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Abstract

In this paper, we prove some fixed point theorems for modular metric spaces endowed with partial order sets by using
the mixed monotone mapping property which is a generalization of the definitions and results of T. Gnana Bhaskar
and V. Lakshmikantham.
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1 Introduction

The theory of modular spaces was initiated by Nakano [15] in 1950, and generalized and redefined by Musielak and
Orlicz [14] in 1959.

In 2008, Chistyakov [5] introduced the notation of modular metric spaces generated by F-modular and developed
the theory of modular spaces. By the same idea he defined the modular metric spaces on an arbitrary set which is a
new generalization of metric spaces [6], [7]. The field of the metric fixed point theory and its applications [10], [12] are
far reaching developments of Banach’s Contraction Principle [3], and the first fixed point results in modular function
space were given by Khamsi [12].

Recently some authors have introduced and have established some notions and fixed point results in modular metric
spaces (c.f.[4, 8, 13]). Many authors investigated on the existence of the fixed points for contraction type mapping in
partially ordered metric spaces [1, 2, 11].

In this paper we state and prove some coupled fixed point theorems for partially ordered modular metric spaces.
These results are extensions of the results obtained by T. Gnana Bhaskar and Lakshmikantham [9].

Definition 1.1. Let X be an arbitrary set. A function ω : (0,∞) × X × X −→ [0,∞] that will be written as
ωλ(x, y) = ω(λ, x, y) for all x, y ∈ X and for all λ > 0, is said to be a modular metric on X (or simply a modular if
no ambiguity arises) if it satisfies the following three conditions:
(i) given x, y ∈ X, ωλ(x, y) = 0 for all λ > 0 iff x = y;
(ii) ωλ(x, y) = ωλ(y, x), for all λ > 0 and x, y ∈ X;
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.
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If instead of (i), we have only the condition:
(i1) ωλ(x, x) = 0 for all λ > 0 and x ∈ X, then ω is said to be a (metric) pseudomodular on X and if ω satisfies (i1)
and
(i2) given x, y ∈ X, if there exists λ > 0, possibly depending on x and y, such that ωλ(x, y) = 0 implies that x = y,
then ω is called a strict modular on X.

Definition 1.2. [6] Given a modular ω on X, the sets

Xω ≡ Xω(x◦) = {x ∈ X : ωλ(x, x◦) → 0 as λ → ∞}

and

X∗
ω ≡ X∗

ω(x◦) = {x ∈ X : ωλ(x, x◦) < ∞ for some λ > 0}

are said to be modular spaces (around x◦). Also the modular spaces Xω and X∗
ω can be equipped with metrics dω

and d∗ω, generated by ω and given by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ}, x, y ∈ Xω

and

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}, x, y ∈ X∗
ω

If ω is a convex modular on X, then according to [6, Theorem 3.6] the two modular spaces coincide, Xω = X∗
ω.

Definition 1.3. Given a modular metric space Xω, a sequence of elements {xn}∞n=1 from Xω is said to be modular
convergent (ω−convergent) to an element x ∈ X if there exists a number λ > 0, possibly depending on {xn} and x

such that limn→∞ ωλ(xn, x) = 0. This will be written briefly as xn
ω→ x, as n → ∞.

Definition 1.4. [8] A sequence {xn} ⊂ Xω is said to be ω-Cauchy if there exists a number λ = λ ({xn}) > 0 such
that limm,n→∞ ωλ(xn, xm) = 0, i.e.,

∀ε > 0 ∃ n◦(ε) ∈ N such that ∀n,m ≥ n◦(ε) : ωλ(xn, xm) ≤ ε.

Modular metric space Xω is said to be ω-complete if each ω-Cauchy sequence from Xω is modular convergent to an
x ∈ Xω.

Remark 1.5. A modular ω = ωλ on a set X, for given x, y ∈ X, is non-increasing on λ. Indeed if 0 < λ < µ, then
we have

ωµ(x, y) ≤ ωµ−λ(x, x) + ωλ(x, y) = ωλ(x, y)

for all x, y ∈ X.

