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Abstract

We propose the iterated Jacobi spectral multi Galerkin method for weakly singular Volterra integral equations of
Urysohn type and obtain the superconvergence results in uniform norm. The convergence analysis is discussed in two
cases: when the solution is sufficiently smooth and when it is not. To back up our theoretical approach, we present
numerical findings.
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1 Introduction and convergence analysis

These forms of integral equations are commonly seen in situations involving gas absorption, heat conduction, and
heat transfer [9, 7]. The goal of this research is to obtain approximate solutions to Volterra-Urysohn integral equations
with weakly singular kernels. In [1, 2, 3], H. Brunner presented a polynomial spline collocation method based on both
quasi uniform and graded meshes, demonstrating that it converges O(h1+γ), in the uniform mesh and with O(n−r),
in graded mesh. K. Kant et al. [6] discussed the Galerkin and multi Galerkin methods for Volterra-Hammerstein
weakly singular integral equations by using piecewise polynomials based on graded mesh and obtained the convergence
analysis. In [8], R. Nigam et al. proposed the Galerkin and multi Galerkin methods based on piecewise polynomials for
weakly singular Volterra-Urysohn integral equations and found the superconvergence results. When using piecewise
polynomial-based projection methods, increasing the accuracy of the solution necessitates increasing the number of
partitions, which raises the computational complexity of the approach. Therefore, Jacobi polynomials are used in
place of piecewise polynomials to lower the computational complexity. In [5], K. Kant discussed the error analysis of
Jacobi–Galerkin method for solving weakly singular Volterra–Hammerstein integral equations. In [10], for nonlinear
Volterra integral equations with weakly singular kernels, the Jacobi spectral collocation approach is explained, and
convergence results are obtained. Jacobi spectral approaches for Volterra-Urysohn integral equations with weakly
singular kernels were studied by K. Kant et al. in [4]. The motivation is to consider the iterated Jacobi spectral
Galerkin method is to incorporate the weakly singular kernel in the weight function and obtain the superconvergence
results. Here, we develop the iterated Jacobi spectral multi Galerkin method and obtain the convergence analysis.
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Let X = C[−1, 1] be a Banach space. Consider the weakly singular Volterra integral equation of Urysohn type as
follows:

y(x) =

∫ x

0

(x− ϱ)−γz(x, ϱ, y(ϱ))dϱ+ g(x), x ∈ [0, 1], (1.1)

where z and g are known functions and y is the unknown function to be approximated. To use the Jacobi spectral
methods, we must first define the transformations that will be used to alter the variables

x =
1

2
T (1 + t), t =

2x

T
− 1, ϱ =

1

2
T (1 + s), s =

2ϱ

T
− 1, (1.2)

and

s(t, φ) =
1 + t

2
φ+

t− 1

2
, − 1 ≤ φ ≤ 1. (1.3)

Putting these transformations, the Volterra integral equation (1.1) transformed to the following

v(t) =

∫ 1

−1

(1− φ)−γ z̃(t, s(t, φ), v(s(t, φ)))dφ+ f(t), (1.4)

where z̃(t, s(t, φ), v(s(t, φ))) =
(
t+1
2

)1−γ
l(t, s(t, φ), v(s(t, φ))). Note that z̃(t, s(t, φ), v(s(t, φ))) is sufficiently differen-

tiable with respect to variable φ and continuous with respect to variable t in the interval [-1, 1]. Let Z : X → X be
the integral operator defined by

Z(v)(t) =

∫ 1

−1

(1− φ)−γ z̃(t, s(t, φ), v(s(t, φ)))dφ. (1.5)

At v, the Fréchet derivative of Z is defined as follows

Z ′(v)y(t) =

∫ 1

−1

(1− φ)−γ z̃v(t, s(t, φ), v(s(t, φ)))y(s(t, φ))dφ, (1.6)

where z̃v(t, s(t, φ), v(s(t, φ))) =
∂
∂v z̃(t, s(t, φ), v(s(t, φ))). We express the equation (1.4) as using the integral operator

Z,

v(t)−Z(v)(t) = f(t), t ∈ [−1, 1]. (1.7)

Now we define the operator T on X by

T (v) = Z(v) + f, v ∈ X. (1.8)

The equation above can then be represented as

v = T (v). (1.9)

