
(3.8)

On comparing both sides of (3.8), we have

xi0(t) = ηik

xi1(t) = S−1 [uαiS [Li(x̄0) +Ai0]]

xi2(t) = S−1 [uαiS [Li(x̄1) +Ai1]]

...

xin(t) = S−1
[
uαiS

[
Li(x̄n−1) +Ai(n−1)

]]
(3.9)

Finally, we can approximate the analytical solution xi(t) by the truncated series as

xi(t) = lim
N→∞

N∑
n=0

xin(t). (3.10)

In what follows, we now apply the Sumudu decomposition method in solving systems of nonlinear fractional
differential equations.

3.1 Fractional Lotka-Volterra System

Example 3.1. We consider the fractional version of the classical Lotka-Volterra system treated in [7] given by:

cDαx(t) = x(t)(2− y(t))
cDβy(t) = y(t)(−3 + x(t))

(3.11)

with initial conditions
x(0) = 1, y(0) = 2. (3.12)

Taking Sumudu transform of the system (3.11) and by (3.4), we obtain:

x(t) = 1 + S−1 [uαS [2x(t)− x(t)y(t)]]

y(t) = 2 + S−1
[
uβS [−3y(t) + x(t)y(t)]

] (3.13)

By (3.8), we have:

∞∑
n=0

xn(t) = 1 + S−1

[
uαS

[
2

∞∑
n=0

xn(t)−
∞∑

n=0

An

]]
∞∑

n=0

yn(t) = 2 + S−1

[
uβS

[
−3

∞∑
n=0

yn(t) +

∞∑
n=0

An

]] (3.14)
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where An are the Adomian polynomials given by the formula (3.7). Thus, the first four values of An are as follows:
A0 = x0y0, A1 = x1y0 + x0y1, A2 = x0y2 + x1y1 + x2y0, A3 = x0y3 + x3y0 + x1y2 + x2y1.

On comparing both sides of (3.14), we obtain

x0 = 1, y0 = 2

x1 = S−1 [uαS [x0 −A0]] = 0

y1 = S−1
[
uβS [−3x0 +A0]

]
= − 4tβ

Γ(β + 1)

x2 = S−1 [uαS [2x1 −A1]] =
4tα+β

Γ(α+ β + 1)

y2 = S−1
[
uβS [−3y1 +A1]

]
=

8t2β

Γ(2β + 1)

x3 = S−1
[
uβS [2x2 +A2]

]
= − 8tα+2β

Γ(α+ 2β + 1)

y3 = S−1
[
uβS [−3y2 +A2]

]
= − 16t3β

Γ(3β + 1)
+

8tα+2β

Γ(α+ 2β + 1)

...

By (3.10), it follows that:

x(t) = x0 + x1 + x2 + x3 + · · ·
y(t) = y0 + y1 + y2 + y3 + · · ·

Hence, the solution of the system (3.11)-(3.12) is given by:

x(t) = 1 +
4tα+β

Γ(α+ β + 1)
− 8tα+2β

Γ(α+ 2β + 1)
+ · · ·

y(t) = 2− 4tβ

Γ(β + 1)
+

8t2β

Γ(2β + 1)
− 16t3β

Γ(3β + 1)
+

8tα+2β

Γ(α+ 2β + 1)
+ · · ·

(3.15)

For α = β = 1, we obtain the same solution in [7] given as:

x(t) = 1 + 2t2 − 4

3
t3 + · · ·

y(t) = 2− 4t+ 4t2 − 4

3
t3 + · · ·

(3.16)

For α = 0.9, β = 0.8, we obtain:

x(t) = 1 + 2.5895t1.7 − 2.4072t2.5 + · · ·
y(t) = 2− 4.4024t0.8 + 5.5960t1.6 − 5.3670t2.4 + 2.4072t2.5 + · · ·

(3.17)

The comparison between the classical and fractional solutions of the system (3.11)-(3.12) is presented in Table 1.