Let ω be a modular on X such that Xω is a ω-complete modular metric space and (Xω,⪯) is a partially ordered set.
Further, we endow the product space Xω ×Xω with the following partial order:

for (x, y), (u, v) ∈ Xω ×Xω, (u, v) ⪯ (x, y) ⇔ x ⪰ u , y ⪯ v.

Definition 1.6. [17, 18] Let Xω be a modular metric space , we say that T : Xω → Xω is modular continuous
(ω-continuous) if

xn
ω→ x ⇒ Txn

ω→ Tx

for each {xn} ∈ Xω as n → ∞.
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Definition 1.7. Let (Xω,⪯) be a partially ordered set and T : Xω × Xω → Xω. We say that T has the mixed
monotone property if T (x, y) is monotone non-decreasing with respect to x and is monotone non-increasing on y, that
is, for any x, y ∈ Xω,

x1, x2 ∈ Xω, x1 ⪯ x2 → T (x1, y) ⪯ T (x2, y)

and

y1, y2 ∈ Xω, y1 ⪯ y2 → T (x, y1) ⪰ T (x, y2).

Definition 1.8. We call an element (x, y) ∈ Xω ×Xω a coupled fixed point of the mapping T : Xω ×Xω −→ Xω if

T (x, y) = x, T (y, x) = y.

Remark 1.9. For each (x, y), (u, v) ∈ Xω ×Xω we set,

ωλ((x, y), (u, v)) = ωλ(x, u) + ωλ(y, v).

It’s obvious that ωλ is (metric) modular on Xω ×Xω.

Lemma 1.10. Suppose that {xn} and {yn} are two sequences in modular metric space Xω. Then {xn} and {yn} are
ω-convergent to x and y (respectively) iff coupled sequence {(xn, yn)} is ω-convergent to (x, y).

Proof . Let {xn} and {yn} be two ω-convergent sequences such that xn
ω→ x and yn

ω→ y as n → ∞. By definition
of the modular convergence, there exist λ = λ({xn}, x) > 0 and µ = µ({yn}, y) > 0 such that, ωλ(xn, x) −→ 0 and
ωµ(yn, y) −→ 0, as n → ∞. Let ζ ≥ max{λ, µ}, it follows from Remark 1.5 that

ωζ(xn, x) ≤ ωλ(xn, x) −→ 0 as n −→ ∞

and

ωζ(yn, y) ≤ ωµ(yn, y) −→ 0 as n −→ ∞.

So we have

ωζ((xn, yn), (x, y)) = ωζ(xn, x) + ωζ(yn, y) −→ 0 as n −→ ∞.

It follows that {(xn, yn)} is modular convergent, i.e., (xn, yn)
ω→ (x, y) as n → ∞. Conversely, suppose that (xn, yn)

ω→
(x, y) as n → ∞, then there exists λ = λ({(xn, yn)}, (x, y)) such that

ωλ((xn, yn), (x, y)) −→ 0, as n −→ ∞.

By Remark 1.9 we have
0 ≤ ωλ((xn, yn), (x, y)) = ωλ(xn, x) + ωλ(yn, y) −→ 0.

Therefore xn
ω→ x and yn

ω→ y as n → ∞. □

2 Preliminaries

In this section, we prove the fixed point theorem for a function T on the partial ordered product space Xω ×Xω

which is a generalization of T. Gnana Bhaskar and V. Lakshmikantham [9].

Theorem 2.1. Let ω be a strict modular on X such that Xω is a ω−complete modular metric space and T :
Xω ×Xω −→ Xω is a ω-continuous mapping having the mixed monotone property on Xω. Assume that there exists
a k ∈ [0, 1) with

ωλ(T (x, y), T (u, v)) ≤
k

2
[ωλ(x, u) + ωλ(y, v)] , (x ⪰ u , y ⪯ v). (2.1)
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If there exist x0, y0 ∈ Xω such that

x0 ⪯ T (x0, y0) and y0 ⪰ T (y0, x0),

then there exist x, y ∈ Xω such that

x = T (x, y) and y = T (y, x).

Proof . Taking T (x0, y0) = x1, T (y0, x0) = y1, x2 = T (x1, y1) and y2 = T (y1, x1), we obtain

T 2(x0, y0) = T (T (x0, y0), T (y0, x0)) = T (x1, y1) = x2

and

T 2(y0, x0) = T (T (y0, x0), T (x0, y0)) = T (y1, x1) = y2.