We make the following assumptions on z̃(·, ·, ·) throughout this article:
(i) z̃(·, ·, ·) is Lipschitz continuous w.r.t. third variable v i.e., for any v1, v2 ∈ R, ∃ C1 > 0 such that

|z̃(t, s, v1)− z̃(t, s, v2)| ≤ C1|v1 − v2|. (1.10)

(ii) The derivative z̃v(·, ·, ·) of z̃(·, ·, ·) exists and Lipschitz continuous w.r.t. third variable v, i.e., for any
v1, v2 ∈ R, ∃ C2 > 0 such that

|z̃v(t, s, v1)− z̃v(t, s, v2)| ≤ C2|v1 − v2|. (1.11)

If MC1 < 1, where M =
(

21−γ

1−γ

) 1
2

, the equation (1.9) then has isolated solution, say v0 ∈ X.
Throughout this article, we assume that 1 is not an eigenvalue of the linear operator T ′(v0), i.e., (I −T ′(v0))

−1 exists
and uniformly bounded in infinity and weighted L2− norm.
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Now we discuss the Jacobi spectral Galerkin method. Let XN = span{ψ0, ψ1, ψ2, ..., ψN}, be the Jacobi polynomials
of degree ≤ N on ∧ = [−1, 1], where ψj(x) is the j-th Jacobi polynomial corresponding to the weight function
ωα,β(x) = (1− x)α(1 + x)β , − 1 ≤ α, β ≤ 1.

We can generate the Jacobi polynomials by the following three-term recurrence relation:

Jα,β
N+1(x) = (aα,βN − bα,βN )Jα,β

N (x)− cα,βN Jα,β
N−1(x), N ≥ 1, (1.12)

Jα,β
0 (x) = 1, Jα,β

1 (x) =
1

2
(α+ β + 2)x+

1

2
(α− β), − 1 ≤ α, β ≤ 1, (1.13)

where

aα,βN =
(2N + α+ β + 1)(2N + α+ β + 2)

2(N + 1)(N + α+ β + 1)
,

bα,βN =
(β2 − α2)(2N + α+ β + 1)

2(N + 1)(N + α+ β + 1)(2N + α+ β)
,

cα,βN =
(N + α)(N + β)(2N + α+ β + 2)

(N + 1)(N + α+ β + 1)(2N + α+ β)
.

Orthogonal projection : Let the orthogonal projection operator ρα,βN : X → XN , − 1 ≤ α, β ≤ 1, be defined by

(ρα,βN u, uN )ωα,β = (u, uN )wα,β , ∀ u ∈ L2
ωα,β , uN ∈ XN , (1.14)

where

(u1, u2)ωα,β =

∫ 1

−1

u1(τ)u2(τ)ω
α,β(τ) dτ.

L2
wα,β = {u : u is measurable and ∥u∥wα,β <∞},

∥u∥wα,β =
(∫ 1

−1

u2(τ)ωα,β(τ) dτ
) 1

2

.

Further, define
Hr

wα,β (Λ) = {v : Dkv ∈ L2
ωα,β (Λ), 0 ≤ k ≤ r},

with

∥u∥Hr

wα,β
=

(
r∑

k=0

∥∥∥dku
dxk

∥∥∥2
ωα,β

) 1
2

and the seminorm on Hr
wα,β (Λ) is defined by

|u|Hr;N

wα,β
=

(
r∑

k=min(r,N+1)

∥∥∥dku
dxk

∥∥∥2
ωα,β

) 1
2

. (1.15)

The crucial properties of the orthogonal projection operator ρα,βN , which we need in our convergence analysis are
([11, 12]) the following, for any u ∈ C[−1, 1], we have

(i) ∥ρα,βN ∥∞ ≤ c(logN), (1.16)

(ii) ∥ρα,βN u∥ωα,β ≤ p∥u∥∞, (1.17)

(iii) ∥ρα,βN u∥ωα,β ≤ ∥u∥ωα,β , (1.18)

and if u ∈ Cr[−1, 1] and r ≥ 1, we have

(i) ∥u− ρα,βN u∥ωα,β ≤ CN−r|u|Hr;N

wα,β
, (1.19)

(ii) ∥u− ρα,βN u∥∞ ≤ CN
3
4−r|u|Hr;N

wα,β
. (1.20)
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The main motivation behind using the Jacobi spectral method to incorporate the weakly singular kernel in the
weight function. For the rest of the article, we restrict α = −γ, β = 0. Define the multi projection operator on X by