3.2 Fractional Lorenz-Stenflo System

We first examine and solve the fractional form of the Lorenz equation introduced earlier in Section 1. Lorenz set
the parameters σ = 10, r = 28, b = 8

3 , where the system exhibits chaotic behavior [13].
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Table 1: Comparison of the approximate solution of the system (3.11)-(3.12) for α = β = 1 and α = 0.9, β = 0.8.

t α = β = 1 α = 0.9, β = 0.8

0.1 (1.018667, 1.638667) (1.044055, 1.429078)
0.2 (1.069333, 1.349333) (1.124806, 1.141578)
0.5 (1.333333, 0.833333) (1.371475, 0.726157)
1.0 (1.666667, 0.666667) (1.182300, 0.233800)

Example 3.2. We consider the fractional Lorenz system [22] given by

cDαx(t) = 10(y(t)− x(t))
cDβy(t) = x(t)(28− z(t))− y(t)

cDγz(t) = x(t)y(t)− 8

3
z(t))

(3.18)

with initial conditions
x(0) = 0.1, y(0) = 0.1, z(0) = 0.1. (3.19)

Taking Sumudu transform of the system (3.18) and by (3.4), we obtain:

x(t) = 0.1 + S−1 [uαS [10(y(t)− x(t))]]

y(t) = 0.1 + S−1
[
uβS [28x(t)− y(t)− x(t)z(t)]

]
z(t) = 0.1 + S−1

[
uγS

[
−8

3
z(t) + x(t)y(t)

]] (3.20)

By (3.8), it follows that:

∞∑
n=0

xn(t) = 0.1 + S−1

[
uαS

[
10

( ∞∑
n=0

yn(t)−
∞∑

n=0

xn(t)

)]]
∞∑

n=0

yn(t) = 0.1 + S−1

[
uβS

[
28

∞∑
n=0

xn(t)−
∞∑

n=0

yn(t)−
∞∑

n=0

An

]]
∞∑

n=0

zn(t) = 0.1 + S−1

[
uγS

[
−8

3

∞∑
n=0

zn(t) +

∞∑
n=0

Bn

]] (3.21)

where An and Bn are the Adomian polynomials given by the formula (3.7). The first four values of An are given as
follows: A0 = x0z0, A1 = x1z0 + x0z1, A2 = x0z2 + x1z1 + x2z0, A3 = x0z3 + x3z0 + x1z2 + x2z1. The first four values
of Bn are given by: B0 = x0y0, B1 = x1y0 + x0y1, B2 = x0y2 + x1y1 + x2y0, B3 = x0y3 + x3y0 + x1y2 + x2y1. Now,
on comparing both sides of (3.21), it follows that:

x0 = 0.1, y0 = 0.1, z0 = 0.1

x1 = S−1 [uαS [10 (y0 − x0)]] = 0

y1 = S−1
[
uβS [28x0 − y0 −A0]

]
=

2.69tβ

Γ(β + 1)

z1 = S−1

[
uγS

[
−8

3
z0 +B0

]]
= −0.2567tγ

Γ(γ + 1)
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x2 = S−1 [uαS [10 (y1 − x1)]] =
26.9tα+β

Γ(α+ β + 1)

y2 = S−1
[
uβS [28x1 − y1 −A1]

]
= − 2.69t2β

Γ(2β + 1)
+

0.02567tβ+γ

Γ(β + γ + 1)

z2 = S−1

[
uγS

[
−8

3
z1 +B1

]]
=

0.6845t2γ

Γ(2γ + 1)
+

0.269tβ+γ

Γ(β + γ + 1)

x3 = S−1 [uαS [10 (y2 − x2)]] = − 26.9tα+2β

Γ(α+ 2β + 1)
+

0.2567tα+β+γ

Γ(α+ β + γ + 1)
− 269t2α+β

Γ(2α+ β + 1)

y3 = S−1
[
uβS [28x2 − y2 −A2]

]
=

755.89tα+2β

Γ(α+ 2β + 1)
+

2.69t3β

Γ(3β + 1)
− 0.05257t2β+γ

Γ(2β + γ + 1)
− 0.06845tβ+2γ

Γ(β + 2γ + 1)

z3 = S−1

[
uγS

[
−8

3
z2 +B2

]]
= − 1.8253t3γ

Γ(3γ + 1)
− 0.7147tβ+2γ

Γ(β + 2γ + 1)
− 0.269t2β+γ

Γ(2β + γ + 1)
+

2.69tα+β+γ

Γ(α+ β + γ + 1)

...