By mixed monotone property of T we get,

x2 = T 2(x0, y0) = T (x1, y1) ⪰ T (x0, y0) = x1

and

y2 = T 2(y0, x0) = T (y1, x1) ⪯ T (y0, x0) = y1.

We construct sequences {xn} and {yn} as following:

xn+1 = Tn+1(x0, y0) = T (Tn(x0, y0), T
n(y0, x0))

and

yn+1 = Tn+1(y0, x0) = T (Tn(y0, x0), T
n(x0, y0)).

By induction and the mixed monotone property of T , we get the following two relation:

x0 ⪯ T (x0, y0) = x1 ⪯ T 2(x0, y0) = x2 ⪯ ... ⪯ Tn+1(x0, y0) = xn+1 ⪯ ...

and

y0 ⪰ T (y0, x0) = y1 ⪰ T 2(y0, x0) = y2 ⪰ ... ⪰ Tn+1(y0, x0) = yn+1 ⪰ ... .

Now we show that for n ∈ N,

ωλ(T
n+1(x0, y0), T

n(x0, y0)) ≤
kn

2
[ωλ(T (x0, y0), x0) + ωλ(T (y0, x0), y0)], (2.2)

and

ωλ(T
n+1(y0, x0), T

n(y0, x0)) ≤
kn

2
[ωλ(T (y0, x0), y0) + ωλ(T (x0, y0), x0)]. (2.3)

For n = 1, using (2.1) we get

ωλ(T
2(x0, y0), T (x0, y0)) = ωλ(T (T (x0, y0), T (y0, x0)), T (x0, y0))

≤ k

2
[ωλ(T (x0, y0), x0) + ωλ(T (y0, x0), y0)].

Similarly,

ωλ(T
2(y0, x0), T (y0, x0)) = ωλ(T (T (y0, x0), T (x0, y0)), T (y0, x0))

≤ k

2
[ωλ(T (y0, x0), y0) + ωλ(T (x0, y0), x0)].
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Now, assume that (2.2) and (2.3) hold. Using

Tn+1(x0, y0) ⪰ Tn(x0, y0) and Tn+1(y0, x0) ⪯ Tn(y0, x0),

we get

ωλ(T
n+2(x0, y0), T

n+1(x0, y0))

= ωλ(T (T
n+1(x0, y0), T

n+1(y0, x0)), T (T
n(x0, y0), T

n(y0, x0)))

≤ k

2
[ωλ(T

n+1(x0, y0), T
n(x0, y0)) + ωλ(T

n+1(y0, x0), T
n(y0, x0))]

≤ kn+1

2
[ωλ(T (x0, y0), x0) + ωλ(T (y0, x0), y0)].

Similarly, one can show that

ωλ(T
n+2(y0, x0), T

n+1(y0, x0)) ≤
kn+1

2
[ωλ(T (y0, x0), y0) + ωλ(T (x0, y0), x0)].

This implies that {Tn(x0, y0)} and {Tn(y0, x0)} are ω-Cauchy sequences in Xω. In fact, for m > n,

ωλ(T
m(x0, y0), T

n(x0, y0)) = ωλ(m−n)
m−n

(Tm(x0, y0), T
n(x0, y0))

≤ ω λ
m−n

(Tn(x0, y0), T
n+1(x0, y0)) + ...+ ω λ

m−n
(Tm−1(x0, y0), T

m(x0, y0))

≤ (km−1 + ...+ kn)

2
[ω λ

m−n
(T (x0, y0), x0) + ω λ

m−n
(T (y0, x0), y0)]

=
(kn − km)

2(1− k)
[ω λ

m−n
(T (x0, y0), x0) + ω λ

m−n
(T (y0, x0), y0)]

<
kn

2(1− k)
[ω λ

m−n
(T (x0, y0), x0) + ω λ

m−n
(T (y0, x0), y0)].

Similarly, we can verify that {Tn(y0, x0)} is also a ω-Cauchy sequence. Since Xω is a ω-complete modular metric
space, there exist x, y ∈ Xω such that

Tn(x0, y0)
ω→ x ; Tn(y0, x0)

ω→ y.