(ZM
N )(v) = ρ−γ,0

N Z(v) + Z(ρ−γ,0
N u)− ρ−γ,0

N Z(ρ−γ,0
N v). (1.21)

For the equation (1.1), the multi Galerkin approach seeks an approximation vMN ∈ X such that

vMN −ZM
N (vMN ) = f. (1.22)

We define the iterated approximation solution by in order to obtain a more accurate approximate solution:

ṽMN = Z(vMN ) + f. (1.23)

Lemma 1. Let v0 be the non-smooth solution of the integral equation (1.9). Let the Jacobi orthogonal projection
operator ρ−γ,0

N : X → XN be defined by (1.14) for α = −γ, β = 0. Then there hold

∥(I − ρ−γ,0
N )v0∥ω−γ,0 = O(N−(1−γ)), (1.24)

∥(I − ρ−γ,0
N )v0∥∞ = O(N−(1−γ) logN), (1.25)

∥(I − ρ−γ,0
N )k̃v(x, s(x, ·), v0(s(x, ·)))∥ω−γ,0 = O(N−(1−γ)). (1.26)

Proof . The proof of the above Lemma follows from Lemma 3.1 of [4]. □

Theorem 1.1. Let the orthogonal projection operator ρ−γ,0
N : X → XN be defined by (1.14) for α = −γ, β = 0 and

v0 ∈ C[−1, 1] be an isolated solution of the equation (1.9). For sufficiently large N , there exists L2 > 0 such that
∥(I −ZM ′

N (v0))
−1∥∞ ≤ L2.

Proof . First we show that ZM ′

N (v0) is norm convergent to Z ′(v0) in infinity norm.
Consider for any y ∈ X, we obtain

||[ZM ′

N (v0)−Z ′(v0)]y||∞ = ||[ρ−γ,0
N Z ′(v0) + (I − ρ−γ,0

N )Z ′(ρ−γ,0
N v0)ρ

−γ,0
N −Z ′(v0)]y||∞

= ||[(ρ−γ,0
N − I)Z ′(v0)− (ρ−γ,0

N − I)Z ′(ρ−γ,0
N v0)ρ

−γ,0
N ]y||∞

= ||(ρ−γ,0
N − I)[Z ′(v0)−Z ′(ρ−γ,0

N v0)ρ
−γ,0
N ]y||∞

≤ (1 + ||ρ−γ,0
N ||∞)||[Z ′(v0)−Z ′(ρ−γ,0

N v0)ρ
−γ,0
N ]y||∞

≤ (1 + C logN)||[Z ′(v0)−Z ′(ρ−γ,0
N v0)ρ

−γ,0
N ]y||∞. (1.27)

Consider

||Z ′(ρ−γ,0
N v0)ρ

−γ,0
N −Z ′(v0)||∞ = ||Z ′(ρ−γ,0

N v0)ρ
−γ,0
N −Z ′(v0)ρ

−γ,0
N + Z ′(v0)ρ

−γ,0
N −Z ′(v0)||∞

≤ ||Z ′(ρ−γ,0
N v0)ρ

−γ,0
N −Z ′(v0)ρ

−γ,0
N ||∞ + ||Z ′(v0)ρ

−γ,0
N −Z ′(v0)||∞. (1.28)

Now from the first term of the above estimate, we obtain

|[Z ′(ρ−γ,0
N v0)−Z ′(v0)]ρ

−γ,0
N y(x)|

=
∣∣∣ ∫ 1

−1

(1− θ)−γ [k̃v(x, s(x, θ), ρ
−γ,0
N v0(s(x, θ)))− k̃v(x, s(x, θ), v0(s(x, θ)))]ρ

−γ,0
N y(s(x, θ))dθ

∣∣∣
≤ ||[k̃v(x, s(x, θ), ρ−γ,0

N v0(s(x, θ)))− k̃v(x, s(x, θ), v0(s(x, θ)))]||ω−γ,0 ||ρ−γ,0
N y(s(x, θ))||ω−γ,0

≤ C2||[ρ−γ,0
N v0 − v0](s(x, ·))||ω−γ,0 ||ρ−γ,0

N y||ω−γ,0

≤ C2||[ρ−γ,0
N v0 − v0](s(x, ·))||ω−γ,0 ||y||ω−γ,0 . (1.29)
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Now from the second term of the estimate (1.28) and applying Cauchy-Schwarz inequality, we obtain