By (3.10), it follows that:

x(t) = x0 + x1 + x2 + x3 + · · ·
y(t) = y0 + y1 + y2 + y3 + · · ·
z(t) = z0 + z1 + z2 + z3 + · · ·

Hence, the solution of the system (3.18)-(3.19) is given by:

x(t) = 0.1 +
26.9tα+β

Γ(α+ β + 1)
− 26.9tα+2β

Γ(α+ 2β + 1)
+

0.2567tα+β+γ

Γ(α+ β + γ + 1)
− 269t2α+β

Γ(2α+ β + 1)
+ · · ·

y(t) = 0.1 +
2.69tβ

Γ(β + 1)
− 2.69t2β

Γ(2β + 1)
+

0.02567tβ+γ

Γ(β + γ + 1)

+
755.89tα+2β

Γ(α+ 2β + 1)
+

2.69t3β

Γ(3β + 1)
− 0.05257t2β+γ

Γ(2β + γ + 1)
− 0.06845tβ+2γ

Γ(β + 2γ + 1)
+ · · ·

z(t) = 0.1 +−0.2567tγ

Γ(γ + 1)
+

0.6845t2γ

Γ(2γ + 1)
+

0.269tβ+γ

Γ(β + γ + 1)

− 1.8253t3γ

Γ(3γ + 1)
− 0.7147tβ+2γ

Γ(β + 2γ + 1)
− 0.269t2β+γ

Γ(2β + γ + 1)
+

2.69tα+β+γ

Γ(α+ β + γ + 1)
+ · · ·

(3.22)

For α = β = γ = 1, we obtain the solution:

x(t) = 0.1 + 0.00t+ 13.45t2 − 49.27t3 + · · ·
y(t) = 0.1 + 2.69t− 1.3322t2 + 126.41t3 + · · ·
z(t) = 0.1− 0.2567t+ 0.4768t2 − 0.01983t3 + · · ·

(3.23)

For α = β = γ = 0.95, we obtain the result [22]:

x(t) = 0.1 + 0.0000t0.95 + 14.7202t1.9 − 59.2978t2.85 + · · ·
y(t) = 0.1 + 2.7452t0.95 − 1.4580t1.9 + 152.13t2.85 + · · ·
z(t) = 0.1− 0.2620t0.95 + 0.5218t1.9 − 0.0239t2.85 + · · ·

(3.24)

The generalized Lorenz-Stenflo system proposed by Chen and Liang ([9], [30]) is given by
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Table 2: Comparison of the approximate solution of the system (3.18)-(3.19) by SDM and the method presented in [22] for α = β = γ = 0.95.

t SDM Milici et al [22]

0.1 (0.201556, 0.604551, 0.077138) (0.200580, 0.601168, 0.077137)
0.2 (0.187713, 2.175898, 0.067482) (0.180693, 2.158627, 0.067435)
0.5 (-4.180199, 22.230193, 0.100878) (-4.275788, 22.055188, 0.100084)
1.0 (-44.477600, 153.517200, 0.335900) (-45.166800, 152.405900, 0.330040)

dx

dt
= a(y(t)− x(t)) + sv(t)

dy

dt
= x(t)(c− z(t)) + dy(t)

dz

dt
= x(t)y(t)− bz(t))

dv

dt
= −x(t)− rv(t)

(3.25)

where x(t), y(t), z(t), v(t) are state variables; a, b, c, d, r, s are real parameters.

We now propose and solve the fractional generalized Lorenz-Stenflo system. We set the parameter values ([9],
[30]): a = 19.42, b = 1.91, c = 29.45, d = −2.86, r = 0.23, s = 9.64 and the initial conditions x0 = 2.2, y0 = 2.0, z0 =
10.5, v0 = 20.0.

Example 3.3. Consider the system:

cDαx(t) = 19.42(y(t)− x(t)) + 9.64v(t)
cDβy(t) = x(t)(29.45− z(t))− 2.86y(t)
cDγz(t) = x(t)y(t)− 2.86z(t))
cDµv(t) = −x(t)− 0.23v(t)

(3.26)

with initial conditions
x(0) = 2.2, y(0) = 2.0, z(0) = 10.5, v(0) = 20.0 (3.27)

Taking Sumudu transform of the system (3.26) and by (3.4), we obtain:

x(t) = 2.2 + S−1 [uαS [19.42(y(t)− x(t)) + 9.64v(t)]]

y(t) = 2.0 + S−1
[
uβS [29.45x(t)− 2.86y(t)− x(t)z(t)]

]
z(t) = 10.5 + S−1 [uγS [−1.91z(t) + x(t)y(t)]]

v(t) = 20.0 + S−1 [uµS [−(x(t) + 0.23v(t))]] .