Now we claim that T (x, y) = x and T (y, x) = y. Because Tn(x0, y0)
ω→ x and Tn(y0, x0)

ω→ y as n → ∞, so there
exist λ1 = λ1({Tn(x0, y0)}, x) > 0 and λ2 = λ2({Tn(y0, x0)}, y) > 0 such that,

ωλ1(T
n(x0, y0), x) −→ 0 ; ωλ2(T

n(y0, x0), y) −→ 0.

The mapping T : Xω×Xω −→ Xω is ω-continuous. So if (xn, yn)
ω→ (x, y), then there exists λ3 = λ3({T (xn, yn)}, T (x, y))

such that

ωλ3
(T (xn, yn), T (x, y)) −→ 0.

This implies that

ωλ3(T
n+1(x0, y0), T (x, y)) = ωλ3(T (T

n(x0, y0), T
n(y0, x0)), T (x, y)) −→ 0.

Therefore for λ ≥ λ1 + λ3 we have,

ωλ(T (x, y), x) ≤ ωλ1+λ3(T (x, y), x)

≤ ωλ1
(Tn+1(x0, y0), x) + ωλ3

(T (x, y), Tn+1(x0, y0)) −→ 0,

as n −→ ∞. So by strictness of ω, T (x, y) = x. Similarly T (y, x) = y. □
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Theorem 2.2. Let ω be a strict modular on X such that Xω is a ω−complete modular metric space and (Xω,⪯) is
a partially ordered set. Suppose that Xω has the following properties:
(i) if a nondecreasing sequence xn

ω→ x, then xn ⪯ x, for all n;

(ii) if a non-increasing sequence yn
ω→ y, then y ⪯ yn, for all n.

Let T : Xω ×Xω −→ Xω be a mapping having the mixed monotone property on Xω. Assume that there exists a
k ∈ [0, 1) with

ωλ(T (x, y), T (u, v)) ≤
k

2
[ωλ(x, u) + ωλ(y, v)], (x ⪰ u, y ⪯ v).

If there exist x0, y0 ∈ Xω such that x0 ⪯ T (x0, y0) and y0 ⪰ T (y0, x0), then there exist x, y ∈ Xω such that
x = T (x, y) and y = T (y, x).

Proof . Following the proof of Theorem 2.1, we only have to show that T (x, y) = x and T (y, x) = y. Because

Tn(x0, y0)
ω→ x and Tn(y0, x0)

ω→ y, there exist λ1 = λ1(T
n(x0, y0), x) > 0 and λ2 = λ2(T

n(y0, x0), y) > 0 such that

ωλ1(T
n(x0, y0), x) −→ 0, ωλ2(T

n(y0, x0), y) −→ 0, as n −→ +∞.

Now for λ ≥ 2max{λ1, λ2} we obtain:

ωλ(T (x, y), x) ≤ ωλ
2
(T (x, y), Tn+1(x0, y0)) + ωλ

2
(Tn+1(x0, y0), x)

= ωλ
2
(T (x, y), T (Tn(x0, y0), T

n(y0, x0))) + ωλ
2
(Tn+1(x0, y0), x)

≤ k

2
[ωλ

2
(x, Tn(x0, y0)) + ωλ

2
(y, Tn(y0, x0))] + ωλ

2
(Tn+1(x0, y0), x)

≤ [ωλ1
(Tn(x0, y0), x) + ωλ2

(Tn(y0, x0), y)] + ωλ1
(Tn+1(x0, y0), x) −→ 0,

as n −→ ∞.

Therefore by strictness of ω we have T (x, y) = x. Similarly one can show that T (y, x) = y. □ From [16] we have

that for each

(
x
y

)
,

(
x∗

y∗

)
∈ Xω × Xω there exists a

(
z1
z2

)
∈ Xω × Xω which is comparable to

(
x
y

)
and

(
x∗

y∗

)
. In

other words, each pair of elements in the product space has an upper bound or a lower bound.

Remark 2.3. The contractivity assumption is taken on the comparable elements in Xω ×Xω, and so Theorem 2.1
doesn’t imply the uniqueness of the fixed point. In the next theorem we add the comparability condition to the
hypothesis of Theorem 2.1 and conclude the uniqueness of the coupled fixed point of T .