|[Z ′(v0)ρ
−γ,0
N −Z ′(v0)]y(x)| = |Z ′(v0)[ρ

−γ,0
N − I]y(x)|

=
∣∣∣ ∫ 1

−1

(1− θ)−γ k̃v(x, s(x, θ), v0(s(x, θ)))(ρ
−γ,0
N − I)y(s(x, θ))dθ

∣∣∣
= |⟨k̃v(x, s(x, ·), v0(s(x, ·))), (ρ−γ,0

N − I)y(s(x, ·))⟩ω−γ,0 |
= |⟨(ρ−γ,0

N − I)k̃v(x, s(x, ·), v0(s(x, ·))), y(s(x, ·))⟩ω−γ,0 |
≤ ||(ρ−γ,0

N − I)k̃v(x, s(x, ·), v0(s(x, ·)))||ω−γ,0 ||y||ω−γ,0 . (1.30)

Combining the estimates (1.28), (1.29) and (1.30), we obtain

||[ZM ′

N (v0)−Z ′(v0)]y||∞
= ||(I − ρ−γ,0

N )[Z ′(ρ−γ,0
N v0)ρ

−γ,0
N −Z ′(v0)]y||∞

≤ (1 + C logN)[C2||[ρ−γ,0
N v0 − v0](s(x, ·))||ω−γ,0 + ||(ρ−γ,0

N − I)k̃v(x, s(x, ·), v0(s(x, ·)))||ω−γ,0 ]||y||ω−γ,0

≤ (1 + C logN)[C2||[ρ−γ,0
N v0 − v0](s(x, ·))||ω−γ,0

+ ||(ρ−γ,0
N − I)k̃v(x, s(x, ·), v0(s(x, ·)))||ω−γ,0 ]||y||∞ → 0 as N → ∞. (1.31)

Now from Lemma 1 and estimate (1.31), we have

|[Z ′(ρ−γ,0
N v0)ρ

−γ,0
N −Z ′(v0)]| ≤ C2(1 + C logN)||[ρ−γ,0

N v0 − v0](s(x, ·))||ω−γ,0

+ (1 + C logN)||(ρ−γ,0
N − I)k̃v(x, s(x, ·), v0(s(x, ·)))||ω−γ,0 → 0 as N → ∞. (1.32)

From estimates (1.27) and (1.32), we can show that ||[ZM ′

N (v0) − Z ′(v0)]||∞ → 0 as N → ∞. Since 1 is not an
eigenvalue of the linear operator Z ′(v0). This implies that for sufficiently large N , there exists constant L2 > 0 such
that ∥(I −ZM ′

N (v0))
−1∥ω−γ,0 ≤ L2.

This completes the proof. □

Theorem 1.2. Let ρ−γ,0
N : X → XN be defined by (1.14) be the orthogonal projection operator for α = −γ, β = 0

and v0 ∈ C[−1, 1] be an isolated solution of the equation (1.9) and let vMN be the Jacobi spectral multi-Galerkin
approximate solution defined by (1.22) and for sufficiently large N , vMN ∈ B(v0, δ) = {v : ||v − v0||ω−γ,0 ≤ δ}, for
some δ > 0 and the following results holds

∥vMN − v0∥ω−γ,0 =

{
O(N−2r), if v0 is sufficiently smooth,

O(N−2(1−γ)), if v0 is nonsmooth.
(1.33)

||Z ′(v0)[ZM
N (v0)−Z(v0)]||∞ =

{
O(N−3r), if v0 is sufficiently smooth,

O(N−3(1−γ)), if v0 is nonsmooth.
(1.34)

Proof . The proof follows from [4]. □

In the following theorem, we prove the error bound for iterated Jacobi spectral multi Galerkin approximate solution
in uniform norm.