(3.28)

Clearly, by (3.8), it follows that:

∞∑
n=0

xn(t) = 2.2 + S−1

[
uαS

[
19.42

( ∞∑
n=0

yn(t)−
∞∑

n=0

xn(t)

)
+ 9.64

∞∑
n=0

vn(t)

]]
∞∑

n=0

yn(t) = 2.0 + S−1

[
uβS

[
29.45

∞∑
n=0

xn(t)− 2.86

∞∑
n=0

yn(t)−
∞∑

n=0

An

]]
∞∑

n=0

zn(t) = 10.5 + S−1

[
uγS

[
−1.91

∞∑
n=0

zn(t) +

∞∑
n=0

Bn

]]
∞∑

n=0

vn(t) = 20.0 + S−1

[
uµS

[
−

( ∞∑
n=0

xn(t) +

∞∑
n=0

vn

)]]
(3.29)
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where An and Bn are as given in Example 3.2. On comparing both sides of (3.29), it is easy to see that:

x0 = 2.2, y0 = 2.0, z0 = 10.5, v0 = 20.0

x1 = S−1 [uαS [19.42 (y0 − x0) + 9.64v0]] =
188.92tα

Γ(α+ 1)
.

y1 = S−1
[
uβS [29.45x0 − 2.86y0 −A0]

]
=

35.97tβ

Γ(β + 1)
.

z1 = S−1 [uγS [−1.91z0 +B0]] = − 15.66tγ

Γ(γ + 1)
.

v1 = S−1 [uµS [−(x0 + 0.23v0)]] = − 6.8tµ

Γ(µ+ 1)
.

x2 = S−1 [uαS [19.42 (y1 − x1) + 9.64v1]] =
698.54tα+β

Γ(α+ β + 1)
− 3668.83t2α

Γ(2α+ 1)
− 65.55tα+µ

Γ(α+ µ+ 1)
.

y2 = S−1
[
uβS [29.45x1 − 2.86y1 −A1]

]
=

3580.03tα+β

Γ(α+ β + 1)
− 102.87t2β

Γ(2β + 1)
− 34.45tβ+γ

Γ(β + γ + 1)
.

z2 = S−1 [uγS [−1.91z1 +B1]] =
29.91t2γ

Γ(2γ + 1)
+

377.84tα+γ

Γ(α+ γ + 1)
+

79.13tβ+γ

Γ(β + γ + 1)
.

v2 = S−1 [uµS [−(x1 + 0.23v1)]] = − 188.92tα+µ

Γ(α+ µ+ 1)
+

1.56t2µ

Γ(2µ+ 1)
.

x3 = S−1 [uαS [19.42 (y2 − x2) + 9.64v2]] =
55958.54t2α+β

Γ(2α+ β + 1)
− 1997.74tα+2β

Γ(α+ 2β + 1)
+

669.02tα+β+γ

Γ(α+ β + γ + 1)

+
71248.68t3α

Γ(3α+ 1)
+

1272.98t2α+µ

Γ(2α+ µ+ 1)
− 1821.19t2α+µ

Γ(2α+ µ)
+

15.04tα+2µ

Γ(α+ 2µ+ 1)
.

y3 = S−1
[
uβS [29.45x2 − 2.86y2 −A2]

]
=

2998.44tα+2β

Γ(α+ 2β + 1)
− 69524.33t2α+β

Γ(2α+ β + 1)
− 1242.17tα+β+µ

Γ(α+ β + µ+ 1)

+
294.21t3β

Γ(3β + 1)
− 272.62t2β+γ

Γ(2β + γ + 1)
− 65.80tβ+2γ

Γ(β + 2γ)
− 831.25tα+β+γ

Γ(α+ β + γ + 1)

+
2958.49Γ(α+ γ + 1)tα+β+γ

Γ(α+ 1)Γ(γ + 1)Γ(α+ β + γ + 1)
.

z3 = S−1 [uγS [−1.91z2 +B2]] = − 57.13t3γ

Γ(3γ + 1)
− 721.67tα+2γ

Γ(α+ 2γ + 1)
− 75.35tβ+2γ

Γ(β + 2γ + 1)
+

9273.15tα+β+γ

Γ(α+ β + γ + 1)

− 131.1tα+γ+µ

Γ(α+ γ + µ+ 1)
− 226.31t2β+γ

Γ(2β + γ + 1)
− 7337.66t2α+γ

Γ(2α+ γ)

+
6795.45Γ(α+ β + 1)tα+β+γ

Γ(α+ 1)Γ(β + 1)Γ(α+ β + γ + 1)
.

v3 = S−1 [uµS [−(x2 + 0.23v2)]] = − 698.54tα+β+µ

Γ(α+ β + µ+ 1)
+

3668.83t2α+µ

Γ(2α+ µ+ 1)
+

109tα+2µ

Γ(α+ 2µ+ 1)
− 0.3588t3µ

Γ(3µ+ 1)
.