Theorem 2.4. Adding comparability condition to the hypothesis of Theorem 2.1, we obtain the uniqueness of the
coupled fixed point of T .

Proof . If

(
x∗

y∗

)
∈ Xω ×Xω is another coupled fixed point of T , then we show that

ωλ(

(
x
y

)
,

(
x∗

y∗

)
) = 0,

for some λ > 0, where

lim
n→∞

Tn(x0, y0) = x ; lim
n→∞

Tn(y0, x0) = y.

We consider two cases:

Case 1: If

(
x
y

)
is comparable to

(
x∗

y∗

)
with respect to the ordering in Xω×Xω, then for all n ∈ N∪{0},

(
Tn(x, y)
Tn(y, x)

)
=
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x
y

)
is comparable to

(
Tn(x∗, y∗)
Tn(y∗, x∗)

)
=

(
x∗

y∗

)
, also

ωλ(

(
x
y

)
,

(
x∗

y∗

)
) = ωλ(x, x

∗) + ωλ(y, y
∗)

= ωλ(T
n(x, y), Tn(x∗, y∗)) + ωλ(T

n(y, x), Tn(y∗, x∗))

= ωλ(T (T
n−1(x, y), Tn−1(y, x)), T (Tn−1(x∗, y∗), Tn−1(y∗, x∗)))

+ ωλ(T (T
n−1(y, x), Tn−1(x, y)), T (Tn−1(y∗, x∗), Tn−1(x∗, y∗)))

≤ k

2
[ωλ(T

n−1(x, y), Tn−1(x∗, y∗)) + ωλ(T
n−1(y, x), Tn−1(y∗, x∗))]

≤ kn[ωλ(x, x
∗) + ωλ(y, y

∗)]

= knωλ(

(
x
y

)
,

(
x∗

y∗

)
)

ω−→ 0, as n −→ ∞.

So ωλ(

(
x
y

)
,

(
x∗

y∗

)
) = 0 for some λ > 0.

Case 2: Suppose that x̂ =

(
x
y

)
is not comparable to x̂∗ =

(
x∗

y∗

)
. We know that there exists an upper bound or a lower

bound z =

(
z1
z2

)
∈ Xω ×Xω of x̂, x̂∗. So, for all n = 0, 1, 2, ..., z =

(
Tn(z1, z2)
Tn(z2, z1)

)
is comparable to

(
Tn(x, y)
Tn(y, x)

)
=

(
x
y

)
and

(
Tn(x∗, y∗)
Tn(y∗, x∗)

)
=

(
x∗

y∗

)
, so

ωλ(

(
x
y

)
,

(
x∗

y∗

)
) = ωλ(

(
Tn(x, y)
Tn(y, x)

)
,

(
Tn(x∗, y∗)
Tn(y∗, x∗)

)
)

≤ ωλ
2
(

(
Tn(x, y)
Tn(y, x)

)
,

(
Tn(z1, z2)
Tn(z2, z1)

)
) + ωλ

2
(

(
Tn(z1, z2)
Tn(z2, z1)

)
,

(
Tn(x∗, y∗)
Tn(y∗, x∗)

)
)

= ωλ
2
(Tn(x, y), Tn(z1, z2)) + ωλ

2
(Tn(y, x), Tn(z2, z1))

+ ωλ
2
(Tn(z1, z2), T

n(x∗, y∗)) + ωλ
2
(Tn(z2, z1), T

n(y∗, x∗))

< kn{[ωλ
2
(x, z1) + ωλ

2
(y, z2)] + [ωλ

2
(x∗, z1) + ωλ

2
(y∗, z2)]}

ω→ 0,

as n → ∞.

Thus, ωλ(

(
x
y

)
,

(
x∗

y∗

)
) = 0 for some λ > 0, and by the strictness of ω, we get x̂∗ = x̂. □

Theorem 2.5. In addition to the hypothesis of Theorem 2.1, suppose that each pair of elements in Xω has an upper
bound or a lower bound in Xω. Then there exist x, y ∈ Xω, such that x = y.