Theorem 1.3. Let the orthogonal projection operator ρ−γ,0
N : X → XN be defined by (1.14) for α = −γ, β = 0 and

v0 ∈ C[−1, 1] be an isolated solution of the equation (1.7) and let ṽMN be the iterated Jacobi spectral multi-Galerkin
approximate solution defined by (1.23). Then we have the following results

||ṽMN − v0||∞ =

{
O(N−3r logN), if v0 is sufficiently smooth,

O(N−3(1−γ) logN), if v0 is nonsmooth.
(1.35)
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Proof . Consider

∥Z ′(v0)y∥∞ = sup
t∈[−1,1]

|Z ′(v0)y(t)|

= sup
t∈[−1,1]

∣∣∣ ∫ 1

−1

(1− φ)−γ z̃v(t, s(t, φ), v0(s(t, φ)))y(s(t, φ)) dφ
∣∣∣

≤ ||z̃v(t, s(t, ·), v0(s(t, ·)))||w−γ,0 ||y(s(t, ·))||w−γ,0

≤M ||y(s(t, ·))||w−γ,0 . (1.36)

Since ||Z ′(v0)∥∞ ≤M and ||(I − ZM ′

N (v0))
−1||∞ ≤ L2 <∞, it follows that

||Z ′(v0)(I − ZM ′

N (v0))
−1||∞ ≤ML2 =M1 <∞. (1.37)

From equations (1.9) and (1.23), we have

ṽMN − v0 = Z(vMN )−Z(v0)

= Z ′(v0 + φ1(v0 − vMN ))(v0 − vMN ),

in the above, we have used the Mean value theorem, where 0 < φ1 < 1. For simplicity, let ξN = v0 + φ1(v0 − vMN ),
then

||ṽMN − v0||∞ ≤ ||Z ′(v0 + φ1(v0 − vMN ))(v0 − vMN )||∞
≤ ||[Z ′(ξN )−Z ′(v0)](v0 − vMN )||∞ + ||Z ′(v0)(v0 − vMN )||∞. (1.38)

Now consider the first term of the above estimate∣∣[Z ′(ξN )−Z ′(v0)](v0 − vMN )(t)
∣∣

=
∣∣∣ ∫ 1

−1

(1− φ)−γ [z̃v(t, s(t, φ), ξN (s(t, φ)))− z̃v(t, s(t, φ), v0(s(t, φ))](v0 − vMN )(s(t, φ)) dφ
∣∣∣

≤M

∫ 1

−1

(1− φ)−γ/2|[z̃v(t, s(t, φ), ξN (s(t, φ))) (1.39)

− z̃v(t, s(t, φ), v0(s(t, φ))]|(1− φ)−γ/2|(v0 − vMN )(s(t, φ))| dφ.

Using the Cauchy Schwartz inequality, we obtain

||[Z ′(ξN )−Z ′(v0)](v0 − vMN )(t)||∞
≤M ||[z̃v(t, s(t, ·), ξN (s(t, ·)))− z̃v(t, s(t, ·), v0(s(t, ·))]||w−γ,0 ||(v0 − vMN )||w−γ,0 . (1.40)

Now using the Lipschitz continuity of z̃v(t, s(t, ·), ξN (s(t, ·))), we obtain

||z̃v(t, s(t, ·), ξN (s(t, ·)))− z̃v(t, s(t, ·), v0(s(t, ·))||2w−γ,0

=
∣∣∣ ∫ 1

−1

(1− φ)−γ [z̃v(t, s(t, φ), ξN (s(t, φ)))− z̃v(t, s(t, φ), v0(s(x, φ))]
2 dφ

∣∣∣
≤
∣∣∣ ∫ 1

−1

(1− φ)−γc21[ξN (s(t, φ))− v0(s(t, φ))]
2 dφ

∣∣∣
= c21||ξN − v0||2w−γ,0 ≤ c21||vMN − v0||2w−γ,0 . (1.41)

Combining this estimate with (1.39), we obtain

||[Z ′(v0 + φ1(v0 − vMN ))−Z ′(v0)](v0 − vMN )||∞ ≤Mc1||vMN − v0||2w−γ,0 . (1.42)

Next for the second term of the estimate (1.38), consider

vMN − v0 = ZM
N (vMN )−Z(v0) = ZM

N (vMN )−ZM
N (v0)−ZM ′

N (v0)(v
M
N − v0) + ZM ′

N (v0)(v
M
N − v0) + ZM

N (v0)−Z(v0).
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This implies

(I − ZM ′

N (v0))(v
M
N − v0) = ZM

N (vMN )−ZM
N (v0)−ZM ′

N (v0)(v
M
N − v0) + ZM

N (v0)−Z(v0). (1.43)