Hence, the solution of the system (3.26)-(3.27) is given by:

x(t) = 2.2 +
188.92tα

Γ(α+ 1)
+

698.54tα+β

Γ(α+ β + 1)
− 3668.83t2α

Γ(2α+ 1)
− 65.55tα+µ

Γ(α+ µ+ 1)

+
55958.54t2α+β

Γ(2α+ β + 1)
− 1997.74tα+2β

Γ(α+ 2β + 1)
+

669.02tα+β+γ

Γ(α+ β + γ + 1)
+

71248.68t3α

Γ(3α+ 1)

+
1272.98t2α+µ

Γ(2α+ µ+ 1)
− 1821.19t2α+µ

Γ(2α+ µ)
+

15.04tα+2µ

Γ(α+ 2µ+ 1)
+ · · ·
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y(t) = 2.0 +
35.97tβ

Γ(β + 1)
+

3580.03tα+β

Γ(α+ β + 1)
− 102.87t2β

Γ(2β + 1)
− 34.45tβ+γ

Γ(β + γ + 1)

+
2998.44tα+2β

Γ(α+ 2β + 1)
− 69524.33t2α+β

Γ(2α+ β + 1)
− 1242.17tα+β+µ

Γ(α+ β + µ+ 1)
+

294.21t3β

Γ(3β + 1)

− 272.62t2β+γ

Γ(2β + γ + 1)
− 65.80tβ+2γ

Γ(β + 2γ)
− 831.25tα+β+γ

Γ(α+ β + γ + 1)

+
2958.49Γ(α+ γ + 1)tα+β+γ

Γ(α+ 1)Γ(γ + 1)Γ(α+ β + γ + 1)
+ · · ·

z(t) = 10.5− 15.66tγ

Γ(γ + 1)
+

29.91t2γ

Γ(2γ + 1)
+

377.84tα+γ

Γ(α+ γ + 1)
+

79.13tβ+γ

Γ(β + γ + 1)
− 57.13t3γ

Γ(3γ + 1)

− 721.67tα+2γ

Γ(α+ 2γ + 1)
− 75.35tβ+2γ

Γ(β + 2γ + 1)
+

9273.15tα+β+γ

Γ(α+ β + γ + 1)
− 131.1tα+γ+µ

Γ(α+ γ + µ+ 1)

− 226.31t2β+γ

Γ(2β + γ + 1)
− 7337.66t2α+γ

Γ(2α+ γ)
+

6795.45Γ(α+ β + 1)tα+β+γ

Γ(α+ 1)Γ(β + 1)Γ(α+ β + γ + 1)
+ · · ·

v(t) = 20.0− 6.8tµ

Γ(µ+ 1)
− 188.92tα+µ

Γ(α+ µ+ 1)
+

1.56t2µ

Γ(2µ+ 1)
− 698.54tα+β+µ

Γ(α+ β + µ+ 1)

+
3668.83t2α+µ

Γ(2α+ µ+ 1)
+

109tα+2µ

Γ(α+ 2µ+ 1)
− 0.3588t3µ

Γ(3µ+ 1)
+ · · ·

(3.30)

For α = β = γ = µ = 1, we obtain the solution

x(t) = 2.2 + 188.92t− 1517.92t2 + 20890.89t3 + · · ·
y(t) = 2.0 + 35.97t+ 1721.36t2 − 10454.42t3 + · · ·
z(t) = 10.5− 15.66t+ 243.44t2 + 2385.81t3 + · · ·
v(t) = 20.0− 6.8t− 93.68t2 + 513.16t3 + · · ·

(3.31)

4 Conclusions

In this work, the Sumudu transform method combined with the Adomian decomposition method was used to
solve some systems of nonlinear fractional differential equations. The approximate solutions of the two-dimensional
fractional Lotka-Volterra system, the three-dimensional fractional Lorenz chaotic system and the four-dimensional
fractional Lorenz-Stenflo system were obtained.

The solution obtained for the fractional Lotka-Volterra system (3.11) coincides with the solution of the classical
Lotka-Volterra when α = β = 1 (see [7], equations (21)-(22)). Table 1. shows a consistent relationship between the
classical and fractional solutions of (3.11). In Table 2, we compare the solutions obtained in the case of the fractional
Lorenz system using the SDM with the method used in ([22], page 119).

The results show that the Sumudu decomposition method is easy to implement and gives an accurate solution to
systems of nonlinear fractional differential equations. Hence, the method can be extended to solve more systems of
strongly nonlinear fractional differential equations.
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