Proof . Case 1: Suppose that x is not comparable to y. By the assumption there exists a z ∈ Xω comparable to x
and y such that x ⪯ z and y ⪯ z. Then we have,

T (x, y) ⪯ T (z, y) and T (x, y) ⪰ T (x, z)

and

T (y, x) ⪯ T (z, x) and T (y, x) ⪰ T (y, z).

The mixed monotone property of T yields:

(1) T 2(x, y) = T (T (x, y), T (y, x)) ⪯ T (T (z, y), T (y, z)) = T 2(z, y). This implies that T 2(x, y) ⪯ T 2(z, y);

(2) T 2(y, x) = T (T (y, x), T (x, y)) ⪯ T (T (z, x), T (x, z)) = T 2(z, x). This implies that T 2(y, x) ⪯ T 2(z, x);

(3) T 2(x, y) = T (T (x, y), T (y, x)) ⪰ T (T (x, z), T (z, x)) = T 2(x, z), which is equivalent to T 2(x, y) ⪰ T 2(x, z);

(4) T 2(y, x) = T (T (y, x), T (x, y)) ⪰ T (T (y, z), T (z, y)) = T 2(y, z), or equivalently T 2(y, x) ⪰ T 2(y, z).
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By induction it can be shown that similar relations hold for all n > 2 too. Now, consider

ωλ(x, y) = ωλ(T
n+1(x, y), Tn+1(y, x))

= ωλ(T (T
n(x, y), Tn(y, x)), T (Tn(y, x), Tn(x, y))

≤ ωλ
3
(T (Tn(x, y), Tn(y, x)), T (Tn(x, z), Tn(z, x))

+ ω 2λ
3
(T (Tn(x, z), Tn(z, x)), T (Tn(y, x), Tn(x, y))

≤ ωλ
3
(T (Tn(x, y), Tn(y, x)), T (Tn(x, z), Tn(z, x))

+ ωλ
3
(T (Tn(x, z), Tn(z, x)), T (Tn(z, x), Tn(x, z))

+ ωλ
3
(T (Tn(z, x), Tn(x, z)), T (Tn(y, x), Tn(x, y))

≤ k

2
[ωλ

3
(Tn(x, y), Tn(x, z)) + ωλ

3
(Tn(y, x), Tn(z, x))]

+
k

2
[ωλ

3
(Tn(x, z), Tn(z, x)) + ωλ

3
(Tn(z, x), Tn(x, z))]

+
k

2
[ωλ

3
(Tn(z, x), Tn(y, x)) + ωλ

3
(Tn(x, z), Tn(x, y))]

= k[ωλ
3
(Tn(x, y), Tn(x, z)) + ωλ

3
(Tn(x, z), Tn(z, x))

+ ωλ
3
(Tn(z, x), Tn(y, x))].

Proceeding, then we obtain ωλ(x, y) ≤ kn+1[ωλ
3
(x, z) + ωλ

3
(z, y)]

ω→ 0 as n → ∞, so ωλ(x, y) = 0, and by the

strictness of ω, we get x = y.
Case 2: If x is comparable to y, then x = T (x, y) is comparable to y = T (y, x), and we obtain

ωλ(x, y) = ωλ(T (x, y), T (y, x)) ≤ kωλ(x, y).

Because 0 ≤ k < 1 we conclude that ωλ(x, y) = 0, so x = y. □

As an application of Theorem 2.1, we consider the following example.

Example 2.6. Let the triple (R, d,+) be a metric semigroup, i.e., the pair (R, d) is an Abelian semigroup with respect
to addition, +, and d is translation invariant in the sense that d(p + r, q + r) = d(p, q) for all p, q, r ∈ R. Let X be
the set of all real valued functions x on the closed interval [a, b] ⊂ R with a < b such that x(a) = x◦. The function
φ : R+ −→ R+ is a φ-function, i.e., a continuous nondecreasing unbounded function vanishing only at zero. Suppose
that φ is a convex φ-function on R+. We define the function ω : (0,∞)×X ×X −→ [0,∞] for all λ > 0 and x, y ∈ X

ωλ(x, y) = sup
τ

m∑
i=1

φ

(
d(x(ti) + y(ti−1), x(ti−1) + y(ti))