Hence, using the Mean value theorem, we have

vMN − v0 = (I − ZM ′

N (v0))
−1[ZM

N (vMN )−ZM
N (v0)−ZM ′

N (v0)(v
M
N − v0) + ZM

N (v0)−Z(0)]

= (I − ZM ′

N (v0))
−1[{ZM ′

N (ξN )−ZM ′

N (v0)}(vMN − v0)] + (I − ZM ′

N (v0))
−1[ZM

N (v0)−Z(v0)]. (1.44)

Applying Z ′(v0) on both sides of the above equation, we obtain

||Z ′(v0)(v
M
N − v0)||∞ ≤ ||Z ′(v0)(I − ZM ′

N (v0))
−1||∞||[ZM ′

N (ξN )−ZM ′

N (v0)](v
M
N − v0)||∞

+ ||Z ′(v0)(I − ZM ′

N (v0))
−1[ZM

N (v0)−Z(v0)]||∞
≤M1||[ZM ′

N (ξN )−ZM ′

N (v0)](v
M
N − v0)||∞

+ ||Z ′(v0)(I − ZM ′

N (v0))
−1[ZM

N (v0)−Z(v0)]||∞ (1.45)

Using the identity (I −ZM ′

N (v0))
−1 = I +(I −ZM ′

N (v0))
−1ZM ′

N (v0), for the second term of the above estimate, we
obtain

||Z ′(v0)(I − ZM ′

N (v0))
−1[ZM

N (v0)−Z(v0)]||∞
= ||Z ′(v0){I + (I − ZM ′

N (v0))
−1ZM ′

N (v0)}[ZM
N (v0)−Z(v0)]||∞

≤ ||Z ′(v0)[ZM
N (v0)−Z(v0)]||∞ + ||Z ′(v0)(I − ZM ′

N (v0))
−1ZM ′

N (v0)[ZM
N (v0)−Z(v0)]||∞

≤ ||Z ′(v0)[ZM
N (v0)−Z(v0)]||∞ +M1||ZM ′

N (v0)[ZM
N (v0)−Z(v0)]||∞ (1.46)

Combining this with the estimate (1.45), we obtain

||Z ′(v0)(v
M
N − v0)||∞ ≤M1||{ZM ′

N (ξN )−ZM ′

N (v0)}(vMN − v0)||∞ + ||Z ′(v0)[ZM
N (v0)−Z(v0)]||∞

+M1||ZM ′

N (v0)[ZM
N (v0)−Z(v0)]||∞. (1.47)

Note that

ZM ′

N (ξN )−ZM ′

N (v0) = [ρ−γ,0
N Z ′(ξN ) + Z ′(ρ−γ,0

N (ξN ))ρ−γ,0
N − ρ−γ,0

N Z ′(ρ−γ,0
N (ξN ))ρ−γ,0

N

− ρ−γ,0
N Z ′(v0)−Z ′(ρ−γ,0

N v0)ρ
−γ,0
N + ρ−γ,0

N Z ′(ρ−γ,0
N v0)ρ

−γ,0
N ]

= ρ−γ,0
N [Z ′(ξN )−Z ′(v0)] + (I − ρ−γ,0

N )[Z ′(ρ−γ,0
N (ξN ))−Z ′(ρ−γ,0

N u0)]ρ
−γ,0
N . (1.48)

Therefore

||{ZM ′

N (ξN )−ZM ′

N (v0)}(vMN − v0)||∞ ≤ ||ρ−γ,0
N [Z ′(ξN )−Z ′(v0)](v

M
N − v0)||∞

+ ||(I − ρ−γ,0
N )[Z ′(ρ−γ,0

N (ξN ))−Z ′(ρ−γ,0
N u0)]ρ

−γ,0
N (vMN − v0)||∞

≤ C logN ||[Z ′(ξN )−Z ′(v0)](v
M
N − v0)||∞

+ (1 + C logN)||[Z ′(ρ−γ,0
N (ξN ))−Z ′(ρ−γ,0

N v0)]ρ
−γ,0
N (vMN − v0)||∞ (1.49)

Now following the steps of (1.39) to (1.42) and using ||ρ−γ,0
N v||w−γ,0 ≤ ||v||w−γ,0 , we can show that

||[Z ′(ρ−γ,0
N (ξN ))−Z ′(ρ−γ,0

N v0)]ρ
−γ,0
N (vMN − v0)||∞ ≤Mc1||vMN − v0||2w−γ,0 . (1.50)

Merging the estimates (1.49) and (1.50), we have

||{ZM ′

N (ξN )−ZM ′

N (v0)}(vMN − v0)||∞ ≤Mc1(logN + (1 + C logN))||vMN − v0||2w−γ,0 . (1.51)

Also note that

||ZM ′

N (v0)[ZM
N (v0)−Z(v0)]||∞ = ||P−γ,0

N Z ′(v0)[ZM
N (v0)−Z(v0)]||∞ ≤ logN ||Z ′(v0)[ZM

N (v0)−Z(v0)]||∞. (1.52)
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Now using the estimates (1.51) and (1.52) in the estimate (1.47), we have

||Z ′(v0)(v
M
N − v0)||∞ ≤M1M2 logN ||vMN − v0||2w−γ,0 + ||Z ′(v0)[ZM

N (v0)−Z(v0)]||∞
+M1 logN ||Z ′(v0)[ZM

N (v0)−Z(v0)]||∞. (1.53)

Now combining this with the estimate (1.38), we have

||ṽMN − v0||∞ ≤ (Mc1 +M1M2 logN)||vMN − v0||2w−γ,0

+ (1 +M1 logN)||K′(v0)[KM
N (v0)−K(v0)]||∞. (1.54)

Now from Theorem 1.2, we have

||ṽMN − v0||∞ =

{
O(N−3r logN), if v0 is sufficiently smooth,

O(N−3(1−γ) logN), if v0 is nonsmooth.
(1.55)

Hence proved. □

Remark 1.1. From Theorem 1.3, we have seen that the error bound in iterated Jacobi spectral multi Galerkin
solution in uniform norm is O(N−3r logN), when solution is sufficient smooth and O(N−3(1−γ) logN), when solution
is nonsmooth.

2 Numerical Illustration

Numerical examples are offered in this section to support our theoretical conclusions. Jacobi polynomials are
used in this case as basis functions of the subspace XN , which are created by the recurrence relations established in
(1.12) and (1.13). In uniform norm, we discuss the errors in iterated Jacobi spectral multi-Galerkin methods. The
approximate solutions in Jacobi spectral multi-Galerkin methods are denoted by ṽMN in the following Tables.

Example 2.1. Consider the following weakly singular Volterra Urysohn integral equation of second kind

y(x) +

∫ x

0

(x− ϱ)−γz(x, ϱ, y(ϱ))dϱ = g(x), x ∈ [0, 1], 0 < γ < 1,

with z(x, ϱ, y(ϱ)) = y(ϱ)2, γ = 1
2 and g(x) = 4

3x
3
2 + x

1
2 and the exact solution is given by y(x) = x

1
2 . We use the

following formula for obtaining the order of convergence a.

a = − log ∥v − ṽMN ∥∞
log n

(2.1)

Table 1: Iterated Jacobi spectral-multi Galerkin methods

n ∥v − ṽMN ∥∞ a
2 1.04346 ×10−4 13.22
3 1.84747 ×10−6 12.01
4 4.53015 ×10−8 12.91
5 2.78615 ×10−10 13.67
6 1.15702 ×10−11 14.05

Example 2.2. Consider the following weakly singular Volterra Urysohn integral equation of second kind

y(x)−
∫ x

0

(x− ϱ)−γz(x, ϱ, y(ϱ))dϱ = g(x), x ∈ [0, 1], 0 < γ < 1,

with z(x, ϱ, y(ϱ)) = y(ϱ)2, γ = 1
2 and g(x) = x4 − 65536

109395x
17/2 and the solution is y(x) = x4.

Remark 2.1. Here we have developed the iterated Jacobi spectral multi Galerkin method and obtained the conver-
gence analysis in uniform norm and verified the convergence snslydianalysis numerically.
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Table 2: Iterated Jacobi spectral multi-Galerkin methods

n ∥v − ṽMN ∥∞ a
5 1.9447 ×10−11 15.32
6 3.222 ×10−13 16.05
7 1.6142 ×10−14 16.32
8 2.8770 ×10−16 17.20
9 1.7640 ×10−17 17.55
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