λ(ti − ti−1)

)
(ti − ti−1)

where the supremum is taken over all partitions τ = {ti}mi=0 of the interval [a, b]. It was shown in [8] that ω is a strict
convex modular on X, and X∗

ω(x◦) = X∗
ω, (here x◦ denotes the constant mapping x◦(t) = x◦ for all t ∈ [a, b]). For

more details see [10]. Fix an x◦ ∈ R ,it is easy to show that

X∗
ω = {x : [a, b] → R | x(a) = x◦ and ωλ(x, x◦) < ∞ for some λ > 0}

where

ωλ(x, x◦) = sup
τ

m∑
i=1

φ

(
d(x(ti), x(ti−1))

λ · (ti − ti−1)

)
(ti − ti−1).

Note that by the last relation ωλ(x, x◦) is independent from x◦ ∈ R. This value is called the generalized φλ-variation
of x, where φλ(u) = φ(u/λ), u ∈ R+. Recall that R with d(x, y) = |x− y| is a complete metric space so the modular
space X∗

ω = Xω is ω-complete, (see [10]).

Now we set [a, b] = [−1, 1], x◦ = 0 and φ(t) =
√
t for t ∈ R+. With this modification we have

X = {x : [−1, 1] → R | x(−1) = 0}
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and

X∗
ω = {x : [−1, 1] → R | x(−1) = 0 and ωλ(x, 0) < ∞ for some λ > 0}.

Let the binary relation ⪯ on Xω be the ordinary relation that define for all x, y ∈ X as follows:

x ⪯ y iff x(t) ≤ y(t) for all t ∈ [−1, 1].

Define T : Xω ×Xω −→ Xω by T (x, y) =
1

5
(x(t)− y(t)). We show that T has the properties of Theorem 2.1 Indeed,

ωλ(T (x, y), x◦) = ωλ

(
1

5
(x− y), 0

)

= sup
τ

m∑
i=1

φ

 |1
5
(x(ti)− x(ti−1))−

1

5
(y(ti) + y(ti−1))|

λ(ti − ti−1)

 (ti − ti−1)

≤ 1√
5
sup
τ

m∑
i=1

φ

(
|(x(ti)− x(ti−1))|+ |(y(ti)− y(ti−1))|

λ(ti − ti−1)

)
(ti − ti−1)

≤ 1√
5
(ωλ1(x, 0) + ωλ2(y, 0))

< ∞

where, λ ≥ max{λ1, λ2}. On the other hand (T (x, y))(−1) =

(
1

5
(x− y)

)
(−1) = 0. This implies that T (x, y) ∈ X∗

ω =

Xω.

T has mixed monotone property, because if x1(t) ≤ x2(t) for all t ∈ [−1, 1] then T (x1, y) ≤ T (x2, y), similarly if
y1(t) ≤ y2(t) for all t ∈ [−1, 1] then T (x, y1) ≥ T (x, y2).

Now let x◦(t) = −1 and y◦(t) = 1 be constant functions on the closed interval [−1, 1], then T (x◦, y◦) = −2

5
= x1(t)

is constant function that implies x◦ ≤ x1. Similarly y◦(t) = 1 ≥ y1(t) = T (y0, x0) =
2

5
. For inequality (2.1) we have;

ωλ(T (x, y), T (u, v)) = ωλ(
1

5
(x− y),

1

5
(u− v))

= sup
τ

m∑
i=1

φ(

1

5
|(x(ti)− y(ti)) + (u(ti−1)− v(ti−1))− (x(ti−1)− y(ti−1))− (u(ti)− v(ti))|

λ(ti − ti−1)
)(ti − ti−1)

≤ 1√
5
sup
τ

m∑
i=1

φ(
|(x(ti) + u(ti−1)− x(ti−1)− u(ti))|+ |(y(ti) + v(ti−1)− y(ti−1)− v(ti))|

λ(ti − ti−1)
)(ti − ti−1)

≤ 1√
5
(ωλ(x, u) + ωλ(y, v)).

Therefore k = 2√
5
< 1, and by Theorem 2.1 there exit x, y ∈ Xω such that x = T (x, y) and y = T (y, x).
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